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Abstract

This thesis investigates the applicability of Graph Convolutional Networks (GCNs) for
automating the interpretation of in-the-wild skeletal data. The study examines whether
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GCNs, specifically the Spatial-Temporal Graph Convolutional Network (ST-GCN), can
effectively interpret gestures captured in uncontrolled environments. A dataset was cre-
ated using data from the HopE project, and a training pipeline was developed that in-
corporates transfer learning and data augmentation techniques. The results demonstrate
that GCNs can capture the spatial and temporal dynamics necessary for accurate ges-
ture recognition in real-world scenarios, and provide insight into the potential of GCNs to
improve automated gesture interpretation in diverse and unpredictable environments.
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1 Introduction

In recent years, many organizations have adopted hybrid work models that require em-
ployees to be on-site a certain number of days per week. This approach seeks to balance
the flexibility of remote working with the benefits of face-to-face collaboration and social
interaction [9]. In this context, understanding the dynamics of workplace interactions has
become increasingly important, especially in hybrid work environments where informal
communication plays an important role in maintaining team cohesion[9].

As part of the HopE1 project, an ambient display equipped with a body-tracking system
was installed in the work café environment of a software development company. The
system tracks the body movement of individuals as they interact with the display and
each other. While the primary goal of the project is to understand the honeypot effect,
the data collected also provides valuable insights into the behavior of developers when
they are on-site.

One frequent observation from the data is that many individuals are often seen holding
a coffee cup. This gesture, particularly when multiple people are involved, could suggest
informal communication. Specific gesture and action patterns provide different cues: a
person crossing the room while holding a coffee may indicate they are transitioning into
or out of a social interaction, while a person sitting and drinking coffee could suggest
they are actively engaged in an informal interaction, especially when others are present.
These subtle behaviors may offer insights into how informal communication unfolds and
its role in fostering team dynamics within a hybrid work environment.

In addition, the data collected by the HopE project spans a long period of time, making
it possible to analyze long-term patterns in employee behavior. This is important for
understanding how workplace interactions evolve over time, especially in a hybrid work
environment where employee presence can vary from day to day. To effectively interpret
this vast amount of data, automation techniques are essential.

1https://csti.haw-hamburg.de/project/HopE/(Accessed 2024-07-31)
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1 Introduction

Graph Convolutional Networks (GCNs) have shown promise in gesture and action recog-
nition by effectively modeling the spatial and temporal relationships in skeleton data
[36]. GCNs extend traditional convolutional networks to non-Euclidean data, making
them well suited for tasks involving complex human motion. Their ability to capture
dependencies across joints in the body allows for more accurate gesture interpretation,
even in unstructured and dynamic environments such as those observed in the HopE
project. Given their strengths, GCNs offer a compelling approach for automating the
interpretation of gestures and behaviors captured in real-world settings, where conditions
are less controlled and more varied than in laboratory environments.

1.1 Research Aim

The goal of this thesis is to investigate whether Graph Convolutional Networks (GCNs),
specifically the Spatial-Temporal Graph Convolutional Network (ST-GCN), can effec-
tively detect and interpret specific gestures and behaviors from the in-the-wild body-
tracking data collected by the HopE project.

To achieve this goal, the thesis will first review existing approaches for handling skeleton
data and managing limited training datasets, including the use of transfer learning and
data augmentation. Based on these findings, a pipeline will be developed to preprocess
the data, create a dataset, and train the ST-GCN model. The performance of the model
will be evaluated to identify the best methods for accurate gesture recognition of in-the-
wild data.Ultimately, this research aims to support the automation of pattern recognition
and gesture interpretation, with the goal of enhancing the understanding of employee
behavior.

1.2 Thesis Structure

This thesis is divided into five chapters. Following the introduction, Chapter 2 presents
the context of the acquired data and reviews the relevant literature on gesture recogni-
tion from skeleton data and graph convolutional networks, providing a comprehensive
overview of existing methodologies and identifying gaps that this thesis aims to address.
Chapter 3 details the methodology used, including the process of dataset creation, the
design, and training of the neural network model, and the experiments used to evaluate
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1 Introduction

the model’s performance. Chapter 4 presents the results of the experiments and dis-
cusses the implications. Finally, Chapter 5 summarizes the main findings of the thesis
and suggests directions for future research, with the goal of contributing to the field
of skeleton data analysis and providing insights into employee behavior in hybrid work
environments.
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2 Analysis

This chapter begins by introducing the dataset and its collection context, followed by a
discussion of preprocessing techniques used to enhance skeleton data. It then delves into
data augmentation and transfer learning strategies before presenting an exploration of
Graph Convolutional Networks (GCNs) and their application to gesture interpretation.
In Section 2.1, the context of the dataset used in this thesis is introduced, including
details on the environment in which the data was collected and the HopE project from
which it originates. Section 2.2 focuses on preprocessing techniques for skeleton data,
particularly methods to remove noise and improve data quality, such as jitter reduc-
tion and filtering techniques. Section 2.3 presents various data augmentation methods
and their application to skeleton-based data to improve model generalization and per-
formance. Section 2.4 introduces Graph Convolutional Networks (GCNs), with a special
focus on the Spatial-Temporal Graph Convolutional Network (ST-GCN) model, detailing
its technical features and relevance to gesture interpretation tasks. Section 2.5 provides
an introduction to the NTU-RGB+D dataset. In Section 2.6, transfer learning tech-
niques are discussed, outlining how they are applied to improve model performance in
gesture recognition tasks. Finally, Section 2.7 presents the problem statement, highlight-
ing the challenges of gesture interpretation in real-world environments and formulating
the central research question of this thesis.

2.1 Context of the Dataset

This section begins with an overview of human representation in spatiotemporal space,
covering different approaches such as local feature-based and skeleton-based methods.
This is followed by an overview of the HopE project, including details on the environment
in which the data were collected, the equipment used, and the data format. Understand-
ing these elements is essential to address the challenges of processing and analyzing the
captured skeleton data.

4



2 Analysis

2.1.1 Human Representation in Spatiotemporal Space

The problem of human representation in spatio-temporal space is a well-studied area in
computer vision. The methods used can be broadly categorized into two main approaches:
local feature-based representations and skeleton-based representations[13].

Local feature-based methods focus on detecting key points of interest within the spa-
tiotemporal dimensions. These points are characterized using patches centered on them,
which are then encoded into a representation (e.g., using bag-of-word models). While
effective at capturing localized details, these methods often overlook the spatial rela-
tionships between features[13]. This limitation can hinder the accurate representation of
multiple individuals within the same scene, as the connections between features are not
clearly identified.

In contrast, skeleton-based representations provide a more structured approach to human
representation. As shown by Johansson et al. [15], even a minimal set of tracked joints
can effectively represent human behavior. The skeleton represents the joint structure of
the human body, not in a biological sense, but rather as a model consisting of a predefined
number of joint points tracked over time. Such data can be captured in both 2D and
3D formats, depending on the method used. The quality and accuracy of the skeleton
data is influenced by the chosen acquisition method, which also determines the number
of joint points tracked.

Approaches to skeleton data acquisition can be categorized into four primary methods:

• RGB-Based Approaches: These approaches use cameras to capture RGB images
or video data, from which algorithms extract skeleton models. In some cases,
cameras equipped with additional sensors can provide depth information, enabling
the creation of 3D skeleton models. However, these methods typically require
significant storage due to the need to store large amounts of video data. In addition,
privacy concerns arise when these methods are used in public spaces.

• Machine Learning Approaches on Video Data: These methods rely on ma-
chine learning algorithms to process video data and extract 2D skeleton models.
Unlike previous methods, these approaches typically do not incorporate depth in-
formation, resulting in 2D representations of human motion. While these methods
are beneficial in scenarios where 3D data is not required, they are limited by the
lack of depth information, which can reduce the accuracy of spatial representations.

5



2 Analysis

• Marker-Based Systems: In marker-based systems, markers are placed on the
subject’s body and tracked using infrared or other techniques. These systems are
highly accurate, but are generally limited to laboratory environments due to the
complexity of the setup and the controlled conditions required.

• Depth Camera-Based Approaches: Depth cameras produce depth images from
which skeleton models are generated. This method has the advantage of requiring
less storage space than video-based approaches, and also offers greater privacy since
it does not capture detailed visual information about the subject. However, the
accuracy depends on the hardware used and is prone to occlusion. In addition,
subjects must be within a certain range to be captured.

In summary, human representation in spatio-temporal space can be approached through
local feature-based or skeleton-based methods. While local feature methods capture
detailed points, they may miss important spatial relationships. Skeleton-based methods,
especially those that use depth cameras to generate 3D models, provide a more structured
and practical solution.

2.1.2 HopE Project

The HopE1 project is a collaborative research initiative between the HAW Hamburg and
the University of the Bundeswehr Munich that aims to understand human behavior in
the presence of ambient displays in public and semi-public spaces. The project focuses
specifically on the honeypot effect and distinguishes it from related phenomena such as
the novelty effect [20].

Another goal of the project is to develop systematic approaches to evaluate the collected
data, thereby reducing the reliance on manual analysis [29]. To facilitate data visual-
ization, the University of the Bundeswehr Munich developed the tool PoseViz2 and the
.pose format, which will be described in detail in section 2.4.

This thesis builds on the research and data collected in the HopE project.

1https://csti.haw-hamburg.de/project/HopE/(Accessed 2024-07-31)
2https://poseviz.com/(Accessed 2024-07-31)
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2 Analysis

2.1.3 Setup and Environment for Data Collection

In July 2023, the project initiated a collaboration with Körber Pharma3, an agile soft-
ware development company. As part of this partnership, a Microsoft Kinect camera was
installed in a work café environment. Due to privacy concerns, it was essential to avoid
capturing identifiable video data, which precluded methods involving video-based pose
estimation. Instead, the Kinect was chosen for its ability to collect anonymous skele-
ton data. The camera was positioned over an ambient display that initially displayed
pharmaceutical and intranet news, along with an architectural map. Over time, the dis-
play’s functionality was expanded to include interactive activities, such as playing games
against each other.

The work café is a semi-open space where people move freely, creating a dynamic envi-
ronment ideal for data collection. Figure 2.1 illustrates the room setup, including the
placement of the Kinect camera and the display, with the arrow indicating the camera’s
position. The camera’s field of view (FoV) captures key areas such as the counter, the
first table, and the surrounding room.

The room features an open kitchen-like space with a refrigerator, sink, and coffee maker,
as well as various seating options. This setup encourages a range of activities, including
grabbing a drink or coffee, meeting with colleagues, or working at one of the seating
areas. Analysis of the captured data revealed that the Kinect primarily documented
general behavior and interactions within the space, as direct interaction with the display
was minimal.

2.1.4 Data Format and Limitations

The dataset captured at the Körber Pharma4 site spans from July 2023 to March 2024 and
includes 5,451 time series with lengths ranging from a few seconds to over 60 minutes.
These unfiltered files are stored on a local server in the .pose format, with format
specifications provided in Figure A.1 and Figure A.2. Each file begins with metadata,
including tilt angle and field of view. This is followed by the captured skeleton data,
starting with a timestamp. The data is organized into frames, denoted as f , numbered
according to the milliseconds elapsed since the start of the recording.

3https://www.koerber-pharma.com/(Accessed 2024-07-31)
4https://www.koerber-pharma.com/(Accessed 2024-07-31)
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2 Analysis

Figure 2.1: Design of the Work Café environment with the arrow indicating the position
of the Kinect v2 camera

Copyright: Körber Pharma Software

Each frame may contain multiple people, each identified by a unique person ID, rep-
resented by p followed by a number. The person ID is followed by the x, y, and z

coordinates representing the orientation of the individual, although these are not rele-
vant to this work. The tracked joint points are then listed, marked by a k followed by
a number between 0 and 24. This number serves as an identifier for the joint point, as
shown in the figure 2.2. For each joint, the coordinates x, y, and z indicate the location
of the joint.

While the file format contains additional information, only the elements described above
are required for the purposes of this paper.

Despite its practicality and affordability, the Microsoft Kinect camera has limitations
in the accuracy of the data it collects. The camera is most accurate when subjects are
positioned within a depth range of 0.5 m to 3 m from the sensor, and within 0.5 m to
the left or right of the sensor center [39]. As shown in Figure 2.3, accuracy decreases
significantly outside of this range, posing a challenge for accurate data collection. To
address these limitations, preprocessing techniques can be used to improve the quality
and usability of skeleton data.

8



2 Analysis

Figure 2.2: Skeleton joints provided by Kinect v2

Source: Keskes et al. [18]

Copyright IEEE 2021

Figure 2.3: Kinect Accuracy

Source: Yang et al. [39]

Copyright IEEE 2015

2.2 Gesture Interpretation of In-the-Wild Skeleton Data

Gesture interpretation involves recognizing and understanding human gestures, which
are physical movements or expressions typically involving the hands, arms, face, or body.
Unlike traditional machine learning tasks that process data frame by frame, gesture
interpretation requires sequential analysis of movements. This is because gestures are
dynamic and can only be accurately identified by considering a sequence of frames in
context, rather than individual frames in isolation. Approaches to gesture interpretation

9



2 Analysis

have evolved to include convolutional neural networks (CNNs), recurrent neural networks
(RNNs), graph convolutional networks (GCNs), and transformers [36].

However, despite advances in these machine learning techniques, most research has been
conducted on datasets such as NTU RGB+D [30], which are captured in controlled
laboratory environments. These environments ensure high-quality data where gestures
are well-defined, making it easier for models to achieve strong performance. In contrast,
gesture interpretation in the wild remains less explored [12]. In-the-wild data, collected
in uncontrolled environments, presents significant challenges due to its unpredictability
and lower quality. Unlike laboratory data, where actions can be directed and controlled,
in-the-wild data involves observing actions as they naturally occur.

To address this gap in research, Gupta et al. [12] introduced two new datasets: Skeletics-
152 and Skeleton-Mimetics. These datasets were specifically designed to benchmark in-
the-wild skeleton action recognition, capturing actions in environments with high vari-
ability and contextual differences. Their study revealed a notable performance gap when
state-of-the-art models such as MS-G3D [24] and 4s-ShiftGCN [6] were applied to these
in-the-wild datasets, compared to their performance in controlled settings. This high-
lights the need for models that can better handle the complexity of in-the-wild data.

2.3 Preprocessing Techniques

To improve data quality and reduce noise in skeleton data, several preprocessing ap-
proaches have been investigated. These techniques operate specifically at the signal
level, which focuses on the raw data itself, rather than at the feature level, where feature
selection and extraction take place.

A commonly used technique is the application of low-pass filters, such as the Butterworth
filter, which smoothes the data and reduces noise [16, 7, 11, 26].

The Butterworth filter is used in various orders and cutoff frequencies tailored to specific
applications. Kan et al. [16] used a sixth-order Butterworth filter with a cutoff frequency
of 2 Hz in their human action recognition system, demonstrating significant noise reduc-
tion and improved data quality. Cogollor et al. [7] used a first-order Butterworth filter
with a cutoff frequency of 5 Hz to track manual tasks performed by patients with apraxia
and action disorganization syndrome, effectively smoothing the data for better analysis.
Faity et al. [11] used a second-order Butterworth filter with a cutoff frequency of 2.5

10



2 Analysis

Hz to assess the validity and reliability of Kinect v2 for analyzing upper limb reaching
kinematics, ensuring accurate and consistent kinematic data.

In addition to the Butterworth filter, other filtering methods have been evaluated for their
effectiveness in preprocessing Kinect data. Mobini et al. [26] conducted a comparative
study of four filtering techniques: Reduced Moving Average, Butterworth, B-Spline, and
Kalman filters. Their research showed that the B-Spline filter outperformed the others in
their specific context, which involved analyzing acceleration and velocity data captured
by the Kinect sensor. In addition, they found that a fourth-order Butterworth filter with
a cutoff frequency of 3 Hz struck an optimal balance between noise reduction and data
fidelity, making it suitable for their application.

2.4 Data Augmentation

Data augmentation is an important technique in machine learning that aims to expand
the size and diversity of training datasets by generating synthetic data from existing
examples.5 This is especially important in domains where collecting and labeling large
datasets is challenging, making data augmentation an essential tool for improving model
performance.

The approach to data augmentation can vary depending on the nature of the data.
For models that process data on a frame-by-frame basis, such as convolutional neural
networks (CNNs), augmentation is typically applied independently to each frame. This
involves transformations such as rotations, translations, and noise injection, which help
to create new variations of the data and improve the model’s ability to generalize[37].

When dealing with sequential data, such as video sequences or time series data, aug-
mentation must be applied consistently to all frames in a sequence. This ensures that
temporal correlations are preserved, since inconsistent augmentation within a sequence
can break continuity and make the data unusable.

In the context of skeleton data, augmentation techniques are generally categorized into
spatial, temporal, and generative approaches[37].

5While data augmentation can improve the robustness and generalization of machine learning models,
it also carries the risk of creating a reality gap. The reality gap refers to the discrepancies between
the augmented data and the real-world data, which can lead to reduced model performance in real-
world applications. This gap occurs because the synthetic transformations may not fully capture the
complexities and variations present in real-world scenarios[33].
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Spatial augmentation involves geometric transformations such as translation, rotation,
scaling, and shearing. These changes alter the spatial configuration of the data, creating
different variations that help models generalize across different poses and perspectives.
For example, Wang et al.[35] applied rotation, scaling, and shearing transformations to
3D skeleton data, while Li et al.[21] introduced random rotation and Gaussian noise to
increase variability.

Temporal augmentation focuses on enhancing the temporal dynamics of the data by
applying techniques such as Gaussian blur, time reversal, interpolation, shifting, and
warping. These methods reduce noise, smooth motion trajectories, and adjust sequence
lengths, allowing models to better capture the dynamics of human motion over time[37].

Generative Adversarial Networks (GANs), are used to create entirely new data sequences,
providing a powerful approach to data augmentation. Notable studies by Shen et al.[31]
and Meng et al.[25] have shown that incorporating GAN-generated data can improve the
accuracy of Long Short-Term Memory (LSTM) networks. Similarly, Park et al.[27] intro-
duced an LSTM autoencoder network for data augmentation, which further improved the
performance of recurrent neural networks (RNNs) by generating more diverse training
examples[27, 25].

Despite these advances, GANs still face challenges. Eggert et al. [10] pointed out that
GANs often suffer from problems such as mode collapse and lack of variance, resulting in
synthetic images that are too similar. This limitation hinders the effectiveness of GANs
in generating truly diverse datasets.

For real-world applications, such as surveillance systems, skeleton data often contain im-
perfections such as missing or noisy points. To address this, Cormier et al.[8] developed
a data augmentation framework that introduces random occlusions, such as setting en-
tire frames or specific body parts (e.g., a leg) to zero, to simulate real-world conditions.
This approach, also used by Chen et al.[5], helps models deal with incomplete or noisy
data. In addition, techniques such as interpolation and keypoint swapping or mirror-
ing were implemented, resulting in a 5% performance improvement on the UAVHuman
dataset[23].
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2.5 Introduction to the NTU-RGB+D Dataset

The NTU-RGB+D6 dataset, introduced by Shahroudy et al. [30], is a benchmark for
evaluating skeleton-based action recognition models. In addition, it is used for transfer
learning, which further emphasizes its importance for improving model generalization
across tasks.

The dataset includes 60 different actions, such as walking, waving, drinking, and jumping,
performed by 40 different subjects. The data was captured using three time-of-flight
(ToF) cameras, specifically Microsoft Kinect v2 cameras, from multiple viewpoints.

The dataset includes two analysis protocols: cross-subject and cross-view. The cross-
subject protocol divides the data by different subjects for training and testing, and
evaluates model generalization across individuals. The cross-view protocol divides the
data by camera angle and evaluates the view-invariance of the model.

With 56,880 samples, the NTU-RGB+D dataset is one of the largest and most diverse
for action recognition research, providing a testbed for model development and bench-
marking [1]. This diversity, combined with the challenges introduced by the Kinect v2
cameras, such as noise and jitter, make it a challenging dataset for the field of action
recognition.

2.6 Graph Convolutional Networks (GCNs)

Graph Convolutional Networks (GCNs) have emerged as a highly effective approach to
gesture recognition, especially with skeleton data. They are well suited to the non-
Euclidean, graph-like structure of skeleton data, where joints are represented as nodes
and their connections as edges [19]. The main advantages of GCNs include their nat-
ural alignment with the graph structure of skeleton data, allowing direct processing of
joint connections without the need for complex transformations [1]. In addition, GCNs
can effectively capture both spatial relationships between joints and temporal dynamics
across frames, often combining the strengths of both CNNs and RNNs [1]. Recent studies
have demonstrated the effectiveness of GCNs in gesture recognition tasks, achieving high
accuracy and robustness in various scenarios [1].

6Officially available at https://rose1.ntu.edu.sg/dataset/actionRecognition/ (Accessed
2024-07-31)
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Ahmad et al. [1] introduce a new taxonomy for GCN-based action recognition, classifying
the methods into five categories:

1. Spatio-temporal GCN: These models capture both spatial and temporal features
of the skeleton data. Examples include ST-GCN [38] and its variants.

2. Recurrent-attention GCN: These models integrate attention mechanisms and
recurrent neural networks to focus on important joints and time steps. An example
is the graph attention network introduced by Veliković et al. [34].

3. Two-multistream GCN: These models process multiple streams of data, such as
joint coordinates and bone vectors, to enhance feature extraction. The 2s-AGCN
[32] is a notable example.

4. Encoder-decoder GCN: These models use an encoder-decoder architecture to
reconstruct or predict future frames of skeleton data. Examples include the work
by Li et al. [22].

5. Miscellaneous GCN: This category includes models that do not fit neatly into
the other categories but still leverage graph convolutional techniques for action
recognition.

Given the advantages of GCNs, they are chosen as the machine learning approach for
this thesis. Specifically, the ST-GCN model is selected due to its proven effectiveness
in capturing both spatial and temporal dynamics of skeleton data[38]. The ST-GCN
model achieved good results on the NTU-RGB+D dataset, with an accuracy of 81.5%
in the cross-subject mode and 88.3% in the cross-view mode, highlighting its ability to
effectively handle both subject variability and viewpoint changes [38].

2.6.1 Introduction to Graph Convolutional Networks

Graph Convolutional Networks (GCNs) were first introduced by Kipf and Welling [19].
As the name suggests, GCNs perform convolutions on graphs in much the same way that
Convolutional Neural Networks (CNNs) perform convolutions on images. This analogy
is illustrated in Figure 2.4, where the left image shows traditional Euclidean convolutions
and the right image shows non-Euclidean convolutions.

A graph G = (V,E) consists of a set of vertices V and a set of edges E. An edge
ei,j = (vi, vj) connects a node vi to a node vj . The structure of a graph is typically
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(a) Euclidean Con-
volution

(b) Non-Euclidean
Convolution

Figure 2.4: Comparison of Euclidean and Non-Euclidean Convolutions

Source: Bhatti et al. [3]

Copyright International Journal of Intelligent Systems 2023

represented by an N ×N adjacency matrix A, where Aij = 1 if there is an edge between
nodes i and j, and 0 otherwise. Each node vi is associated with a feature vector xi, which
can contain various attributes such as the coordinates of skeleton data.

The degree matrix D is a diagonal matrix where Dii =
∑

j Aij . The feature matrix
X ∈ RN×d contains the feature vectors for all N nodes, where d is the number of features
per node.

A GCN operates on a graph G by stacking multiple graph convolution layers that trans-
form the feature vectors of each node. Each layer takes as input the node vectors from
the previous layer and outputs new vectors for each node, analogous to the operation
of a CNN layer. This transformation involves aggregating information from a node’s
neighbors, as shown in Figure 2.4.

Mathematically, the function for a graph convolution layer is given by

f(X,A) = σ(D−1/2(A+ I)D−1/2XW )

Here, A+ I denotes the adjacency matrix with self-loops added (where I is the identity
matrix), ensuring that each node includes its own feature in the aggregation. The terms
D−1/2 are used to normalize the adjacency matrix. The matrix multiplication D−1/2(A+

I)D−1/2 normalizes and symmetrizes the adjacency matrix. The feature matrix X is then
multiplied by this normalized adjacency matrix and then by the weight matrix W learned
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during training. The activation function σ is applied element by element to introduce
nonlinearity.

The resulting matrix H consists of the transformed (or embedded) feature vectors for
each node. This process allows the GCN to effectively aggregate and propagate informa-
tion across the graph, enabling it to learn representations that capture the underlying
structure and features of the graph data.

2.6.2 Spatial-Temporal Graph Convolutional Network (ST-GCN)

ST-GCN extends the GCN framework to handle temporal dynamics in addition to spatial
relations. In ST-GCN, a spatio-temporal graph G = (V,E) is constructed, where V is
the set of all joints in the sequence and E includes intra-body and inter-frame links. The
feature vector F (vti) consists of joint coordinates and confidence values.

Formally, the edge set E consists of:

• ES :
ES = {(vti , vtj ) | (i, j) ∈ H} (2.1)

• EF :
EF = {(vti , v(t+1)i)} (2.2)

To model spatiotemporal dynamics, the concept of neighborhood is extended to include
temporally connected joints:

B(vti) = {vqj | d(vtj , vti) ≤ K, |q − t| ≤ Γ/2}.

Here Γ controls the temporal range and is called the temporal kernel size.

The label map for a spatiotemporal neighborhood rooted at vti is

lST(vqj) = lti(vtj) + (q − t+ Γ/2)×K,

where lti(vtj) is the label map for the single frame case at vti.

This formulation allows for a well-defined convolution operation on the constructed
spatio-temporal graphs, effectively integrating both spatial and temporal information.

16



2 Analysis

2.7 Transfer Learning

Transfer learning is a widely used technique in machine learning that is particularly effec-
tive when dealing with limited datasets. It uses the knowledge gained from pre-training
a model on a large, well-labeled dataset and then fine-tuning it on a smaller, task-specific
dataset. By transferring the learned features from the source domain to the target do-
main, transfer learning helps mitigate the problems of overfitting and poor generalization
that often occur with small datasets, thereby improving model performance[14].

As discussed by Hosna et al. [14], transfer learning can be categorized into different
strategies, including inductive, transductive, and unsupervised transfer learning, each
serving different types of tasks and domain relationships. The authors highlight its broad
applicability, from real-world simulations and games to medical imaging and sentiment
analysis. In particular, the technique’s ability to adapt models from one domain to
another has proven essential for improving performance in diverse applications, including
image classification and recommendation systems. However, challenges such as sample
selection bias and negative transfer remain critical to the effective application of transfer
learning.

In a specific application, Keskes et al. [18] proposed an approach using a Spatial-
Temporal Graph Convolutional Network (ST-GCN) pre-trained on the NTU-RGB+D
dataset [30]. This large dataset provided a solid base of learned spatial and temporal
features, as described in Section 2.3. Keskes et al. [18] then fine-tuned the pre-trained
ST-GCN model using the FallFree dataset, which is specifically designed for fall detection
[2]. This strategy allowed the model to adapt to the unique characteristics of fall detec-
tion while retaining the general features learned from the NTU-RGB+D dataset. Among
the various strategies they explored, one particular transfer learning approach achieved
100% accuracy in their experiments, demonstrating the effectiveness of this technique.

2.8 Problem Statement

Building on the findings of Ahmad et al. [1], it is clear that gesture interpretation
of skeleton data has been extensively researched in controlled laboratory environments.
However, these studies do not address the challenges of applying machine learning models
to in-the-wild skeleton data, especially in real-world work environments such as those
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captured by the HopE project. The existing literature highlights the gap in research
focused on real-world scenarios [12].

To bridge this gap, this work aims to investigate whether graph convolutional networks
(GCNs), specifically the spatial-temporal graph convolutional network (ST-GCN) [38],
can help automate gesture interpretation of skeleton data in the wild.

A labeled dataset is created from the data collected by the HopE project, which consists
of 5,451 time series. To improve data quality and reduce noise, preprocessing techniques
will be applied. In addition, dynamic time warping will be used to identify similar samples
within the dataset. The dataset will be classified based on specific gestures observed in
the working café environment.

The ST-GCN model will be trained using different strategies, including transfer learning
and data augmentation, to improve its performance. The effectiveness of these pre-
processing and training methods will be evaluated to identify the optimal approach for
gesture recognition in this real-world setting.

Therefore, the central research question of this thesis is

Can Graph Convolutional Networks (GCNs), in particular the ST-GCN model,
help to automate gesture interpretation in a real-world environment using in-
the-wild skeleton data?

This thesis is based on data and findings from the HopE project, which investigates
human behavior in relation to ambient displays in public and semi-public spaces. The
results are intended to contribute to a broader understanding and application of machine
learning techniques in real-world scenarios.
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This chapter presents the methodology used to evaluate the effectiveness of the Spatial-
Temporal Graph Convolutional Network (ST-GCN) for detecting specific gestures in a
semi-public work café environment. Figure 3.1 visualizes the steps involved.

Section 3.1 covers the preprocessing steps applied to the collected data. Section 3.2 fo-
cuses on the creation of the dataset. It outlines the process of defining classes, extracting
relevant gesture templates, and identifying similar instances within the dataset. This
section also describes the data augmentation techniques implemented to enhance dataset
diversity and robustness, and it concludes with a summary of the final datasets. Section
3.3 delves into the training pipeline, detailing the application of transfer learning and the
hyperparameter tuning process. This section also outlines the experiments conducted to
assess the performance of the ST-GCN model.

Figure 3.1: Process Visualization for the Methodology

(Ajar to the Activity Recognition Chain [4])

3.1 Preprocessing

The main objective of the preprocessing step is to improve the quality of the skeleton
data sequences, with the goal of increasing comparability for the segmentation phase and
potentially improving the performance of the ST-GCN.
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The acquired dataset, compressed in 7-Zip format, comprises .txt, .xef, and .pose files.
Initially, a script was developed to extract all 5,451 .pose files from these archives. To
denoise the data, two filtering methods were applied: a simple moving average (SMA)
filter and a Butterworth filter.

The two filters are briefly introduced below:

The simple moving average (SMA) filter works by averaging a subset of adjacent data
points within a sliding window. The output is calculated over a window of n points using
the following formula:

SMA(t) =
1

n

n−1∑
i=0

x(t− i)

For this thesis, a window size of 30 was selected, corresponding to the Kinect camera’s
sampling frequency of 30 Hz.

A lowpass Butterworth filter is designed to allow signals with frequencies below a certain
cutoff frequency to pass while attenuating signals with frequencies above the cutoff. This
filter is characterized by its maximally flat frequency response in the passband, ensuring a
smooth transition to the stopband without ripples. In this case, a 2nd order Butterworth
filter with a cutoff frequency of 2.5 Hz was used.

Figure 3.2 demonstrates the application of these filtering methods on the x-coordinate of
the right elbow joint of a skeleton sequence. The figure showcases the raw data along with
the filtered outputs. The raw data series exhibits significant jitter, which is effectively
reduced by the Butterworth filter, providing a closer approximation to the underlying
signal. Although the SMA filter yields the smoothest lines, it also introduces the most
alteration to the original data.

The preprocessing step focused on skeleton sequences with durations under 10 minutes to
enhance computational efficiency and minimize manual processing, reducing the dataset
to 3,827 time series. Both the Simple Moving Average (SMA) and Butterworth filters
were applied to these sequences, significantly reducing noise and jitter. This resulted
in the creation of three distinct datasets that are now better suited for the subsequent
segmentation phase. The refined datasets provide improved comparability between se-
quences, which is expected to enhance the performance of the Graph Convolutional
Network (GCN) during model training and evaluation.
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Figure 3.2: Illustration of filter application on the x-coordinate of the elbow joint in a
skeleton sequence

3.2 Dataset Creation

As a result of the preprocessing step, three datasets with 3,827 time series have been
created. The next step is to label this data and create datasets from it. This process is
divided into three main parts as shown in figure 3.3: the labeling, the approach to extract
these sequences from the data, and the application of data augmentation techniques to
ensure evenly distributed sets.

Figure 3.3: Dataset Creation Process
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3.2.1 Labeling

As stated in the problem statement, the selection of representative example gestures is
essential for the execution of the experiment. A preliminary manual analysis conducted
by Jan Schwarzer1 identified common gestures performed by individuals in the environ-
ment. It was observed that many people were either holding or drinking a coffee. Those
holding a coffee often moved around the room, while those drinking tended to remain
stationary, either sitting or standing.

Consequently, two classes of gestures were defined based on this observed behavior, with
each class capable of being performed with either the left or right hand:

1. Holding Gesture: This gesture is characterized by a stable 90° angle between the
upper and lower arm. The sequence begins with the subject either picking up a
coffee or entering the field of view already holding a coffee, as shown in Figure 3.4.

2. Drinking Gesture: This gesture starts from a holding position, involves reducing the
angle between the upper and lower arm, followed by a pause, and then increasing
the angle, returning the individual to the starting position, as shown in Figure 3.5

With these gesture classes defined, the next step involves creating a labeled dataset by
identifying and extracting these specific motions from the data. This process is detailed
in the following section.

3.2.2 Segmentation

Before extracting samples that represent the predefined gesture classes, it is important
to develop a process that automatically identifies the sequences within each video that
require labeling. The objective is to automate this identification process, to save time
and effort.

As demonstrated by Schwarzer et al. [29], Dynamic Time Warping (DTW) is an effective
technique for identifying similar behavior patterns within skeleton data. In this thesis,
DTW is employed to facilitate the identification and extraction of relevant time series,
as illustrated in Figure 3.6.

1Ph.D. at the HAW Hamburg and part of the HopE project https://csti.haw-hamburg.de/ja
n-schwarzer/ (Accessed 2024-09-11)
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Figure 3.4: Holding gesture

Figure 3.5: Drinking gesture

Through this approach, templates corresponding to the predefined gesture classes are
extracted and utilized to find similar sequences within the dataset. The final datasets
are then defined based on the evaluation of these extracted sequences.

First, a brief introduction on how Dynamic Time Warping works is provided.
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Figure 3.6: Segmentation Process

Dynamic Time Warping (DTW)

Dynamic Time Warping (DTW) is a technique used to find the optimal alignment be-
tween two time-dependent sequences by applying nonlinear warping. Unlike Euclidean
distance, which allows only one-to-one comparisons, DTW enables many-to-one point
comparisons, making it more adept at addressing temporal discrepancies. This capabil-
ity is significant as it allows the identification of shape similarities despite variations in
motion speed.

The Algorithm works as follows:

Given two sequences A := (a1, a2, . . . , aN ) of length N and B := (b1, b2, . . . , bM ) of
length M , where ai = (xi, yi) and bj = (xj , zj), representing the x and z coordinates of
the chosen joint point to make it 2D. The first step is to calculate a distance matrix of
size N ×M . Each element d(ai, bj) is computed using the Euclidean distance:

d(ai, bj) =

√√√√ N∑
n=1

(ai,n − bj,n)2 (3.1)

The next step is to calculate a cost matrix, which is used to determine the alignment
cost:

ci,j = d(ai, bj) + min


ci−1,j−1

ci−1,j

ci,j−1

(3.2)
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Finally, this cost matrix is used to figure out the warping path w, which is the path with
the lowest cost from cM,N to c1,1. This is done by starting at cM,N and reversely moving
through the cost matrix to find the warping path positions w = {cN,M , . . . , ci,j , . . . , c1,1}.
These must be applied to the distance matrix to find the warping path elements wp =

{dN,M , . . . , di,j , . . . , d1,1}. Finally, the DTW distance is calculated by averaging the warp-
ing path elements, wp, where k is the number of elements:

DTWd =
1

k

k∑
i=1

wpi (3.3)

Template Selection for Gesture Classes

The following templates were manually selected to represent the defined gesture classes:

1. Walks with a coffee from back right to front left.

2. Sits at the counter and drinks.

3. Stands in front of the screen and drinks.

4. Walks from back to front with a coffee.

5. Sits at the counter, stands up, and walks to the screen with a coffee.

Templates 1, 4, and 5 were categorized as the holding and walking class, while templates
2 and 3 were categorized as the drinking class. These templates were subsequently used
as input for the Dynamic Time Warping (DTW) algorithm.

Parameters for Dynamic Time Warping

The DTW algorithm necessitates a reference point to compute the warping path. Given
that the gestures were performed with the right hand, the right wrist, and right elbow
joint were used as reference points. Each template was processed in three variations: raw,
moving average filtered, and Butterworth filtered. Consequently, each template was fed
into the algorithm six times, once for each combination of filter and reference point.

An important parameter for the DTW algorithm is the thresholdDTW, which ranges
from 0 to 1 and defines the maximum warp cost between the template and the time
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series. To determine the optimal value for this parameter, different thresholds were
tested, starting at 0.075 and incrementing by 0.075 up to 0.3, for both the right elbow
and right wrist joints.

Figure 3.7 illustrates the results for the right wrist joint using four distinct threshold
values. Both the lower and upper threshold values resulted in either insufficient or exces-
sive matches. The upper threshold values included nearly half of the dataset, depending
on the filtering method employed. A similar pattern was observed for the right elbow
joint, as shown in Figure A.3. Based on these observations, a threshold value of 0.15 was
selected.

Figure 3.7: DTW result threshold comparison with right wrist as input

Results of Dynamic Time Warping

Figures 3.8 and A.4 illustrate the results of the (DTW) Algorithm across all five gesture
templates, using the right elbow and right wrist joints as reference points.

The analysis revealed that the outcomes were largely consistent across the different fil-
tering techniques. Specifically, the templates representing the actions of either standing
in front of the screen and drinking or walking from the back right to the front left while
holding a coffee produced the highest number of matches.
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Figure 3.8: DTW results with right elbow as input (threshholdDTW = 0.15)

Figure 3.9: True positives of the DTW-Results for the Elbow Joint (thresholdDTW =
0.15)
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Figure 3.10: True positives of the DTW-Results for the Wrist Joint(thresholdDTW =
0.15)

The matches were evaluated manually using the PoseViz tool, and the results are pre-
sented in Figures 3.9 and 3.10. These figures display the true positives for each template,
highlighting the correctly matched results of the (DTW) algorithm. It was observed that
some sequences initially matched to a category had to be reassigned to another.

The evaluation results indicate that the proposed approach performs best on raw data,
particularly for the template of a person crossing the room. Overall, the walking tem-
plates exhibit the highest true positive rates. However, it is important to note the
discrepancy between the number of matches and the true positives.

Figure 3.1 illustrates the overall matches across all templates and joint reference points.
As previously described, Templates 1, 4, and 5 are grouped as the holding and walking
gesture, while Templates 2 and 3 are grouped as the drinking gesture. A total of 150
samples of individuals crossing and holding a coffee and 54 samples of individuals drinking
a coffee were extracted. This extraction was performed manually using a script and the
PoseViz tool, which allows for precise timing of the sequences. The desired sequences
were segmented and saved using the script.
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Class Matches
Crossing and Holding 150

Drinking 54

Table 3.1: Overall true positives after evaluating the DTW results for the right elbow
and wrist joint with thresholdDTW = 0.15

Dataset Distribution

To create the non-gesture class, which includes all kinds of movements not classified as
the other defined gestures, random sequences were chosen and cut to lengths between 2.5
and 15 seconds. These sequences were then reviewed to ensure they did not represent
any of the classified gestures.

To create the non-augmented datasets, a train-validation-test split ratio of 70/15/15 was
employed, ensuring that the validation and test data were not augmented. The resulting
dataset distributions are as follows:

Class Train Validation Test
Non-Gesture 106 22 22

Crossing and Holding 106 22 22
Drinking 40 7 7

Table 3.2: Distribution of dataset across train, validation, and test sets

Out of this, two non-augmented sets were created for experiments. One set contains only
the non-gesture and holding classes, as they are equally distributed, while the other set
includes all three classes.

• Dataset 2 (Non-Augmented, Two-Class): This dataset consists of data with-
out augmentation for the two-class problem, excluding the drinking gesture, as
distributed in Table 3.2.

• Dataset 3 (Non-Augmented, Three-Class): This dataset consists of raw data
without augmentation for the three-class problem, as distributed in Table 3.2.

Each dataset was created three times using the different filtering methods. To now
create the finished sets and to distribute the classes, better Data Augmentation steps are
employed.
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3.2.3 Data Augmentation

The created datasets, particularly Dataset 3, are unbalanced and contain a limited num-
ber of samples. To address this, the data is upsampled to increase the dataset size and
ensure a balanced class distribution. Following the approach of Rao et al. [28], four
augmentation methods were utilized: random rotation, random shear, Gaussian noise,
and Gaussian blur. These techniques are briefly introduced as follows:

Random rotation utilizes Euler’s rotation theorem, where each axis (X, Y, Z) undergoes
matrix multiplication. A main rotation axis is chosen with an angle from [0, π6 ], while
the other two axes rotate between [0, π

180 ]. The combined rotation matrix R is obtained
by multiplying the individual rotation matrices:

RX(α) =

1 0 0

0 cosα − sinα

0 sinα cosα



RY (β) =

 cosβ 0 sinβ

0 1 0

− sinβ 0 cosβ



RZ(γ) =

cos γ − sin γ 0

sin γ cos γ 0

0 0 1



R = RZ(γ)RY (β)RX(α)

Random shearing is applied using a linear mapping matrix that slants body joints with
random angles. The shear transformation matrix is defined as:

S =

 1 sY X sZX

sXY 1 sZY

sXZ sY Z 1


where sY X , sZX , sXY , sZY , sXZ , sY Z ∈ [−1, 1] are randomly sampled shear factors.
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Gaussian noise is added to simulate noisy positions caused by estimation or annota-
tion errors. The noise is applied to the joint coordinates with a normal distribution
N(0, 0.05).

Gaussian blur is applied to smooth noisy joints and decrease action details. The Gaussian
kernel value is randomly sampled from [0.1, 2.0] and applied with a sliding window of 15.
Joint coordinates are blurred with a 50

G(t) = exp

(
− t2

2σ2

)
, t ∈ {−7,−6, . . . , 6, 7}

To create the augmented datasets, the previously described techniques were applied to
improve data distribution for both the two-class and three-class sets.

For the two-class sets, which were initially equally distributed, each sample underwent
augmentation, resulting in a fivefold increase in data, thereby producing 530 training
samples per class.

For the three-class sets, the non-gesture and crossing and holding classes were first down-
sampled to 41 samples each. Subsequently, all three classes were augmented by a factor
of five, resulting in an equally distributed dataset.

Class Train (Augmented) Validation Test
Non-Gesture 530 22 22

Crossing and Holding 530 22 22

Table 3.3: Distribution of augmented dataset with two classes across train, validation,
and test sets

Class Train (Augmented) Validation Test
Non-Gesture 205 22 22

Crossing and Holding 205 22 22
Drinking 205 7 7

Table 3.4: Distribution of augmented dataset with three classes across train, validation,
and test sets

The augmented datasets can be defined as follows:

• Dataset A2 (Augmented, Two-Class): This dataset includes augmented data
for the two-class problem set, distributed as shown in Table 3.3.
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• Dataset A3 (Augmented, Three-Class): This dataset includes augmented data
for the three-class problem set, distributed as shown in Table 3.4.

3.2.4 Conclusion

The dataset creation process involved several steps to ensure the accuracy and robust-
ness of the data utilized for training and experimental purposes. Initially, representative
gesture classes were defined based on observed behaviors, specifically holding and drink-
ing gestures. Samples corresponding to these predefined classes were extracted from the
skeleton data using Dynamic Time Warping (DTW), as detailed in Section 3.2.

To mitigate class imbalance and enhance model performance, a range of data augmenta-
tion techniques were employed, including random rotation, random shear, Gaussian noise,
and Gaussian blur. These augmentation methods increased the dataset size, thereby en-
suring a more balanced and representative training set.

Out of this process, twelve datasets were created, named as follows, where r stands for
raw, m for moving average, and b for Butterworth:

• Dataset 2r, 2m, 2b (Non-Augmented, Two-Class): This dataset consists of
data without augmentation for the two-class problem, excluding the drinking ges-
ture, as distributed in Table 3.2.

• Dataset 3r, 3m, 3b (Non-Augmented, Three-Class): This dataset consists of
raw data without augmentation for the three-class problem, as distributed in Table
3.2.

• Dataset A2r, A2m, A2b (Augmented, Two-Class): This dataset includes aug-
mented data for the two-class problem set, distributed as shown in Table 3.3.

• Dataset A3r, A3m, A3b (Augmented, Three-Class): This dataset includes aug-
mented data for the three-class problem set, distributed as shown in Table 3.4.

As a result of this step, a set of datasets has been generated, ensuring a balanced and
representative distribution of the gesture classes. These datasets provide the foundation
for the next step, where the training of the model will be conducted.
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3.3 Training Procedure

This section details the methodology followed to train and evaluate the ST-GCN model.
It includes an overview of the model architecture, the use of transfer learning, and
a description of the experiments conducted to assess various training approaches and
datasets.

3.3.1 Model Architecture

The ST-GCN architecture, illustrated in Figure 3.11, comprises 10 layers of ST-GCN
units. The architecture is structured as follows: the first four layers each have 64 output
channels, the subsequent three layers each have 128 output channels, and the final three
layers each have 256 output channels. The convolutional kernel size is set to 9. To
mitigate overfitting, two techniques are employed: the residual network mechanism (also
known as skip connections) and a dropout layer. The resulting feature vector is then
passed to a Softmax classifier.

Figure 3.11: ST-GCN Architecture

The ST-GCN model requires input data in the NCTVM format, where:

• N represents the batch size.

• C represents the original node features, which in this case are the triplet coordinates
(X,Y, Z).
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• T represents the time steps.

• V represents the number of nodes in the graph.

• M represents the number of skeletons in the data record.

For this thesis, the input parameters are defined as follows:

• V = 25: The number of nodes in the graph, corresponding to 25 key points in the
skeleton data.

• M = 1 or 2: The number of skeletons in each data record, which can be 1 or 2
depending on whether transfer learning is applied.

• T : The time steps, corresponding to the time series with the maximum number of
frames.

The batch size N will vary depending on the specific experiment parameters. The node
features C are derived from the three-dimensional coordinates (X,Y, Z) for each key
point in the skeleton data. Each frame in the time series contributes to the time steps
T .

The input data for the ST-GCN model can be visualized as a tensor of shape N ×
C × T × V ×M , encapsulating all necessary information for the spatial-temporal graph
convolutional operations.

To load the data, each skeleton sequence is transformed from the .pose format to a tensor
consisting of (C, T, V,M), where T represents the time series with the highest frame
count. All time series with fewer frames are padded with zeros. If transfer learning is
applied, which will be introduced in the next section, the number of skeletons M must
be 2, as the NTU-RGB+D dataset is trained with classes that include 2 persons. In
that case, the frames for the second person are also padded with zeros, as done in the
preprocessing for the NTU-RGB+D dataset, ensuring the model is trained on that size.

The tunable parameters of this model include batch size, learning rate, weight decay,
dropout rate, and the choice of optimizer, which can be switched between Adam and
Stochastic Gradient Descent (SGD). In the original model for the NTU-RGB+D dataset,
a dropout rate of 0.5 was chosen, with a weight decay of 0.0001, a base learning rate of
0.1, and a batch size of 64.
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The fine-tuning of these parameters will be further elaborated upon after the experiments
are introduced.

3.3.2 Transfer Learning

Inspired by the work of Keskes et al. [18], for transfer learning experiments, the ST-
GCN model is pretrained using the NTU-RGB+D dataset with the parameters specified
in Yan et al. [38]. This pretraining allows the model to learn characteristics that represent
general human motion. After the initial training, the first nine layers of the ST-GCN
are frozen to retain the learned features. The tenth layer is fine-tuned, with the only
modification being the reduction of the output to two or three classes. The network is
then fine-tuned using the previously created datasets. This approach aims to leverage
the pre-trained knowledge to improve performance and generalization on the specific task
at hand.

3.3.3 Experiments

To assess the effectiveness of various training strategies and datasets, eight experiments
were designed, incorporating aspects of transfer learning, data augmentation, and dif-
ferent class configurations. These experiments are summarized in Table 3.5. For easier
reference in subsequent chapters, the experiment names follow a specific naming con-
vention: T represents the use of transfer learning, A indicates the application of data
augmentation, and the numbers 2 or 3 correspond to whether the dataset contains two
or three classes, respectively.

Experiment Name Transfer Learning Augmentation Dataset
ETA2 Yes Yes A2
ET2 Yes No 2
ETA3 Yes Yes A3
ET3 Yes No 3
EA2 No Yes A2
E2 No No 2
EA3 No Yes A3
E3 No No 3

Table 3.5: Summary of Experiments
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Each experiment is conducted three times using different preprocessing methods. The
design of these experiments aims to isolate the effects of transfer learning and data
augmentation on the performance of the ST-GCN model across various datasets. By
systematically varying these parameters, the goal is to identify the most effective training
strategies and configurations for detecting the defined gestures in in-the-wild data.

3.3.4 Hyperparameter Tuning

To determine the optimal hyperparameters for the experiments, a systematic grid search
was employed. This approach not only helps to achieve the best possible performance
but also provides valuable insights into the effects of different hyperparameter configu-
rations on the model’s outcomes. Once the grid search was completed, each experiment
was trained using the optimized parameters in conjunction with three distinct filtering
methods.

Grid search is a technique that systematically explores a predefined subset of the hyper-
parameter space of a learning algorithm. For each combination of hyperparameters, the
model is trained and evaluated, allowing for the identification of the optimal configuration
based on performance metrics.

The following hyperparameters were tuned: learning rate, batch size, weight decay,
dropout rate, and optimizer. The parameter grid was defined as follows:

param_grid = {
’ base_lr ’ : [ 0 . 0 1 ] ,
’ batch_size ’ : [ 1 6 , 3 2 ] ,
’ weight_decay ’ : [ 0 . 0 0 01 , 0 . 001 , 0 . 0 1 ] ,
’ dropout_rate ’ : [ 0 . 1 ] ,
’ opt imizer ’ : [ ’SGD’ , ’Adam’ ]

}

As the goal of this thesis is not to seek marginal improvements in model performance, but
rather to assess the viability of the approach and identify configurations that produce
meaningful results. Consequently, and due to time constraints, the grid search was
focused on key parameters identified in preliminary experiments, which suggested that a
learning rate of 0.01 and a dropout rate of 0.1 offered a strong starting point.
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Thus, the focus was placed on optimizing the remaining parameters: batch size, weight
decay, and optimizer. In line with Keskar et al. [17], smaller batch sizes were prioritized
to enhance generalization, particularly for smaller datasets.

3.3.5 Conclusion

The process outlined in Figure 3.1 is now fully described. Initially, the data was prepro-
cessed using Butterworth and Moving Average filters. Following this, two classes were
defined for labeling. These classes were extracted from the dataset using Dynamic Time
Warping, and the corresponding datasets were created. To ensure balanced datasets, data
augmentation techniques were applied. The ST-GCN model was then described and used
for training. With this, the methodology is complete, and the results are discussed in
the following chapter.
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This chapter presents the results of the experiments conducted in this thesis and pro-
vides an evaluation of their results. The experiments were designed to investigate the
effectiveness of different hyperparameter configurations, preprocessing techniques, and
the impact of transfer learning on gesture recognition performance. By systematically
exploring these factors, the goal was to identify the optimal configurations for automating
gesture recognition using Graph Convolutional Networks (GCNs).

4.1 Hyperparameter Tuning Results

This section summarizes the results of the hyperparameter tuning process, where the top
and mean accuracies, along with key hyperparameters, were evaluated. Table 4.1 presents
the top accuracy (Top Acc), mean accuracy (Mean Acc), learning rate (LR), weight decay
(WD), dropout rate (DR), batch size (BS), and optimizer for each experiment.

Experiment Top Acc (%) Mean Acc (%) LR WD DR BS Optimizer
ETA2 93.8 93.2 0.01 0.0001 0.1 16 Adam
ET2 98.2 95.5 0.01 0.0001 0.1 32 Adam
ETA3 91.6 88.7 0.01 0.0001 0.1 16 Adam
ET3 92.4 90.6 0.01 0.001 0.1 16 SGD
EA2 98.1 84.1 0.01 0.01 0.1 32 Adam
E2 95.0 89.5 0.01 0.001 0.1 32 SGD
EA3 75.4 74.0 0.01 0.01 0.1 16 SGD
E3 87.5 85.7 0.01 0.0001 0.1 16 SGD

Table 4.1: Results of Hyperparameter Tuning

The optimizer selection showed clear trends across experiments. In the transfer learning
experiments, Adam was used consistently in ETA2, ET2, and ETA3, while ET3 was the
only transfer learning experiment that employed the SGD optimizer. In non-transfer
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learning experiments, SGD was the optimizer of choice for E2, EA3, and E3, with EA2

being the exception, where Adam was applied.

Batch size also varied according to the experimental configuration. For transfer learning,
a batch size of 16 was predominantly used in ETA2, ETA3, and ET3, except for ET2,
where a batch size of 32 was applied. In non-transfer learning experiments, batch sizes of
both 16 and 32 were used. Specifically, two-class problems (EA2, E2) generally employed
a batch size of 32, while three-class problems (EA3, E3) consistently used a batch size of
16.

The weight decay parameter varied depending on whether transfer learning was used.
In transfer learning experiments such as ETA2, ET2, and ETA3, the weight decay was
set to 0.0001, except for ET3, where it was 0.001. In non-transfer learning experiments,
the weight decay ranged from 0.0001 in E3 to 0.01 in EA2 and EA3, indicating greater
variability in these setups.

In summary, the hyperparameter tuning process revealed distinct patterns in optimizer
choice, batch size, and weight decay across transfer learning and non-transfer learning
experiments. The Adam optimizer was generally used in transfer learning setups, while
SGD was more common in non-transfer learning configurations. Batch size remained
consistent, with transfer learning often using 16 and non-transfer learning employing
either 16 or 32, depending on the classification task. Weight decay was relatively uniform
in transfer learning experiments, with more variability observed in non-transfer learning
setups.

The overall performance results for these configurations will be discussed in detail in the
next section.

4.2 Performance Evaluation Across Experiments

This section presents the mean accuracy outcomes of the defined experiments, which were
run with the previously obtained hyperparameters. Each experiment was conducted
using three different preprocessing methods: Raw data, Moving Average Filter, and
Butterworth Filter.

Early Stopping was applied to halt training when the test accuracy did not improve for
9 consecutive epochs, ensuring efficient model convergence. To ensure consistency and
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minimize the impact of randomness, each experiment was repeated five times with each
filtering method, and the results were averaged.

The results are displayed in the heatmap shown in Figure 4.1, providing a clear compar-
ison of the mean accuracy across different configurations.

Figure 4.1: Heatmap of the Mean Accuracy across the test datasets

4.2.1 Best and Worst Performing Experiments

The highest accuracy is observed in experiment ET2, where the Butterworth Filter results
in an accuracy of 95.9%. The Moving Average Filter and Raw Data both show an
accuracy of 95.5%, indicating minimal variation across preprocessing techniques for this
experiment.

Conversely, the lowest performance is seen in experiment EA3, where the Moving Average
Filter leads to an accuracy of 69.4%. The Butterworth Filter yields a slightly higher
accuracy of 74.7%, and Raw Data achieves 74.0%. This demonstrates a notable difference
between the Moving Average Filter and the other two techniques.
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4.2.2 Impact of Transfer Learning

In experiments involving transfer learning, such as ETA2 and ET3, accuracy values tend
to be high and consistent across different preprocessing techniques. For example, ETA2

achieves 94.1% accuracy with both the Butterworth and Moving Average Filters, with
a slight decrease to 93.2% when using Raw Data. Similarly, ET3 shows an accuracy of
91.7% with the Butterworth Filter, and 90.6% for both the Moving Average Filter and
Raw Data.

In contrast, experiments that do not use transfer learning, such as EA2 and E2, perform
worse overall. In EA2 the Butterworth Filter results in an accuracy of 83.6%, while
the Moving Average Filter reduces this to 82.7%, and Raw Data improves the result to
84.1%. Similarly, in E2, the Butterworth Filter results in 89.1%, the Moving Average
Filter decreases to 86.4%, and Raw Data yields 89.5%.

4.2.3 Impact of Preprocessing Techniques

Across the experiments, the Moving Average Filter generally results in lower accuracy
values. This is particularly noticeable in experiments such as EA3 and E3, where the
Moving Average Filter produces the lowest accuracy among the preprocessing techniques.
For example, in E3, the accuracy with the Butterworth Filter is 84.5%, while the Moving
Average Filter drops it to 76.6%, and Raw Data improves it to 85.7%.

Both the Butterworth Filter and Raw Data exhibit competitive performance across the
experiments, each achieving the highest accuracy in four experiments. Specifically, the
Butterworth Filter performs best in ETA2, ET2, ET3, and EA3, while Raw Data yields
the highest accuracy in E2, E3, ETA3, and EA2. Although Raw Data occasionally out-
performs filtered data, the differences between the techniques are generally small. The
Moving Average Filter, however, consistently delivers the lowest accuracy in six out of
eight experiments.

4.2.4 Impact of Data Augmentation

The heatmap reveals that data augmentation consistently results in worse performance
across all experiments. In each case where augmentation is applied, such as in ETA2,
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ETA3, EA2, and EA3, the accuracy is lower compared to experiments without augmenta-
tion. For instance, in ETA2, where both transfer learning and augmentation are applied,
the accuracy is lower than in ET2, which uses transfer learning without augmentation.
Similarly, in EA3, which employs augmentation without transfer learning, the accuracy
is significantly lower compared to E3, which does not use augmentation. This pattern
holds across all preprocessing methods.

4.2.5 Effect of Classification Complexity

The results also highlight differences based on the complexity of the classification task,
specifically between two-class and three-class experiments. In two-class classification
experiments such as ET2 and E2, accuracy is generally higher across all preprocessing
techniques. In contrast, three-class experiments such as ETA3 and EA3 tend to exhibit
lower accuracies and show greater sensitivity to the preprocessing method used.

4.2.6 Summary

In summary, the results from the heatmap show that model performance is influenced by
several factors, including the use of transfer learning, data augmentation, preprocessing
techniques, and the complexity of the classification task. While the Butterworth Filter
and Raw Data typically result in higher accuracy, the Moving Average Filter often pro-
duces the lowest accuracy. Additionally, experiments involving transfer learning perform
more consistently across different preprocessing techniques. Finally, data augmentation
consistently leads to lower accuracy in all cases, and the complexity of the classifica-
tion task—whether two-class or three-class—also plays a role in determining the model’s
performance.

4.3 Discussion of Results

The primary research question of this thesis was to determine whether Graph Convo-
lutional Networks (GCNs), specifically the ST-GCN model, can be used to automate
gesture interpretation in a real-world environment using in-the-wild skeleton data. The
results of the experiments show that the ST-GCN model is indeed effective in achiev-
ing this goal. This discussion focuses on identifying which configurations, specifically,
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the choice of hyperparameters, preprocessing techniques, and transfer learning, can best
improve the performance of the ST-GCN model to aid in automating gesture interpreta-
tion.

4.3.1 Performance Evaluation

The performance evaluation of the experiments demonstrated that transfer learning con-
sistently led to better results. Experiments ETA2, ET2, ETA3, and ET3 achieved higher
accuracies across all preprocessing techniques compared to their non-transfer learning
counterparts EA2, E2, EA3, and E3. This improvement is likely due to the ability of
transfer learning to leverage pre-trained features from a similar task, allowing the model
to start from a better initialization point and converge faster and more accurately. ET2

achieved the highest overall accuracy with 95.9% using the Butterworth Filter, while its
non-transfer counterpart E2 achieved 89.1%. The differences between the transfer learn-
ing experiments and their non-transfer learning counterparts range from 6% to 20%,
illustrating the clear advantage of transfer learning in improving model performance.

When it comes to preprocessing techniques, the Moving Average Filter consistently re-
sulted in lower accuracies compared to the Butterworth Filter and Raw Data, especially
in experiments like EA3 and E3. One possible explanation for this could be that the
Moving Average Filter oversmooths the input data, particularly in the case of three-class
classification tasks, where the drinking gesture may require more detailed information.
This smoothing effect likely diminishes the ability of the model to capture small, precise
movements, which are important for identifying subtle gestures. The Butterworth Filter
and Raw Data tend to preserve more detailed motion characteristics, which explains their
overall better performance across most experiments.

Preprocessing as a whole did not have as significant an impact on performance as initially
expected. While there are clear differences between the preprocessing techniques, the
margins are relatively small, indicating that the ST-GCN model is quite robust to the
choice of preprocessing method. This robustness could be attributed to the model’s
ability to learn strong spatial and temporal representations of skeletal data, which may
reduce its reliance on preprocessing for extracting useful features.

Another finding from the experiments is the consistently negative impact of data aug-
mentation on performance. For instance, ETA2, which applied both transfer learning
and augmentation, yielded 1.8% - 2.3% lower accuracy compared to ET2, which did not
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use augmentation. Similarly, non-transfer learning experiments like EA3 and EA2 also
experienced a clear decline in performance when augmentation was applied. This drop
in accuracy could be attributed to the reality gap introduced by augmenting in-the-wild
skeleton data, where synthetic variations may fail to accurately represent the subtleties
of real-world gestures[33]. Additionally, the upsampling rate may have been too high,
introducing excessive artificial data that confused the model and hindered its ability to
generalize effectively.

The comparison between two-class and three-class classification tasks also revealed in-
sights. The two-class tasks, such as ET2 and E2, consistently achieved higher accuracies
than their three-class counterparts, like ETA3 and EA3. This disparity could be attributed
to two factors: class imbalance and the complexity of the gesture classes. In experiments
like E3 and ET3, the presence of an unbalanced dataset could make it harder for the
model to distinguish between gestures, leading to lower accuracy. Moreover, the three-
class dataset includes the drinking gesture which is more fine-grained, which impose an
additional challenge on the model to capture subtle motion differences.

While the results from these experiments are promising, there is still room for improve-
ment. A potential avenue for enhancing performance would be the collection of higher-
quality data, possibly through the use of more advanced sensors, such as the ZED X
camera. Higher-resolution skeletal data could capture finer motion details and improve
the model’s ability to generalize across diverse real-world gestures. This is particularly
relevant for more intricate gestures, such as the drinking gesture, where the model’s
performance tends to be lower. This decline in accuracy may partly stem from the
limitations in the quality of the current dataset.

4.3.2 Conclusion

In conclusion, the findings demonstrate that the ST-GCN model is effective in detecting
specific gestures using in-the-wild skeleton data, making it a valuable tool for automating
gesture recognition. Transfer learning has shown to be especially beneficial, substantially
improving model performance. Additionally, the choice of optimizer, batch size, and
weight decay plays a role in achieving optimal accuracy. Although preprocessing and data
augmentation have an impact, their influence is less significant than initially expected.
Finally, the complexity of the classification task—whether two-class or three-class—has
a clear effect on performance, with simpler tasks consistently yielding better results.
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This thesis investigated whether Graph Convolutional Networks (GCNs), specifically the
Spatial-Temporal Graph Convolutional Network (ST-GCN), can aid in the automation
of gesture interpretation using in-the-wild skeletal data. While existing research has
predominantly focused on datasets collected in controlled laboratory environments, this
thesis introduced a comprehensive pipeline for processing and analyzing in-the-wild data.
The pipeline involved creating a dataset of diverse gestures from raw, unstructured data,
training the ST-GCN model, and evaluating its performance.

The results of the experiments showed that the ST-GCN model achieved good accuracy
rates with transfer learning, ranging from 94% to 96%. These results indicate that
ST-GCNs, when combined with transfer learning, can effectively interpret gestures in
real-world environments. However, it is important to ensure that the dataset is balanced
and contains as many samples as possible.

This approach has potential applications beyond the scope of this study, particularly
in fields where short-duration input sequences are given. For example, the proposed
approach could be used in healthcare monitoring systems to track elderly individuals as
they perform daily activities, such as walking up and down stairs, to detect early signs
of mobility issues or to alert caregivers in case of dangerous movements. Similarly, this
technology could be implemented in rehabilitation programs, where it is important to
monitor specific movements and exercises over short durations, such as a patient’s ability
to lift objects or maintain balance, to assess their recovery progress.

In the industrial sector, this model could be applied to monitor worker safety, particularly
during tasks that require precision, such as handling hazardous materials or operating
heavy machinery. The short sequence requirement (less than 15 seconds) makes it ideal
for detecting quick but significant gestures or behaviors that could indicate safety vio-
lations or potential risks. It could also be useful in public spaces for enhancing human-
computer interaction, such as in interactive kiosks or smart environments where real-time
gesture recognition is essential for an intuitive user experience.
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The practical implementation of this model within software tools, such as the PoseViz
tool, should also be explored. Integrating the model into such tools would enable real-
time recognition of predefined gestures, allowing for more interactive and responsive
systems. However, challenges such as managing input sequence length, which should
not exceed 400 frames (approximately 15 seconds), must be addressed. Developing an
efficient method for identifying and segmenting sequences in real time is essential for
successful integration into practical applications.

In conclusion, this thesis has demonstrated the viability of using ST-GCNs for gesture
interpretation in real-world settings and has laid the groundwork for future developments
in this area. With further refinement of the pipeline and exploration of practical applica-
tions across various fields, the approach has the potential to advance the field of gesture
recognition in-the-wild.
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A Appendix

Figure A.1: Header of a .pose file
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A Appendix

(a) First half of a frame in a .pose file (b) Second half of a frame in a .pose file

Figure A.2: Representation of a full frame in a .pose file, split between the first half (a)
and second half (b).

Figure A.3: DTW result threshold comparison with right elbow as input
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A Appendix

Figure A.4: DTW results with right wrist as input (threshholdDTW = 0.15)
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