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Kurzzusammenfassung
Die vergabe von Sofort-Krediten online ist eine moderne Business-Lösung. Ein Algorithmus ba-

sierend auf der Theorie vom maschinellen lernen entscheidet, ob ein Kredit vergeben wird oder

nicht. Es ist nicht unüblich, dass Personen mit betrügerischen Absichten versuchen, das System

zu umgehen - mit dem Ziel, einen Kredit zu bekommen. Diese Arbeit hat das Ziel, Methoden

des maschinellen Lernens zu nutzen, um mögliche Betrugsfälle prognostizieren zu können.

Die dafür verwendeten Daten werden während des Kreditantragsverfahrens gesammelt.

Betrugs- bzw. anomale Fälle sind selten, so verwenden die Methoden in dieser Arbeit nur

positive (Kunden die Kredite zurückzahlen) und unmarkierte (Kunden mit einem unbekannten

Status der Rückzahlung) Daten um Betrugsfälle zu identi�zieren.

Eine Analyse der zugrunde liegenden Daten wurde durchführt und diverse Merkmale und

Probleme wie z. B. die hohe Anzahl von fehlenden Daten wird diskutiert.

Drei Maschinen-Lern-Algorithmen werden vorgestellt. Die one-class SVM verwendet nur

positive Instanzen im Gegensatz zu Positive and Unlabeled Learning (PUL) und PUL Ensemble,

wo beide - sowohl positive als auch unmarkierte - Daten verwendet werden.

Ein Experiment unter der Verwendung von Vorverarbeitungsoperationen und der disku-

tierten Algorithmen wurde durchgeführt. Dieser zeigte eine viel versprechende Betrugser-

kennungsrate bei der Verwendung von one-class SVM auf Kosten einer großen Anzahl von

vertrauenswürdigen Bewerbern, die als Betrüger klassi�ziert wurden. PUL verringerte die

Anzahl der falsch vorhergesagten Rückzahler, während ein PUL Ensemble alle vertrauenswür-

digen Bewerber richtig klassi�zierte und die Betrugserkennungsrate auf etwa 73% brachte.

Zusätzlich wurde ein positiver E�ekt der Vorverarbeitung von Daten und eine negative Aus-

wirkung der Hauptkomponentenanalyse entdeckt. Schließlich wurde der mögliche E�ekt von

PUL-Ensemble als ein Teil des Kredit-Scoring-Systems berechnet.

Die Arbeit kommt zu dem Schluss, dass eine erfolgreiche Betrugserkennung auch ohne die

Verwendung bereits dokumentierter Betrugsfälle möglich ist.
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Abstract
The instant online issuing of micro-loans is a modern credit lending business solution. It is

based on a machine learning algorithm that automatically scores loan applications. It is not

uncommon that some malicious persons try to bypass the system and get a loan. This thesis

aims to utilize advanced machine learning methods to predict possible fraud on data collected

during the credit-application process.

Fraudulent/anomalous cases are by de�nition rare, thus, the machine learning methods

discussed in this thesis are based on discriminating fraudsters by using only positive (good

customers that repay loans) and unlabeled (customers with a still unknown repayment status)

data.

A brief analysis of the underlying data is performed and several characteristics and issues

like the high amount of missing values are discussed.

Three machine learning algorithms able to learn only from positive and unlabeled data

are introduced. The one-class Support Vector Machine (SVM) uses only positive instances in

contrast to Positive and Unlabeled Learning (PUL) and PUL Ensemble, where both - positive

and unlabeled data are used.

An experiment that utilizes the preprocessing operations and the machine learning algo-

rithms showed that a one-class SVM can deliver a promising fraud detection rate but at the

expense of a large number of trustworthy applicants being misclassi�ed; PUL signi�cantly

decreases the false negative rate but failed to detect more fraud cases, whereas a PUL ensemble

achieves a zero false negative rate while driving the fraud detection rate to about 73%. In

addition, a positive e�ect of the preprocessing pipeline and a negative impact of Principal

Component Analysis is discovered. Finally, a business value of deploying a PUL ensemble as a

part of credit scoring system is calculated for a given test set.

The thesis came to the conclusion that a successful fraud detection is possible even when

fraud cases are rare or unavailable.
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1 Introduction

All positive examples are alike, each

negative example is negative in its own

way.

Referring to the Anna Karenina principle.

Anomaly is rare and it represents an outlier, i.e., atypical case. The Concise Oxford Dictionary

of Mathematics Clapham (2013) de�nes an anomaly as an unusual and possibly erroneous

observation that does not follow the general pattern of a drawn population. Anomaly detection

is a branch of data mining that seeks to �nd data points or patterns that do not �t the overall

pattern of the data. Studying anomalous behavior has been done in many applied areas such as

network security Peddabachigari u. a. (2007), �nancial transactions Eskin u. a. (2002); Ahmed

u. a. (2015), medical imaging Spence u. a. (2001), industrial damage detection Hollier und Austin

(2002) and in earth science Das und Parthasarathy (2009), to name a few. As rare observations

often carry important information, their proper detection is of great importance in practice.

This thesis concentrates on anomaly detection in consumer micro-credit lending by using

the state-of-the-art data mining methods.

A micro-credit is usually a small to medium sized loan issued to a private person for a

relatively short period of time. A borrower that needs a loan submits an application via a

web interface that gathers borrower’s personal and �nancial information, such as name, the

address of residence, monthly or yearly income, other loans, etc. An data mining algorithm

behind the automatic loan application scoring utilizes this information as well as any extra

available information, e.g., such as data on creditworthiness of an applicant from credit bureaus,

technical characteristics of a device used to submit an application and information describing

the behaviour on the web-site, in order to make a decision of whether to issue a loan or to

reject the application.

It is not uncommon that malicious people known as fraudsters attempt to cheat a scoring

algorithm so as to look as legitimate and trustworthy applicants. Once such a fraudster got

a loan, a micro-crediting company loses money. As the by-product of missed fraud attempt,

a bad debt is accumulated too, which handicaps the ability of such a company to issue loans

1



1 Introduction

to legitimate applicants in the future. Because a loan decision is automatic and it has to be

fast (made in a few dozen minutes), reliable fraud detection is of paramount importance for

lending businesses.

In this chapter, the taxonomy of anomalies will �rst be introduced, followed by a list of

challenges and problems encountered in anomaly detection. After that, typical approaches to

anomaly detection are brie�y sketched together with examples from the literature. Finally, the

goal and the structure of the thesis are outlined.

1.1 Types of Anomalies

According to Chandola u. a. (2009), anomalies can be divided into three categories:

• Point is the simplest type of an anomaly. Given that an observation is described by

several features (attributes, characteristics), the point anomaly only a�ects one of them,

thus treating any feature independently of the others. For instance, a loan decision is

made based on applicant’s salary only. A salary is, therefore, a feature to consider. A

salary that is extremely high with respect to the rest of salaries is thus the point anomaly.

• Context is an extension of the point anomaly when several features are taken into account

at once, thus assuming certain dependence among features. By extending the example

above, not only salary but also a country of residence are taken into account. In this

case, a salary is linked to the country where a loan applicant lives: a salary of 1,000

euros can be seen as too high in one country while in another country the same amount

corresponds to a typical (average) salary.

• Collective anomalies can be detected by observing a collection of observations. The

context anomaly still views each observation somewhat in isolation from other observa-

tions. The collective anomaly manifests itself only when a few observations are jointly

analyzed. Each observation by itself does not look anomalous, but a group of such

observations occurred together constitutes the anomaly. It is often that such a group

is formed when considering the time dimension. For example, somebody did not yet

repaid one loan but already got the next one, even though the rules explicitly prohibit

this. In isolation, getting a loan is a normal event, but getting two loans when the �rst

loan is not yet fully repaid is likely to be abnormal.

The collective anomaly is out of the scope in this work as it requires approaches drastically

di�erent from those used to address the �rst two types of anomalies.

2



1 Introduction

1.2 Challenges and Problems

Given a statistical/machine learning/data mining algorithm, determining whether an observa-

tion is an anomaly or not is closely tied to the questions: What is a normal state and how this

state can be characterized so that an algorithm can distinguish the normal and abnormal state?

The following challenges are common:

• Rarity of labeled anomalous observations Weiss (2004). Human observers can manually

label few of anomalies, but this is tedious and requires domain knowledge experts. In

addition, anomalous patterns may not yet occur, so that there are representatives of one

(normal) class only.

• Distinguishing between noise in normal data and genuine anomalies is hard and mis-

classi�cation leads to a high false positive (false alarm) or false negative (no alarm)

rate Chandola u. a. (2009).

• Due to the rarity of anomalous observations, it is hard to establish the ground-truth to

objectively judge on algorithm performance Aggarwal (2013).

• Anomalous pattern is not static and can evolve over time. A pattern that is anomalous

at a given point in time may not be anomalous in the future Chandola u. a. (2009).

1.3 Statistical and Machine Learning Approaches to Anomaly
Detection

According to to Aggarwal (2013), there are the following approaches to anomaly detection that

rely on either statistical or machine learning algorithms.

1.3.1 Extreme-Value Analysis

This approach is based on the extreme value theory Castillo u. a. (2004). It is a distribution

based and is typically applied to 1-dimensional data by looking at the tails of a data distribution.

This limits its usefulness to the point anomaly detection.

1.3.2 Proximity-Based Approach

The major idea of the proximity-based approach is to pool related data sets to groups or cluster

based on available data. Data points that are not been allocated to any groups are likely

3



1 Introduction

the outliers. There are two main subgroups in this approach: density-based and clustering

approaches. Regardless of this division, the main operation is distance computation between

pairs of observations. For high-dimensional data, however, distances tend to become almost

identical, thus making outlier detection hard Aggarwal (2013).

1.3.3 Classification Approach

Anomaly detection can be modeled as a two- or one-class classi�cation (supervised learning)

problem.

In the former case, two classes of data are assumed to be available: normal and abnormal. To

mitigate class imbalance caused by very few representatives of an anomaly, the cost-sensitive

learning is applied that assigns di�erent misclassi�cation costs to di�erent classes (cost of

misclassifying an anomalous observation is set to be much higher than that of misclassifying a

normal observation) Elkan (2001).

In one-class classi�cation, only representatives of the normal class are given and an algorithm

is trained to detect them. What cannot be assigned to the normal class is considered to be an

anomaly Amer u. a. (2013).

Although the two-class approach might look more attractive since the conventional super-

vised learning algorithms modi�ed to deal with misclassi�cation costs can readily be applied,

setting these costs is not a trivial task often demanding expert’s knowledge. The one-class

approach that does not need the prior cost speci�cation is, therefore, more appealing and will

be pursued in this thesis.

It should be noted that with either approach there is a risk of the in�ated false positive

rate, compared to the cases with well-balanced classes. However, this is a challenge and an

unavoidable price to pay when anomalous observations are scarce or unavailable.

In recent years, scholars came to the idea of utilizing unlabeled data to complement labeled

data and use both types of data for training a predictive algorithm. This type of learning is

termed semi-supervised learning Zhu (2008). One example of this approach is positive and

unlabeled learning (PUL) Elkan und Noto (2008), that is particularly suitable for our task as

will be explained below.

As anomaly is caused by di�erent reasons and accurate anomaly detection is often hard

to achieve, it is advisable to apply an ensemble of classi�ers where predictions of individual

classi�ers - ensemble members - are combined into a single prediction Seni und Elder (2010).

Ensemble learning is a machine learning paradigm where multiple learners are trained to solve

the same problem. In contrast to ordinary machine learning approaches which try to learn

4



1 Introduction

one hypothesis from training data, ensemble methods try to construct a set of hypotheses and

combine them to use Zhou (2012).

1.4 Current State in Research

Numerous scienti�c surveys Agyemang u. a. (2006); Chandola u. a. (2009, 2012); Pimentel u. a.

(2014) discuss anomaly detection for particular domains from di�erent points of view. To

provide a more speci�c review, this survey considers only domains that are treating topics

where anomalies are representing malicious behavior. Anomaly detection in use case of Credit

Card Fraud is well researched for di�erent techniques like Clustering, Nearest Neighbor, SVM,

Eskin u. a. (2002), Neural Networks Ghosh und Reilly (1994) or Statistical modeling Agarwal

(2005) to name a few. The domain of Intrusion Detection treat anomalies indicative for malicious

actions in networks, some techniques which are used for this problem are Positive Unlabeled

Learning (PUL) Eskin u. a. (2002), one class SVM Amer u. a. (2013), Clustering Chandola u. a.

(2006) or Rule based systems Salvador und Chan (2005). However, none of these reviewed

works treat anomaly detection in case of Credit Application Fraud, however, the insights made

in those works could be helpful to develop an own outlier detection model. This work will stick

on the classi�cation 1.3.3 approach by using Two Class SVM Cortes und Vapnik (1995) and

One Class SVM Tax und Duin (2004) as classi�cation algorithms, Positive Unlabeled Learning

(PUL) Elkan und Noto (2008) as the methodology to utilize positive and unlabeled data and

the ensemble approach Mordelet und Vert (2014), that combine SVM, PUL and Bagging (a

technique for sampling of training data) Breiman (1996).

1.5 Thesis Goal and Structure

The key goal of this work is to �nd anomalies in credit applicant data which can be indicative

of fraud cases. In many practical situations, examples of fraud are either unavailable or very

few in number. Therefore, several known and new machine learning approaches that are based

on learning from data when fraud examples are unavailable will be used and their performance

will be evaluated in order to investigate challenges and obstacles in �nancial data anomaly

detection.

This thesis is structured as follows: After analyzing the state-of-the-art in anomaly detection

in this chapter, Chapter 2 presents the data discovery as speci�ed by the standard CRISP-DM

process, data preprocessing tasks relevant to credit data, and characteristics of the data used in

this thesis. The theoretical overview and discussion of machine learning algorithms used in

5



1 Introduction

this thesis are provided in Chapter 3. Chapter 4 deals with performance evaluation of predictive

models. Experiments done are presented in Chapter 5. The business value of the �ndings is

discussed in Chapter 6. Finally, Chapter 7 concludes with a summary of the entire work and

an overview of perspectives for the future research.
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2 Data Processing

On two occasions I have been asked,

Pray, Mr. Babbage, if you put into the
machine wrong �gures, will the right
answers come out? ... I am not able rightly

to apprehend the kind of confusion of

ideas that could provoke such a question.

Charles Babbage

The goal of data mining can be de�ned as the process of obtaining knowledge from underlying

data by systematic using of analytic methods on it. This Thesis is up to detect anomalies that

are indicative for fraud cases, and the analytic methods are the machine learning algorithms

discussed later in Chapter 3.

However, data-mining is more than applying algorithms on data. Extracting of valuable

results e�orts among other things the consideration of a basis principle in the �eld of computer

science known as Garbage In Garbage Out (GIGO). The business dictionary
1

de�nes GIGO as

an axiom used in context of computer science that signifying that no matter how sophisticated

an information processing system is, the quality (accuracy, completeness, relevance, timeliness,

etc) of the information coming out of it cannot be better than the quality of the information

that went in. A program working on inaccurate data will only yield misleading results. The

preparation of data has thus a signi�cant contribution to the success of a data-mining goal.

There are several established standards in the industry like KDD, SEMMA, CRISP 2
to name

a few, invented to structure a data-mining process. This thesis will partially
3

adapt methods

from the Cross-industry process for data mining (CRISP-DM) Chapman u. a. (2000) which is a

proved data-mining process approach described in terms of a hierarchical process model.

The CRISP-DM process is a cycle. Although the whole cycle contains various components

(see Figure 2.1). This Chapter will focus in particular on the �rst three items (namely Business
1

http://www.businessdictionary.com/de�nition/garbage-in-garbage-out-GIGO.html

2

See the work of Azevedo und Santos (2008).

3

CRISP-DM is an industry standard, thus not completely implementable in the scope of research for a Thesis.

However it will be used as an alignment for structural approaching a data-mining goal.
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Figure 2.1: CRISP-DM process. From: The Figure is taken from the work of Chapman u. a. (2000)

Understanding, Data Understanding and Data Preparation) which represent a fundamental part

of the planning process. The interdependencies of these components is not subject for further

analysis as the main objective is to outline the potential operations such as analytics and

preprocessing actions. The results of the pre-processing operations will then be pinpointed

and discussed in Chapter 5. The CRISP-DM process is well de�ning the chronological and

iterative steps which are necessary to guarantee the appropriate handling of the data and

further evaluations of potential limitations Chapman u. a. (2000).

This chapter will �rst provide a macro view of a loan application process to point out the

steps our data is come from. Then, the �rst three phases of CRISP-DM process are described

with respect to the context of this thesis:

• Business Understanding

– Data acquisition (section 2.1).

– Dataset overview (section 2.2) – a macro view of the entire dataset.
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• Data Understanding

– Feature description (section 2.3) – a micro view of feature characteristics and type.

– Data exploration (section 2.4) – statistical and visual summaries, data quality,

correlated features.

• Data Preparation

– Data preprocessing (section 2.5) – preparation for data mining.

2.1 Data Acquisition

The underlying data treated in this thesis contain information, collected during the credit

request process, brie�y illustrated in Figure 2.2. In the course of the application, the potential

borrower provides his personal information by stepping through a number of steps in the

web-application form. His/her interactions with web-form elements, such as pressed keys or

tracked time between actions, are also collected. Figure 2.2 shows an overview of data collecting

process steps. Each step signi�es an abstract step that the potential borrower has to accomplish

to get a loan, beginning by visiting the initial web-page (Landing Page). Behavioral features

are collected in each of the particular steps. There are three di�erent scopes of behavioral

features: the scope of the particular web-page, the scope of web-form elements and the scope

of the web-slider (a web-form element). After the application process is �nished, the data is

stored in a database.

After fetching from an SQL database, the data is represented by a matrix whose rows are

loan applications and columns are features associated with each loan application.

The features are either categorical or numeric and come from the two di�erent sources:

• Applicant input collected from a loan applicant.

• System input collected by the application processing system.

User input (data an applicant reports about himself/herself) may be inaccurate (for example,

due to mistyping or deliberate attempt of cheating) and therefore it is dismissed from further

analysis. More objective information is deemed to be collected from applicant’s behavior

when he/she is �lling web-forms. Manipulation of behavioral information is signi�cantly more

di�cult than �lling in false personal data.

As fraud intended to bypass a scoring system and get a loan despite false information is one

of the anomalies, behavioral features serve as a basis for anomaly detection.

9
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Figure 2.2: An abstract overview of the data collection process.

2.2 Dataset Overview

An e�ective utilization of data requires a profound understanding of available data – also from

a nontechnical perspective.

Each data instance is representing information of an individual credit application, the

information is historical and represents a common fact of a granted loan. Granted means that

this application have been approved by a scoring algorithm and the loan is issued to a borrower.

Identifying anomalies signifying malicious actions in this type of data is of particular interest

to prevent fraud in the future.

We introduce three assumptions to categorize/label on the available data for further analysis:

• Fraud: A small subset hold applications that in retrospect turned out to have fraudulent

intention. This can have di�erent causes, a portion has been reported by the local law

enforcements, others are results of identity abuse or other malicious actions.

• Non Fraud: A subset of applications where borrowers have already payed at least

one installment back (long-term loan, e.g., issued for one year) or fully repaid a loan

(short-term loan, e.g., issued for 30 days) is believed not to have any fraudulent intentions.
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• Unlabeled: A notable subset of applications not labeled as fraud but also not having

positive cash �ow; thus, this data could not be labeled with absolute certainty.

In total the underlying dataset holds 95.951 instances of individual credit applications.

2.3 Feature Description

The underlying dataset contains in total 1.804 features for each loan application (instance).

A description of each feature is thus not practical. However, a more consolidated analysis is

reported in Table 2.1.

Table 2.1: Feature-type summary.

Type No. of Features Percentage
Categorical 196 11%

Logical 90 5%

Numeric 1519 84%

As could be seen, a vast majority of features is numeric, i.e., they can be represented by

a number. The examples of numeric features are the number of keys pressed or time to �ll a

�eld in the application form. Features that may take only binary values (Yes/No, True/False)

are boolean or logical like did an applicant read the term conditions? or did email address given

exist?. Features that can be represented by words (or categories) like a city of residence or place

of work - are categorical.

Although there are machine learning algorithms that can manage features of di�erent types,

a majority requires to convert logical and categorical features into a numeric format. How this

is typically done will be explained in section 2.5.

2.4 Data Exploration

This task addresses data mining questions by using database querying, visualization, and

reporting techniques. These include distributions of key features, relationships between

pairs or small numbers of features, results of simple aggregations, properties of signi�cant

subpopulations, and simple statistical analyses. These analyses may directly address the data

mining goals, they may also contribute to or re�ne the data description and quality reports,

and feed into the transformation and other data preparation steps needed for further analysis

Chapman u. a. (2000).
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2.4.1 Statistical Summary of Data

According to the semantic labeling in section 2.2, the Table 2.2 summarize the amount of

particular labels. It can be seen that a class imbalance is present in the data.

Table 2.2: Instance-type/Class-label summary

Label No. of Cases Percentage
Fraud 743 1%

Non-fraud 82526 86%

Unlabeled 12682 13%

Non-fraudulent instances clearly dominate the dataset while the fraudulent ones constitute

a small fraction of the entire dataset. As fraud is a particular case of anomaly, this is not

surprising.

For categorical features, a summary describing the amount of unique categories is as follows:

Min: 2 Categories; Max: 6 Categories; Mean: 3 Categories. Thus, the maximum number of

categorical level is not large. This observation is important insofar as each category adds a

further dimension during the categorical to numerical transformation process (section 2.5.1).

A cumulative analysis of the variance of the numerical features (see Table 2.2), showed up a

low variance in the major part of the distribution. This is an essential information since low

variance features can cause noise which can hurt classi�cation accuracy Munson und Caruana

(2009).

By considering the summary of the mean values (see Table 2.3) in numerical features two

observations are made: the high di�erence between the mean value and the value of 3rd

Quartile is an indicator for a skewed distribution (e.g. high amount of extreme values) – these

are a common cause of misclassi�cation Hubert und der Veeken (2010). Moreover, the fact

that the underlying data contains negative numeric values leads to the assumption of possible

errors occurred during the data acquisition process
4
.

Table 2.3: A summarized analysis of the variance and the mean values about numerical data.

Method Min 1st Quartile Median Mean 3rd Quartile Max
Variance 0 0 0 3.544.237.278.460.000 25 5.022.619.867.920.000.000

Mean −6.308 0 0 13.212 2 15.744.157

4

The details of this problem are out of the scope of this Thesis because it is an engineering problem
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2.4.2 Visual Summary of Data

Visualization has the ability to present information directly to the vision of a human, whose

capability of pattern recognition is still unmatched to other analytical techniques like computers,

thus, visual summarizing often helps to expose salience in data like extreme values, relationships

or interactions to name a few Li (2004).

Let consider the feature describing the time a loan applicant focuses his mouse on the input

�eld for monthly income. A histogram of its values (see Figure 2.3) shows a Poison distribution

without extremes.

Figure 2.3: A histogram, visualizing a summary of passed time, which the loan applicants are

focused on the web-form �eld monthly income, in seconds.

Some values in Figure 2.3 are unusually large, possibly implying suspicious behavior when

a would-be applicant tries to guess the income of a legitimate person.

An often used mathematical tool to demonstrate relationships between features is correlation

analysis. The correlation plot (see Figure 2.4) illustrates correlations between features related to

the �eld for monthly income. It shows near zero correlation between the focus time (observed

above) and others, whereby for example the time past during changes and the count of tries to

edit the particular �eld have an quite high correlation factor. However, some other features are

moderately correlated. Visual exploration like this often guides a choice of data preprocessing

to be applied and may reveal data quality issues.
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Figure 2.4: A correlation-plot including the features that are describing the user-behavior on

the web-form �eld income.

2.4.3 Data �ality (missing values)

The only really good solution to the

missing data problem is not to have any.

Statistical adjustments can never make

up for sloppy research.

Paul D. Allison, 2001

Lack of information or missing data in a given dataset is a common obstacle in �eld statistics

and data mining Allison (2002). Below analysis is done in order to identify the amount of

missing data.

Table 2.4 presents a statistical summary about the amount of missing values in the source

data. It can be seen that there are some features containing all but missing values, and there

are a plenty of features with about a half of values missing, implying that removal of rows

with missing values is not an option because this would dramatically reduce the dataset size.
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Table 2.4: A summary of missing values in the entire dataset.

Min 1st Quartile Max Median Mean 3rd Quartile
0% 8% 99% 31% 43% 77%

Since the lack of data is present, a deeper investigation is required. Missing data can have

di�erent types (in the context of statistical analysis). According to Allison (2002) there are

three categories of missing data:

• Missing Completely At Random (MCAR) means that the probability of missing is

unrelated to the feature itself or other features.

• Missing At Random (MAR) addresses the missing in features that is unrelated to itself.

For example, the probability of missing income-value may depends on the employment

status - value, but does not depend on the income-value itself.

• Not Missing At Random (NMAR) eventuates when MAR is gone to be violated, ergo

the probability of the missing depend on the particular value.

Identifying the right category is important to select the correct treatment. However, classify

the category of missing is not straight forward. An assumption about the membership is always

based on observations on data and domain speci�c knowledge of data collection process.

Below (2.5, 2.6, 2.7) the missing value analysis is broken down into summaries that are

grouped by datatypes of the features.

Table 2.5: A summary of missing values about logical-typed data.

Min 1st Quartile Max Median Mean 3rd Quartile
5% 9% 99% 31% 43% 76%

Table 2.6: A summary of missing values about numeric-typed data.

Min 1st Quartile Max Median Mean 3rd Quartile
0% 8% 99% 30% 41% 76%

As follows from these (2.5, 2.6, 2.7) tables, missing values are present in each group of

features. The statistics for logical and numeric data are quite similar: This fact can lead to the
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Table 2.7: A summary of missing values about categorical-typed data.

Min 1st Quartile Max Median Mean 3rd Quartile
0% 24% 99% 59% 58% 90%

assumption that causes of missing values may be related to a common factor(s), which, in turn,

is indicative to the MAR category of missing values.

A common technique to check an assumption about the category of missing values is to

inspect so called missing patterns. It contributes to understanding whether groups of variables

tend to be either all missing or all observed. Table 2.8 present a matrix, in which each row

corresponds to a missing data pattern (1=observed, 0=missing).

Table 2.8: Missing pattern analysis on four random variables/features in the available data.

No. of Cases V1 V2 V3 V4

4510 1 1 1 0

572 0 1 0 1

20 1 1 0 1

9 0 1 1 0

6 1 0 1 1

55 1 0 0 1

572 0 0 1 0

716 0 0 0 1

901 1 1 1 1

1307 0 0 0 0

2 0 1 1 1

87847 0 1 1 1

6 0 0 1 1

Furthermore, there is a visual investigation approach to identify missing patterns. Figure 2.5

presents two plots: The histogram shows the fraction of missing values and the box plot is the

visualisation of missing patterns.

Unfortunately, these analysis methods are only feasible for low-dimensional data. A pattern

matrix describing all possible patterns in our data would obviously be hard to manage.

It is clear that more sophisticated techniques would produce valuable results in the case of

categorization of the missingness. However, this topic is out of the scope of this thesis.

As last but not least, improving data collection practices should also be considered as

powerful prevention of missing values. Possible causes of missing values can provide helpful

information to increase data quality. Potential causes could be:
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Figure 2.5: Two plots, visualizing the missing patterns of the example given in Table 2.8.

• Behavior data is describing several interactions with web-form components, some of

them are optional.

• Application data undergoes several processes before it is available for data analysis. The

processing and data conversions related to these processes could be responsible for the

loss of data.

• The credit application process was executed by a non-human but so-called script/bot
5
.

A bot obviously skips the most of the interactions a human would have to do during the

application.

• The particular operation system on the top of a loan application can be modi�ed to block

the gathering of information by the application system.

5

A bot (short for "robot") is a program that operates as an agent for a user or another program or simulates a

human activity on the Internet. (http://searchsoa.techtarget.com/de�nition/bot)
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2.5 Preprocessing

Based on the observations obtained through acquisition and exploration of our data, this section

explains the necessary steps of data transformation to be made before building a predictive

model.

2.5.1 Categorical to Numeric Transformation

Many machine learning algorithms like those in Chapter 3 cannot deal with other than nu-

merical data types. Therefore logical and categorical data should be converted to a numeric

representation before predictive modeling begins. The logical features are easy to convert: one

value is replaced with 0 while the other with 1.

As for categorical features, the common approach is to replace each category level with a

set of binary dummy variables, where the number of such variables is equal to the number of

di�erent levels.

Let us consider a categorical feature "Feature-Action" with the following possible levels/cate-

gories :

{ButtonClick,MouseClick,Other}

For the sake of simplicity we consider a subset with only four instances as given in Table 2.9.

Table 2.9: An example of a categorical-feature and its levels/categories.

Instance-ID Feature-Action
A Other

B MouseClick

C ButtonClick

D Other

Using binary dummy variables results in three additional features with a numerical value of

either 1 or 0. Table 2.10 shows the result of transformation the categorical features to numeric.
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Table 2.10: The result of categorical-to-numeric transformation for the example given in Ta-

ble 2.9.

Instance-ID Feature-Action.ButtonClick Feature-Action.MouseClick Feature-Action.Other
A 0 0 1

B 0 1 0

C 1 0 0

D 0 0 1

However, if the number of levels is too large, data dimensionality rapidly increases with

each such a feature, thus contributing to noise and increased computation time Briscoe und

Feldman (2006).

2.5.2 Missing Value Imputation

Bellow, some techniques how to impute missing values are described:

• Mean imputation: each empty �eld will be replaced with a arithmetical average of a

given distribution. However, this method is not robust, since it is largely in�uenced by

outliers.

• Median imputation: where the empty �elds are replaced by a value which represent a

separation point of the higher half - from the lower half in a distribution.

• Categorical imputation: an imputation technique for categorical data, where each empty

value is imputed with a new invented category. For example an empty value in the

categorical feature "place of work" will be imputed with the category other.

2.5.3 Removing Corrupted Examples (acquisition error)

Since the process of data acquisition become more and more complex the chance to �nd a

subset of �awed data points in the underlying dataset increase. Examples for corrupted data

can be type errors (e.g. a categorical value in a numeric �eld), extreme values (e.g. a negative

value in the �eld for monthly income) or missing values (separately discussed in section 2.4.3).

The causes are initially wrong input by user, erroneous type conversions or data transmission

dropouts to name a few.
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A summary of the mean value (see section 2.4.1) showed up the existing of negative numerical

values in behavior data. However, behavior information can not be positive by de�nition
6
.

Correcting such �awed entries e�orts a detailed root-cause analysis. However, this is an

engineering-heavy task and would go beyond the scope of this thesis. So the treatment in this

Thesis will be to identify and exclude such corruptions from further analysis.

2.5.4 Removing Zero- and Near-Zero Variance Features

Once all features become numeric, one can proceed with other transformations, namely a

removal of features with zero and near zero variance as such features possess little or no power

in discriminating classes of data. Think of the extreme example when all values for a given

feature are the same, regardless a class label. The variance of such values is exactly zero and it

is impossible to distinguish classes based on this feature alone.

Near-zero variance means that a feature takes very few unique values (relative to the number

of instances) or has a large ratio of the �rst most common value to the second most common

value.

Observations made by inspecting the data quality (see section 2.4.3) showed a signi�cant

number of missing values for some features, which implies that the data may likely contain

features with zero and near-zero variance.

Although removal near-zero variance features seems to be desirable, there are situations

where this might not be the case: For example, a native binary feature with a lot of zeroes

and few ones could be a good discriminator between classes but the near-zero variance check

could possibly remove it.

2.5.5 Principle Component Analysis (PCA)

Principle Component Analysis is one of the main methods to reduce dimensionality, �rst

introduced by Karl Pearson in Pearson (1901). The main idea behind PCA is to reduce the

number of features through a linear transformation aiming at �nding directions of maximal

data variance. Given a large number of features in our dataset, doing PCA is a reasonable

preprocessing step. PCA also makes features uncorrelated, which is an attractive characteristic

when there is suspicion of correlation among the original features.

Formally, the goal of PCA is to map data instances from higher- to lower-dimensional space:

x ∈ X ∈ IRn
to z ∈ Z ∈ IRk

6

Behavior data of type numeric that is considered in this Thesis can only have values ≥ 0, to be correct by

de�nition.
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where k ≤ n

The classical approach is �rst to compute a n× n covariance matrix (a beside e�ect of that

is centering
7
), where each element is the covariance between two features:

Σ =
1

m

n∑
i=1

(xi)(xi)T

where (xi) is a (1× n) vector and (xi)T is a (n× 1) vector.

Eigenvectors and eigenvalues of this matrix are then computed. Eigenvectors determine

the directions of a new feature space, corresponding to the maximum data variance and their

eigenvalues explain the variance of the data.

There are several methods to compute the eigenvectors. In this thesis the method Singular

Value Decomposition (SVD) will be used thus is an proved and numeric stable approach Wall

u. a. (2003); Zou u. a. (2006).

Applying SVD to the covariance matrix, yields:

[U, S, V ] = SV D(Σ)

where U ∈ IRn×n
Matrix representing the eigenvectors.

Sorting eigenvalues in descending order of magnitude and selecting the k eigenvectors

corresponding to the top k eigenvalues, results in U ′ ∈ IRn×k
matrix.

Transforming the original data X to a new space is done by

Z = XU ′T

Although PCA is widely used for dimensionality reduction, the latter causes certain infor-

mation loss. The extent of such loss needs to be kept in mind when PCA is followed by data

classi�cation.

7

Centering is a technique where an constant value (often the mean value) is gonna be subtracted from every

value of a variable.
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This chapter will treat the machine learning methods applied in this thesis. The subsection

Support Vector Machines: 3.1, will point out the idea of SVM including an introduction into

the theoretical parts. Followed by: 3.2 where the Positive Unlabeled Learning (PUL) strategy

for training of our prediction model is discussed. The subjecting section: 3.1.1 approach on

One Class SVM, it will cover the concept and the gaps in respect to the ordinary SVM. At the

end of this chapter, the subsection: 3.3 will introduce the concept of Ensembles in the scope of

machine learning especially to improve the classi�cation accuracy.

The purpose of the following introduction is:

• Understand the core concept of the particular algorithms.

• Get a brief understanding of the theoretical concepts driving the algorithms.

• Became familiar with the possible tuning options that the algorithms contain and be

able to track the motivation of adjusting them.

One last note before starting: the theoretical concepts will be presented in an aggregated form.

The goal is to provide only the information necessary to follow up in the further chapter.

3.1 Support Vector Machines (SVM) 1

Support Vector Machines (SVM) Cortes und Vapnik (1995) is a well proven method with a solid

background in statistical learning theory. It can be used for both classi�cation and regression

tasks. What distinguishes an SVM from other methods is a better ability to deal with high

dimensional data and the guarantee of the globally optimal solution. The solution an SVM

produces is sparse in many cases as only a fraction of training set instances is relevant for

the task at hand. These instances, called support vectors, lie close to a hyperplane separating

data into classes. Thus, an SVM tries to transform nonlinearly separable classes into linearly

separable ones because the latter case is simpler to solve than the former. Without loss of

1

The following chapter is based on the chapter 8 of the book Okun (2011), and provides a brief summary of SVM

important for further work in this thesis.
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generality and for the purpose of this thesis, only one or two classes are assumed to be present

in the data.

Let us assume that we are given a data set as:

S = {(x1, y2), (x2, y2), ..., (xn, yn)} xi ∈ Rd yi ∈ {−1, 1},

where xi is the i−th input instance or data point and yi is its class label. Thus, xi is a d−
dimensional column vector whereas yi is a scalar.

A hyperplane that splits the data into two classes can be represented with the following

equation:

~wTx+ b = 0,

where ~w is a weight vector determining the direction perpendicular to the hyperplane and b a

bias responsible for moving the hyperplane parallel to itself (see also 3.1).

Figure 3.1: A hyperplane for separating 2-dimensional data.

From: The Figure is taken from the work of Okun (2011)

However, classes in the input space are often not linearly separable, which means that a

linear classi�er is not a good option in such a case. In the case of SVMs a solution is to project

the original data into another, often a higher dimensional space x 7→ φ(x), where classes would

more likely be linearly separable. Figure 3.2 shows an example of input space X where data

cannot be separated by a linear function. However after applying the mapping function φ to

each data point in X , the data become well separable in a feature space F = {φ(x) | x ∈ X}.
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Figure 3.2: A visualization of mapping data into a feature space.

From: The Figure is taken from the work of Okun (2011)

Thus, a straightforward solution seems to transforms data into a feature space where a linear

classi�er can be built. These two operations are combined with the help of a kernel function.

The typical kernel functions are:

• K(x, z) = x′z - linear kernel

• K(x, z) = (τ + x′z)p - polynomial kernel of degree p

• K(x, z) = exp(−σ||x− z||2) - Gaussian or Radial Basis Function (RBF) kernel

In these de�nitions, only x and z are vectors while other symbols denote scalars.

As one can see, the kernel representation eliminates the necessity to map each input indi-

vidually: the inputs never appear isolated but in the form of inner products between pairs

of vectors. Because of this, we don’t need to know the underlying feature map! Also, the

dimensionality of the feature space does not a�ect the computation as the inner product is a

number. As a result, the only information that is necessary is a n× n kernel matrix.

Kernels provide one pillar of SVMs. The other is the optimization theory as the SVM solution

is formulated as an optimization task, subject to certain constraints. The primal optimization

problem where w and b are involved is di�cult to solve due to inequality constraints. Instead,

the dual problem based on Lagrangian theory
2

transforms the task into a quadratic program

where the function to be optimized is quadratic while the constraints are all equalities rather

than inequalities. The solution of such a problem is known to be unique and global. It is also

sparse by implying that only a small fraction of the original data matters for class separation,

which results in a very e�cient classi�er.

2

Lagrangian theory is a basic mathematical tool for constrained optimization of di�erentiable functions, especially

for nonlinear constrained optimization Li (2008).
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Below both primal and dual optimization problems are given. The maximal (or hard) margin

problem assumes two classes are only linearly separable in the feature space. To remedy its

de�ciency, the soft margin problem is then presented that works with nonlinearly separable

classes by introducing slack variables measuring non-separability (see below).

The margin is a quantity indicating how well two classes of data are linearly separable.

Figure 3.3 shows the maximal margin γ for a set of 2D points. Thus, the margin is a half distance

between two hyperplanes parallel the class-separating hyperplane when this separation is

maximized.

Figure 3.3: The margin of a set of points. From: The Figure is taken from the work of Okun

(2011)

The maximal margin:

Primal problem: minimize ~w~w,

subject to: yi(~w~xi + b) ≥ 1, i = 1, ..., l

Dual problem: maximize W (a) =
l∑

i=1

ai −
1

2

l∑
i,j=1

aiajyiyjK(~xi
T ~xj),

subject to:

l∑
i=1

aiyi = 0, ai ≥ 0, i = 1, ..., l.

The 2-norm soft margin:
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Primal problem: minimize ~w~w + C
l∑

i=1

ξ2i over ξ, ~w, b

subject to: yi(~w~xi + b) ≥ 1− ξi, , i = 1, ..., l

Dual problem: maximize W (a) =
l∑

i=1

ai −
1

2

l∑
i,j=1

aiajyiyj
(
K(~xi

T ~xj) +
1

c
δi
)
,

subject to:

l∑
i=1

aiyi = 0, ai ≥ 0, i = 1, ..., l.

The 1-norm soft margin:

Primal problem: minimize ~w~w + C
l∑

i=1

ξi over ξ, ~w, b

subject to yi(~w~xi + b) ≥ 1− ξi, ξi ≥ 0, i = 1, ..., l.

Dual problem: maximize W (a) =
l∑

i=1

ai −
1

2

l∑
i,j=1

aiajyiyjK(~xi
T ~xj),

subject to

l∑
i=1

aiyi = 0, C ≥ ai ≥ 0, i = 1, ..., l.

3.1.1 One Class SVM

One Class SVM is an SVM-based classi�er method proposed for cases when only one class of

data is available to a modeler. Another important distinction from the conventional SVM is

that instead of the separating hyperplane a hypersphere with minimal volume (or minimal

radius) containing all objects is sought Tax und Duin (2004).

As can be seen in the Figure 3.4, everything inside the sphere describes instances of a given

class where outside lie outliers. The resulting hypersphere is described by the center d and the

radius R.

Bellow the optimization problem is given:
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Figure 3.4: A visualization of the classi�cation with one-class SVM. From:The �gure is taken
from the work of Shen u. a. (2012)

Minimize R2 + C
n∑

i=1

ξi,

subject to: ||xi − d||2 ≤ R2 + ξi, ξi ≥ 0, i = 1, ..., n

Where ξ are the slack variables for soft margin optimization and C is the penalty parameter

that gives the trade-o� between the volume of the sphere and the number of errors.

3.2 Positive and Unlabeled Learning3

Positive Unlabeled Learning (PUL) is an approach on the learning a classi�er from positive and

unlabeled data problem. Because only one class is available (positive), PUL could be considered

as a kind of one-class task. However, using unlabeled data, which are plenty, given modern

data collection technologies, turns this task into two-class classi�cation. Unlabeled data are

assumed to contain both positive and negative instances but their labels are unknown to an

observer. Because in PUL settings the amount of one class of data often far exceeds the amount

of the other class, the classi�cation problem becomes imbalanced. One of the ways to solve

3

The description of Positive and Unlabeled Learning algorithm in this chapter is based on the work of Elkan und

Noto (2008).
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class imbalance is to use cost-sensitive learning where errors made on di�erent classes have

di�erent costs.

The goal of the PUL technique by Elkan und Noto (2008) is to learn the true function f(.)

that can predict the positive P examples as closely as possible, by learning another function

g(.) from positive and unlabeled U data. Also a validation set, separate from the training data,

is needed in order to �nd a normalizing constant c for g(.). After that, given a test (unseen)

vector x, f(x) is found as g(x)/c.

PUL pseudocode is given below: 1.

Algorithm 1 PUL by using SVM.

1: D ← P ∪ U . Positive and Unlabeled data, where Unlabeled is implicitly a label.

2: {Train, V alid, Test} ← split(D) . Split the original data into training, validation, and

test sets.

3: g ← svm(Train) . Train a cost-sensitive 2-class SVM.

4: Prob = g(V alid) . Get probabilities of being positive for positive instances of the

validation set.

5: c = mean(Prob) . Calculate the normalizing constant as the mean probability.

6: Prob = g(Test)/c . Compute the probability of being positive for test data.

7: If this probability is larger than 0.5, label a test instance as positive

There the data is �rst divided into training, validation, and test sets. Then a cost-sensitive

SVM is used to train a classi�er, able to predict the probability of an instance being positive.

The result of applying the classi�er on the validation set yields the normalizing constant (by

taking the mean probability) that is then used for generating test set predictions.

In other works on PUL, experimental results showed that this approach signi�cantly reduces

the e�ort of labeling the data, while yielding competitive results, compared to the case when

both positive and negative labels must be known before learning (see Li u. a. (2011)).

3.3 PUL Ensemble

PUL Ensemble is an approach to combine multiple PUL algorithms in order to improve classi�-

cation performance and outperform a single PUL algorithm. One of the common techniques to

create an ensemble is to associate a separate training set with/for each ensemble member. In

this thesis the Robust Ensemble of Support Vector Machines algorithm Claesen u. a. (2014) is

selected, in order to implement the ensemble.

The problem of PU learning can be considered as a supervised task with label noise in

the negative set Claesen u. a. (2014). However, the assumption that only the negative set can
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contain label noise can be violated due to various reasons Frénay und Verleysen (2014). For

example, our assumption that borrowers which have already paid at least one installment

back are believed not having fraudulent intentions (see Chapter 2.2) could be violated when

some borrowers are paying a small amount of money back in order to hide their fraudulent

intentions - that would mean those positive examples P can contain label noise.

Robust Ensemble of Support Vector Machines (RESVM) is an ensemble algorithm with the

goal to improve classi�cation performance of PU Learning tasks where label noise is assumed

to be present in both positive and negative sets of instances Claesen u. a. (2014). The RESVM is

based on following two methods that already treat the problem of label noise in U :

Bagging SVM algorithm by Mordelet und Vert (2014), which consists of aggregating SVM

trained on random resamples of U to discriminate P .

Class-weighted SVM (CWSVM) is a classi�cation technique where the penality parameter

for misclassi�cations C di�ers from class to class Liu u. a. (2003). Applied to a PU Learning

problem the misclassi�cation of positive examples is penalized more than the misclassi�cation

of unlabeled examples to emphasize the higher degree of certainty on positive labels Claesen

u. a. (2014).

Additionally to that, the RESVM introduces the concept of resampling both P and U in con-

trast to the Bagging SVM where only U is resampled. The resampled sets will have a di�erent

amount of label noise without increasing the bias. Training based on randomly resampled sets

decreases the variance and thus helps to increase the classi�cation accuracy Breiman (2000).

As our implementation of the PUL algorithm is also based on class weighted penalties (see

the Algorithm 1), CWSVM is in fact identical to a single PUL algorithm.

Below the algorithm of RESVM is given 2.

Algorithm 2 RESVM

nmodels . Number of base models (SVM) in the ensemble.

nunl . Size of resample of U .

npos . Size of resample of P .

k(.) . Kernel function to be used by SVM.

1: Ω← ∅ . Output with nmodels base models.

2: for i:=1 do nmodels

3: P i ← sample(P, npos) . Sample npos instances with replacement from P .

4: U i ← sample(U, nunl) . Sample nunl instances with replacement from U .

5: Di ← P i ∪ U i . Combine two sets of instances to form a training set.

6: ψi ← train(Di, k) . Train CWSVM to discriminate P vs U , with kernel k.

7: Ω← Ω ∪ ψi . Add a trained model to the output.

end for
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In each iteration, a random sample of P and U is drawn separately. Then both samples

are combined to form a training set for a Class-Weighted SVM (P vs U ). Once all ensemble

members have been trained, the �nal prediction is de�ned by a majority voting. In case of a

tie, a random decision is made.
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Learning Methods

You want to evaluate future borrowers,

but in order to train an algorithm that

will help you identify future defaults,

you have to train it and evaluate it on

past data.

Anthony Goldbloom

Evaluating results of outlier detection algorithms and measuring their e�ectiveness is an

essential task. The main requirement for evaluation is the availability of ground-truth about

the class membership. Since the ground truth is available, a part of the data can be used for

training and the remaining for evaluation.

This chapter describe the measurement technique which is used in Chapter 5.2 to evaluate

the experimental (classi�cation) results.

4.1 Receiver Operating Characteristic Analysis (ROC) 1.

ROC analysis is a technique to measure and visualize the performance of a classi�er through

calculating the tradeo� between hit rates and false alarms Fawcett (2006). This performance

evaluation technique is mostly applied to binary classi�ers.

Regardless of a classi�er, there are four types of a prediction outcome, covering all possible

scenarios:

• True Positive (TP): If an instance is positive and it was classi�ed as positive.

• False Positive (FP): If an instance is negative and it was classi�ed as positive.

1

The terms in the scope of ROC analysis can vary (e.g true positive rate = hit rate ...), for the sake of consistency

the below explanation will follow notation in Fawcett (2006)
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• True Negative (TN): If an instance is negative and it was classi�ed as negative.

• False Negative (FN): If an instance is positive and it was classi�ed as negative.

It is common practice to construct a confusion matrix (see Figure 4.1) to combine these

four characteristics. Along the main diagonal correct decisions are given where the errors

(confusion) are represented along the minor diagonal of the matrix (see Figure 4.1).

Figure 4.1: Confusion Matrix.

Based on the above given types of predictions, additional measures can be calculated, such

as:

False Positive Rate (FP-Rate) =
FP

N
,where N stands for negatives.

True Positive Rate (TP-Rate) =
TP

P
,where P stands for positives.

A discrete classi�er have by de�nition a class label as output instead of probability (e.g

Y /N for binary classi�cation) Fawcett (2006). The results can be easily represented on a basic

ROC-Graph (see Figure 4.2), where the x - axis is the FP-Rate and y is the TP-Rate. The best

classi�er/point on the graph is the one with the highest true positive and the lowest false

positive rate (point D in Figure 4.2). An also interesting observation is the C , located on the

diagonal dotted line, where the FP and TP rates are equal for any pair of rates. The dotted

line corresponds to a random classi�er, which implies that for any classi�er to be better than

random, its point related to the ROC-Graph should be located above the dotted line.
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Figure 4.2: ROC-Graph for a discrete classi�er.

From: Figure is taken from the work
of Fawcett (2006)

Figure 4.3: ROC-Curve for a probabilistic clas-

si�er. From: Figure is taken from the
work of Fawcett (2006)

Some classi�ers yields numeric (real) values as an output. These values are either strict

probabilities or they can be uncalibrated scores that may be turned into probability. These

values can be converted into binary labels by using a threshold, e.g., if the value is above the

threshold then the label is Y else N . So, each threshold would produce a di�erent point in

ROC space, and connecting the points together produces the ROC-Curve (see Figure 4.3).

ROC analysis is thus a useful tool for measuring classi�er performance. Whenever a discrete

classi�er is used yielding crisp labels, a confusion matrix provides an additional view on

classi�er performance that complements a ROC-Graph. With a classi�er capable of calculating

the probabilities, a ROC-Curve is a natural choice for performance evalution. For imbalanced

data sets like the one used in this thesis, the ROC analysis results in unbiased performance

evaluation that is not in�uenced (dominated) by a majority class, in contrast to such measures

as classi�cation accuracy Fawcett (2006).
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In this chapter the design aspects introduced in previous chapters (2,3,4) are brought together

and �nd their practical application. The goal is to produce measurable performance results by

applying of preprocessing and machine learning algorithms.

The general pattern that this chapter follows is partially attributed to the CRISP-DM process

(see Figure 2.1) and contains three sub-processes: DataPreparation, Modelling, Evaluation. Each

of them contains techniques previously described in this thesis.

Figure 5.1: A general experiment pattern.

An experiment is de�ned as an process that follows the general experimental pattern (see

Figure 5.1), where the particular methods (see Tables 5.1, 5.2, 5.3) and their parameters can

vary.

5.1 Experimental Se�ing

5.1.1 Dataset Description

The initial data set has 95.951 instances with 1.804 features per instance. Each instance

represents a single credit-application (a detailed overview of underlying data can be found in

Chapter 2.3).

The data is divided into Training/Validation/Test sets in the proportion
1 (≈ 60%/ ≈ 30%/ ≈

10%). All instances that are labeled as Fraud (743) are assigned to the test set since the

predictive algorithms expects Positive and Unlabeled data only. Thus, fraud instances are not a

part of training/validation sets.

1

A common suggested size for the training set is 60%− 80% Good (2005).
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Operation Reference

Removing Corrupted Instances 2.5.3

Categorical to Numeric Transformation 2.5.1

Missing Value Imputation 2.5.2

Removing Zero- and Near-Zero Variance Features 2.5.4

Principle Component Analysis (PCA) 2.5.5

Table 5.1: Operations included into data preprocessing.

Method Reference

Two-Class SVM 3.1

One-Class SVM 3.1.1

PUL 3.2

PUL Ensemble 3.3

Table 5.2: Machine learning methods used in experiments.

Technique Reference

ROC analysis 4.1

Table 5.3: Performance evaluation techniques used in experiments.

5.1.2 Preprocessing Se�ings

Below the con�guration settings for (all) the preprocessing operations (see Table 5.1) used in

the experiment are given:

• Corrupted instances will be completely excluded from the data set.

• The imputation of missing values is done by imputing the median value for numerical

features and by adding of a new level, such as ’OTHER’, to the categorical features.

• All categorical features are then transformed to a numerical representation.

• Low variance features are removed with thresholds freqCut = 95/5 (the cuto� for the

ratio of the most common value to the second most common value) and uniqueCut = 10

(the cuto� for the percentage of distinct values out of the total number of instances).

• Data dimensionality is reduced with the PCA analysis in order to preserve ≈ 95% of the

total data variance. The R implementation of PCA explicitly performs the zero-mean,

unit-variance normalization (scaling) of each feature.
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All machine learning methods are trained with and without PCA. Since the PCA analysis is

con�gured to capture 95% of the total variance in data (see the con�guration in section 5.1.2),

the impact of the other 5% on the prediction model is an interesting case to observe.

To outline the impact of the data preprocessing - an additional experiment is performed. It

includes the training of the one-class SVM on the data when all but the categorical-to-numeric

conversion was omitted.

5.1.3 Modelling Se�ings

There are three di�erent models (one-class SVM, PUL and PUL Ensemble; two-class SVM is a

part of the last two models).

All classi�cation tasks use the strati�ed ten-fold cross-validation carried out on the training

data to �nd the optimal values of model parameters. The training data is randomly divided into

k chunks (folds) while preserving the original class ratio in each chunk as much as possible. A

classi�er is then trained k times: One chunk is used for the validation and the remaining k − 1

are used for training Kohavi (1995).

For SVMs regardless of their type, the Radial Basis Function (RBF) kernel was chosen, which

implies two parameters: σ - kernel width and C - penalty cost.

As our data is class-imbalanced (see in Chapter 2.4.1 the Table 2.2 for the label distribution),

the class-weighted version of the SVM was used, which an extra parameter - class weight.

During the cross-validation, the optimal value of the kernel width was �rst determined prior

to the start of cross-validation. After that, the optimal values of the penalty cost and the class

weight are determined by going through every possible combination of these two parameters.

The possible values for the penalty cost are (0.25, 0.5, 1.0, 2.0), whereas the possible values

for the class weight are (1.0, 2.0, 3.0, 4.0). Thus, there are 16 combinations to test
2
. A small

number of combinations is caused by the high computational cost of the cross-validation and

SVM training.

When creating a PUL ensemble, 10 PUL classi�ers were used, each trained on 11.514 positive

and 5.757 unlabeled instances, sampled from the original dataset.

Two types of voting are used for combining predictions of individual classi�ers:

• A majority voting, where the class of the majority determines the �nal class.

• A custom voting, where at least three votes are required to classify an instance as

fraudulent.

2

The possible values are automatically provided by the R library Caret Kuhn (2008), used to compute the models

in this Thesis.
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5.2 Experimental Results

5.2.1 Preprocessing Results

The e�ect of preprocessing on the number of features and the number of instances is analyzed

below.

Impact on Features
Figure 5.2 shows the change in the number of features after each preprocessing operation. The

preprocessing reduced the number of features from 1.804 to 271, this corresponds reduction

by ≈ 85%.

Figure 5.2: Changes in the feature amount during the preprocessing.

Table 5.4 present a detailed description of preprocessing operations visualized at Figure 5.2

and their impact on the amount of features after the particular operation was applied.

Impact on Instances and their Values
Removing of instances contaminated by data acquisition errors reduced the sample size by

≈ 1% to 95.829 instances. There were a lot of missing values in the data: ≈ 40% of all numeric

values and about ≈ 53% of all categorical and logical values were imputed.
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Table 5.4: The preprocessing impact on the amount of Features.

Number Operation Features left
(1.) Start 1.807

(2.) Removing Zero- and Near-Zero Variance from Numerical Features 687

(3.) Removing Zero- and Near-Zero Variance from Categorical Features 642

(4.) Categorical To Numeric Transformation 972

(5.) Removing Zero- and Near-Zero Variance from all existing Features 933

(6.) Removing Features not necessary for the further training process (e.g Label, ID...) 926

(7.) Principal Component Analysis (capture 95% of the avaliable variance) 272

5.2.2 Modelling / Machine Learning Results

The test set comprises 2229 instances. As SVMs do not naturally return probabilities as an

output, the confusion matrices are reported instead.

One-Class SVM
The test results are shown below (see Figure 5.3). The positive impact of preprocessing is

clearly seen as without it results are greatly inferior to those with it. However, it is hard to

judge on the e�ect of PCA: with PCA the number of detected fraud cases is almost twice

higher than when PCA is not performed; however, this is done at the expense of the correctly

predicted positive cases.

751P

P

738

756N

735

2229

N 5

predicted

One Class SVM
no preprocessing

actual value

537P

P

303

N 977

949N

2229

440

One Class SVM
PCA

actual value

1157P

P

517

N 1383

329N

2229

226

One Class SVM
no PCA

actual value

Figure 5.3: Confusion Matrices visualizing the Performance of the one-class SVM.
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PUL
In the case of PUL, PCA harmed performance as can be seen in Figure 5.4 for both positive

and negative cases. The number of correctly predicted fraud cases was signi�cantly higher

without PCA.

1389P

P

577

N 1555

97N

2229

166

predicted

PUL
PCA

actual value

1397P

P

503

N 1637

89N

2229

240

PUL
no PCA

actual value

Figure 5.4: Confusion Matrices visualizing the Performance of the PUL.

PUL Ensemble
The detailed results among ensembles are provided in Figure 5.5, the highest accuracy was

achieved by the ensemble without PCA preprocessing and with custom voting (custom voting

is been introduced in section 5.1.3) - This is the highest accuracy in this thesis! The custom

1367P

P
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N 1614

119N

2229
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predicted

PUL Ensemble
PCA, majority voting

actual value
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0N
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no PCA, custom voting threshold of 3
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Figure 5.5: Confusion Matrices visualizing the Performance of the PUL Ensemble.
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voting led to increase of the fraud detection by approximately≈ 27%, compared to the majority

voting scheme, while the true positive rate remained the same in both cases.

Model Parameters
The results in the previous sections were obtained with the optimal parameters given in

Tables 5.5 and 5.6. These are parameters for models without PCA. The same data for models

with PCA is not reported as results for them are inferior to those without PCA.

Table 5.5: Two-Class SVM - optimal parameters.

Parameter Description Value
σ (Sigma) Kernel width ≈ 0.0011

C (Cost) Misclassi�cation cost 0.25

W (Weight) Class weights 4

Table 5.6: One-Class SVM - optimal parameters.

Parameter Description Value
σ (Sigma) Kernel width ≈ 19.589

C (Cost) Misclassi�cation cost 2

ROC Graph
Although we mentioned in Chapter 4 that for discrete (crisp) classi�ers, an ROC curve is

reduced to a point in the FP-TP space, Figure 5.6 shows an ROC graph for all models. In this

�gure, the FP rate on the x-axis is replaced with the TN rate for better visualization. Again

it can be seen that the PUL ensembles were much superior to single algorithms. Except for

PCA, all other preprocessing steps enhanced classi�cation performance. Besides it can be seen

that the one-class SVM without preprocessing performance was worse than a random guess

without it (see Chapter 4.1 for the description how to identify a random classi�er by using an

ROC Graph). Therefore, it is not surprising that the PUL ensemble without PCA preprocessing

is also a winner in this ROC graph, yielding the highest TP and TN rates, which con�rms

conclusions made from the analysis of the confusion matrices.
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Figure 5.6: An ROC-Graph visualizing the accuracy of the models involved in the experiment.
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6 Evaluation of Results: Value for Business

Since the confusion matrices for all predictive models are available (see Chapter 5.2), it is

possible to analyze the potential monetary impact of a model on the micro-lending business.

In this chapter, the value of a model for business is calculated.

Please note that some �nancial indicators used in calculations below are only approximate

but in the range of real �gures of a micro-lending company. For business-related reasons, the

exact �gures cannot be reported in this work.

The business value calculations utilize the following characteristics:

(Cost of Customer Acquisition (marketing cost)) CAC = 0.5

(Mean value of the interest rate) r = 10%

(Mean value of a loan taken by a legitimate applicant) Cp = 550

(Mean value of a loan taken by a fraudster) Cn = 2.100

First, the marketing costs for all negative (fraud) cases are calculated:

McostN = CAC ∗ |N |

Once a malicious person got a loan, the company loses money. This loss is de�ned as:

RcostN = Cn ∗ |N |

So, the monetary loss in case if a fraud detection model is not deployed can be calculated as

follows:

Loss′ = RcostN +McostN

Loss′ = (2.100 ∗ 743) + (0.5 ∗ 743)

Loss′ = 1.560.671.5
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The next step is to determine the possible impact of our best fraud detection model (PUL

Ensemble without PCA and with custom voting, see the Figure 5.5 for the detailed performance

result) on the calculated costs.

The possible loss during the wrong classi�cation of trustworthy applicants as fraudsters

(missed pro�t here is the interest on loans) is calculated with the number of false positives:

FNcost = r ∗ |FN | ∗ Cp = 0

because

|FN | = 0.

Finally the gain caused by the correct classi�cation of fraud attempts is given by:

Gain = Cn ∗ |TN | = 2.100 ∗ 542 = 1.138.200

The losses incurred due to wrongly issued loans to fraudsters and the marketing costs are

2.100 ∗ 201 + 0.5 ∗ 201 = 422.200.5

. Coupled with FNcost, the total loss amounts to 422.200.5.

Thus as gains largely exceed losses when the PUL ensemble is applied, this justi�es the

business value of the proposed model for a given test data.

The calculations in this chapter are only preliminary and should be considered as a starting

point. In the future, other business related factors, such as Customer Lifetime Value (CLF),

need to be taken into account.
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7 Conclusion

In this thesis, several known and new machine learning methods were investigated for anomaly

(fraud) detection in credit application data.

A micro-credit company is issuing instant loans online by using an automatic credit-scoring

algorithm. Fraudsters often attempt to cheat the credit-scoring algorithm with the ultimate

the result of obtaining a loan. Apart from a �nancial loss, a successful fraud attempt provokes

further fraud attempts and jeopardizes the loan issuance to trustworthy borrowers due to

tighten security, leading to longer application processing times. Thus, a predictive model for

automatic fraud detection has paramount importance for business.

The theoretical literature related to the topic of anomaly/fraud detection primarily covers

�elds like intrusion detection in networks or credit card fraud among others. However, at

this point of time, works related to credit application fraud could not be found. This is not

surprising since instant online issuing of micro-loans is a new business area and is not yet

under focus of academic research.

Although previous documented research in this �eld could not be found, a literature survey

on similar topics related to anomaly detection provided a good enough foundation to build

this dissertation. In this work,answers to the following questions were sought:

• Which machine learning algorithms to use in order to detect fraud when fraudulent data

is rare or unavailable, how they perform and can they contribute to �nancial success in

a micro-lending business?

• How to utilize and modify di�erent types of complex credit application data to �t these

algorithms?

• What is the optimal treatment of challenges and obstacles occurring throughout the

entire process?

The conclusion Chapter �rst provides a synthesis of the empirical �ndings discovered during

the study in Section 7.1. Then, research implications of the empirical �ndings are outlined in

Section 7.2 to provide additional application knowledge to the already existing on the particular
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subject. The policy implications in Section 7.3 pronounces the relevance of the study with

respect to the theoretical framework of fraud detection. Finally, recommendation for future

research 7.5 and limitations 7.4 of the study are provided.

7.1 Empirical Findings

The empirical �ndings are chapter speci�c and discussed in Chapters (2, 5, 6). In this section

some empirical �ndings are synthesized to answer questions asked by this thesis and questions

occurred during the work on it:

• (1.) Is it possible to identify fraud cases by using machine learning methods applied in this

work?

– a. The experimental results in Chapter 5 show that the PUL ensemble is able to

identify fraud with the high degree of accuracy at zero false negative rate, i.e.,

without classifying good customers as fraudsters.

– b. The data preprocessing pipeline modeled in this work was a signi�cant contrib-

utor to the success of the predictive models implemented in this work. Although

only the one-class SVM was tested on data without preprocessing, an accuracy loss

can also be assumed in the other models, since the one-class SVM was the base-

line model with the most inaccurate results. Out of all preprocessing techniques,

PCA seems to harm rather than help: As PCA is a linear dimensionality reduction

technique while our classi�cation problem is likely highly nonlinear, this might

explain of a PCA failure.

– c. PUL Ensemble showed the best classi�cation results. This is a strong argument for

the hypothesis that positive data can be contaminated with label noise/mislabeled

instances and ensembles are the right methods to deal with such noise.

– d. The problem of rare fraud cases could be successfully managed by utilizing algo-

rithms based on positive and unlabeled learning that don’t require fraud instances

in training/validation data.

• (2.) Can the implemented model contribute to the �nancial success of a micro-lending

company?

– a. Analysis made in Chapter 6 showed that a fraud classi�er can drastically reduce

the cost incurred by fraud.
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• (3.) Was all the given data important for the question of fraud detection?

– b. Removing features with zero and near zero variance during the prepossessing

had positive impact on model accuracy.

• (4.) Which obstacles complicated successful fraud detection?

– a. A signi�cant amount (≥ 50%) of missing values is the main factor to blame.

Skipping all instances where missing values are present would mean to lose a major

part of the data, and thus was not considered as an option.

– c. Acquisition errors were also present and have to be identi�ed prior to modeling.

– d. A signi�cant number of features had low or zero variance. This is caused by the

high amount of missing values.

7.2 Research Implications

Although previous works related to credit application fraud for instant loans could not be

found, several contributions to the state-of-the-art were made.

Previous studies treating the topic of learning from Positive and Unlabeled data concerned

Remote Sensing data Li u. a. (2011), Breast Cancer data, Forest Cover Type data, Vehicle Classi-

�cation and Digit Recognition Claesen u. a. (2014). This study shows the success of the PUL

methods also on �nancial data utilized for fraud detection.

The impact of PCA on �nancial data for the purpose of anomaly detection by using algorithms

based on Positive and Unlabeled data was not discussed in the literature cited in this work.

The experiments made during this work (see Chapter 5.2) could clearly emphasize the negative

impact of PCA on the classi�er performance.

7.3 Policy Implications

This study was made based on a data set from a real-world company specialized in lending

of micro-loans online. Since instantly issuing loans online is a relative modern business and

considering that �nancial data is often private (e.g only a few public data sets are available) -

previous works on the topic of fraud detection with a similar type of data could not be found

for a comparison. Thus, this thesis is one of few open publications in the �eld and may serve

as a guideline for further research and commercial implementations.
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7.4 Limitation of this Study

In following some limitations of this work are summarized:

• The statistical and visual summary of data was limited by the high number of features

and instances. A deeper analysis by using more advanced techniques was beyond the

scope of this thesis.

• Although several missing value imputation techniques exist, only the median imputation

was used as one of the straightforward options.

• The evaluation of predictive models was made on a test set that was signi�cantly smaller

than the training or validation sets – obviously because of the lack of fraud examples.

• SVM with the RBF kernel was only tested. Other kernels were not included in the

experiments.

• The calculation of the business value of the fraud detection model was done without

considering the Customer life time value factor.

7.5 Recommendation for Future Research

Based on the results made in this thesis, further work can be of interest.

Regarding the data quality, the work of Mohan und Pearl (2014) provides promising ap-

proaches to identify the categories of missing data and impute them.

High-dimensional data can be handled by feature selection. This can have several advantages

like speeding up computations or be more transparent in explaining classi�cation decisions.

Among others, a ranked based approach for feature selection already achieved good results in

the topic of anomaly detection Li u. a. (2013) and could be used for further research.

The problem of rarity of negative instances can be approached by applying unsupervised

methods (e.g Clustering Alzate und Suykens (2012)) to identify similarities in the data and

therefore identify more negative instances.

A more consolidated analysis on data acquisition process could be useful to improve the

data quality.

Since the SVM is a kernel-based algorithm experimenting with other than RBF kernels could

provide more results of SVM performance on the given data.

Since the data preprocessing contributed to an essential part of the success in fraud de-

tection, it is worth to repeat the experiments by permuting the preprocessing methods and
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their parameters (e.g try out di�erent variance thresholds or other missing value imputation

techniques).

7.6 Last Words

This thesis gave an introduction to anomaly detection in �nancial data. In spite of the rarity of

fraud cases, a very encouraging result was achieved by utilizing only positive and unlabeled

data and a carefully constructed data preprocessing pipeline.

The author thanks for readers for comments and suggestions.
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