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Abstract

This thesis investigates the impact of two generic optimization strategies—importance
sampling and Exponential Moving Average—on a diffusion model for action-conditioned
3D human motion synthesis. Therefore, the Human Motion Diffusion Model is adapted
and applied to the UESTC dataset—comprising complex movements. The experiments
are conducted in three phases: (i) analyzing the effect of reducing the diffusion process
from 1,000 to 100 steps and comparing the results to state-of-the-art methods, (ii) assess-
ing the isolated and combined influence of importance sampling and Exponential Moving
Average under a reduced number of training steps, and (iii) running a full-scale training
using the best configuration from the second phase. Reducing diffusion steps signifi-
cantly decreases computational cost while results show competitive motion quality. In
contrast, both importance sampling and Exponential Moving Average produce marginal
improvements in quantitative metrics and do not meaningfully alter convergence in the
long term. Moreover, visual inspection of generated samples reveals significant arti-
facts such as foot sliding, and difficulties in reflecting fine-grained movements. These
results indicate that, for this task and dataset, domain-specific optimizations dominate
performance, while generic optimization strategies yield negligible improvements.
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Kurzzusammenfassung

In der vorliegenden Arbeit wird der Einfluss zweier generischer Optimierungsstrate-
gien–importance sampling und Exponential Moving Average–auf ein Diffusionsmodell
zur aktionsbasierten Generierung dreidimensionaler menschlicher Bewegungsmuster un-
tersucht. Hierfür wird das Human Motion Diffusion Model angepasst und auf den
UESTC-Datensatz angewendet, der komplexe Bewegungsabläufe umfasst. Die Experi-
mente gliedern sich in drei Phasen: (i) Analyse der Auswirkungen der Reduktion des
Diffusionsprozesses von 1.000 auf 100 Schritte, (ii) Bewertung des isolierten und kom-
binierten Einflusses von importance sampling und Exponential Moving Average unter
reduzierter Trainingsdauer, und (iii) Durchführung eines vollständigen Trainings mit
der vielversprechendsten Konfiguration aus Phase zwei. Die Reduzierung der Diffusion-
sschritte führt zu einer deutlichen Verringerung des Rechenaufwands bei vergleichbarer
Bewegungsqualität. Im Gegensatz dazu bewirken sowohl importance sampling als auch
Exponential Moving Average nur marginale Verbesserungen der quantitativen Metriken
und zeigen über den beobachteten Zeitraum hinweg keinen nennenswerten Einfluss auf
die Konvergenz. Die visuelle Analyse der generierten Sequenzen zeigt zudem signifikante
Artefakte wie Fußrutschen sowie Schwierigkeiten bei der Darstellung feingranularer Be-
wegungen. Insgesamt deuten die Ergebnisse darauf hin, dass für diese Aufgabe und
diesen Datensatz primär domänenspezifische Optimierungen die Modellleistung bestim-
men, während generische Optimierungsstrategien lediglich vernachlässigbare Vorteile bi-
eten.
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1 Introduction

3D Human motion synthesis seeks to generate natural and diverse human movements,
playing a crucial role in a variety of fields such as the film and video game industry,
robotics, and human behavior analysis [17, 29, 35, 37]. Other research also explores the
use of synthetic motion data to augment datasets to improve model training [17, 30].

Typically, motion generation is contextualized on different types of signals, including
scene context, audio, or textual descriptions. Among these, textual signals are the
preferred modality for many researchers [3, 37]. While the non-linearity and physical
plausibility of human motion are challenging, conditioning on signals further increases
the complexity of the task. Achieving realism in generated motion now depends not only
on the movement itself but also on its semantic alignment with the conditioning signal.
Moreover, the realism of human motion heavily relies on human perception, which is
highly sensitive to subtle inconsistencies in human movements [37].

The generation of motion without an initial pose or sequence has historically been under-
explored [17]. Early work relied on statistical models to generate basic movements such
as walking. In contrast, subsequent research shifted toward more constrained settings,
most notably motion prediction, where future frames are generated from a given pose or
sequence of poses [17]. In recent years, the focus of research has broadened again. Ad-
vances in deep generative modeling—spanning Variational Auto-Encoders (VAEs) [10],
Generative Adversarial Networks (GANs) [5], and Normalizing Flows [22]—combined
with improved human body models such as the SMPL model [14], have enabled the
construction of larger datasets and renewed interest in human motion synthesis. These
developments made the task of unconstrained human motion generation increasingly
feasible [37].

More recently, Denoising Diffusion Probabilistic Models (DDPMs) [7] have gained wide-
spread attention due to advances in the image synthesis domain [3], where they have
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1 Introduction

ultimately outperformed GANs [4]. These developments have motivated their applica-
tion to the domain of human motion synthesis as well [35, 3], leveraging their ability
to efficiently capture the underlying data distribution [29]. Building on these develop-
ments, Tevet et al. [29] have developed the Human Motion Diffusion Model (MDM), a
lightweight diffusion-based framework capable of generating motion from diverse modal-
ities and achieving state-of-the-art results.

1.1 Research Aim

The aim of this work is to investigate how well a diffusion-based model can generate
realistic 3D human motion—particularly in settings where synthetic data may later be
used to extend existing datasets. Therefore, the MDM framework is adapted and applied
to the UESTC dataset [8], which contains complex actions and fine-grained movements
that go beyond simple movements such as walking.

While MDM supports multiple conditioning modalities, this study restricts the setup to
action-conditioned motion generation. Action labels provide a simple conditioning signal,
avoiding the complex mapping inherent to natural language processing. This setup allows
the evaluation to focus on the effectiveness and efficiency of generic training dynamics
and optimization strategies, in particular importance sampling and EMA. Additionally,
the results are compared to the original MDM model trained on the UESTC dataset.

1.2 Thesis Organization

The thesis comprises five chapters. The subsequent Chapter 2 introduces the theoretical
background of diffusion models and action-conditioned motion generation, and formu-
lates the research question. Chapter 3 outlines the methodological setup, including the
experimental setup and measures taken to ensure reproducibility. Chapter 4 presents
and analyzes the results, accompanied by a discussion of their implications and limita-
tions. Finally, Chapter 5 concludes the key findings and outlines potential directions for
future research.
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2 Related Work

This chapter provides an overview of the relevant research on diffusion models and their
application to action-conditioned motion synthesis. It highlights existing gaps in the
literature and outlines the research question addressed in this thesis. Section 2.1 dis-
cusses the mathematical foundations and advancements in diffusion models, including
optimization strategies (EMA and importance sampling), which are central to this the-
sis’ experimental contributions. Section 2.2 reviews state-of-the-art methods for action-
conditioned motion synthesis, emphasizing current challenges and limitations, and in-
troduces the MDM, the foundational model of this thesis. Section 2.3 formulates the
research question based on identified gaps in the literature.

2.1 Diffusion-Based Generative Models

This chapter presents the fundamentals and mathematical background of diffusion mod-
els. It begins with an introduction to the forward and reverse diffusion processes in
Section 2.1.1, followed by a discussion of advances in training objectives over time in
Section 2.1.2. Section 2.1.3 then covers the basics of sampling, including methods that
enhance efficiency and quality. Finally, Section 2.1.4 presents optimization techniques
aimed at improving training dynamics and stability.

2.1.1 Diffusion Process

Diffusion models are based on a two-stage process: the forward process, wherein noise is
gradually added to the data, and the reverse process, wherein a neural network is trained
to eliminate the added noise. Together, these define a Markov chain that transforms
clean data into noise and vice versa [7, 25, 32].

3



2 Related Work

Figure 2.1: Illustration of variance schedules. Visual comparison of latent samples pro-
duced under a linear schedule (top) and a cosine schedule (bottom) at linearly
spaced timesteps t ∈ [0, T ]. The figure illustrates how different noise sched-
ules affect the progressive corruption as t increases (adapted from Figure 3
in [16]).

In the forward process, fractions of Gaussian noise are incrementally added to the input
data x0 over a fixed number of timesteps T . The result of this progressive noise addition
is a series of increasingly distorted samples, denoted as x1, x2, . . . , xT . It is noteworthy
that xT approaches an isotropic Gaussian distribution. By the final step, denoted by T ,
the original data is effectively destroyed [32].
The application of noise per timestep is defined by a variance schedule (cf. Equation (2)
in [7]) {βt ∈ (0, 1)}T

t=1

q(x1:T | x0) :=
T∏

t=1
q(xt | xt−1), q(xt | xt−1) := N(xt;

√
1 − βt xt−1, βtI). (2.1)

As illustrated in Figure 2.1, two prevalent variance schedules are depicted: a linear
schedule (upper) and a cosine schedule (lower). These schedules have been proposed in
the literature and are discussed in detail in the works of Ho et al. [7] and Nichol and
Dhariwal [16], respectively. The iterative calculation of noise can result in suboptimal
efficiency. However, a closed-form expression for q(xt | x0) can be derived through
the application of the reparameterization trick [7, 32]. Defining αt := 1 − βt and the
cumulative product ᾱt :=

∏t
i=1 αi, the forward process can be expressed as described in

[32]:

xt =
√

αt xt−1 +
√

1 − αt ϵt−1, ;where ϵt−1, ϵt−2... ∼ N(0, I)

= √
αtαt−1 xt−2 +

√
1 − αtαt−1 ϵ̄t−2, ;where ϵt−2 merges two Gaussians

...

=
√

ᾱt x0 +
√

1 − ᾱt ϵ,

q(xt | x0) = N(xt;
√

ᾱt x0, (1 − ᾱt) I).
(2.2)
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2 Related Work

The closed form enables the direct sampling of a noisy version of x0 at any timestep t

without the necessity of computing all intermediate steps [7, 32]. The reverse process
aims to recover data by gradually removing the noise added during the forward diffusion.
Although it is possible in theory, the reconstruction of an original sample by sampling
from q(xt−1 | xt) at any step of the reverse process is a process that requires knowledge
of the entire dataset. Therefore, the posterior distribution is intractable in practice
[25, 32].

Thus, a neural network with parameters θ is trained to approximate these probabilities.
In particular, the model forecasts the mean µθ(xt, t) and variance Σθ(xt, t) of a Gaussian
distribution, modeling the reverse Markov process as (cf. Equation (1) in [7])

pθ(x0:T ) := p(xT )
T∏

t=1
pθ(xt−1 | xt), pθ(xt−1 | xt) := N(xt−1; µθ(xt, t), Σθ(xt, t)). (2.3)

While q(xt−1 | xt) is intractable, it becomes analytically tractable when conditioned on
the original clean input x0 (cf. Equation (6) in [7]):

q(xt−1 | xt, x0) = N(xt−1; µ̃t(xt, x0), β̃tI). (2.4)

The mean µ̃t(xt, x0) and variance β̃t are expressed as a function of the standard Gaussian
density function.
In order to estimate the original data from noisy inputs at any given timestep, it is
necessary to use a reparameterization of x0 in terms of xt and known noise. [7, 16, 32].

2.1.2 Training

Training diffusion models involves maximizing the model log-likelihood. However, direct
calculation of the likelihood is intractable. To address this issue, Jensen’s inequality
is employed to derive a Variational Lower Bound (VLB) on the log-likelihood [25, 32].
As derived in in [25]), the VLB can be expressed as a sum of Kullback-Leibler (KL)
divergence terms and a negative log-likelihood term. These terms can be efficiently
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evaluated and optimized (cf. Equation (4-7) [16]):

LVLB := L0 + L1 + · · · + LT −1 + LT (2.5)

L0 := − log pθ(x0 | x1) (2.6)

Lt−1 := DKL
(
q(xt−1 | xt, x0) ∥ pθ(xt−1 | xt)

)
(2.7)

LT := DKL
(
q(xT | x0) ∥ p(xT )

)
(2.8)

Each term Lt, with the exception of L0, involves a comparison between two Gaussian
distributions and can be computed in closed form. The term L0 corresponds to the recon-
struction error between the predicted and true data distributions. In order to optimize
this bound in an efficient manner, the training process samples a timestep t uniformly
[16] and uses the closed-form expression for q(xt|x0) to estimate the corresponding Lt−1

term of the VLB [16].

The process of approximating the reverse Markov transitions pθ(xt−1|xt) requires the
reparameterization of the mean µθ(xt, t) of the Gaussian at each step. Common param-
eterizations include the direct prediction of µθ, the prediction of the original data x0, or
the prediction of the noise ϵ added at each step t [7]. According to the findings of Ho
et al. [7], the most optimal result is achieved when predicting epsilon, thereby ensuring
the highest attainable quality of the sample and the greatest possible training stability.
Under the parameterization, the mean can be expressed as (cf. Equation (11) in [7]):

µθ(xt, t) = 1
√

αt

(
xt − βt√

1 − ᾱt
ϵθ(xt, t)

)
. (2.9)

Consequently, the loss Lt per timestep reduces to a weighted mean squared error between
the true noise ϵ and the predicted noise ϵθ(xt, t) (cf. Equation (12) in [7]):

Ex0,ϵ

[
β2

t

2σ2
t αt(1 − ᾱt)

∥∥∥ϵ − ϵθ

(√
ᾱtx0 +

√
1 − ᾱtϵ, t

)∥∥∥2
]

. (2.10)

where the weighting factor β2
t

2σ2
t αt(1 − ᾱt)

depends on the variance schedule [7, 16].

Ho et al. further proposed a simplified training objective Lsimple (cf. Equation (14)
in [7]) that discards this weighting, making the implementation easier and leading to
improved sample quality:

Lsimple(θ) := Et,x0,ϵ

[
∥ϵ − ϵθ(

√
ᾱtx0 +

√
1 − ᾱtϵ, t)∥2

]
. (2.11)

6
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Removing the weight factor reduces the relative influence of inputs with low amounts
of noise. Consequently, this results in an empirical shift in learning towards harder
denoising samples with high-noise cases [7].

2.1.3 Sampling

In the original DDPM proposed by Ho et al. [7], the process of sampling begins from
pure Gaussian noise, xT ∼ p(xT ). Subsequently, a neural network iteratively reverses
the aforementioned process to recover the original input x0. The quality of the generated
samples depends on the number of diffusion steps, denoted by T . While larger values
of T bring the reverse process distribution closer to Gaussian and thus provide a better
approximation of the forward process, they also lead to slower sampling, as the denoising
process is sequential. Thus, while the simple objective (Equation (2.11)) significantly
improves visual quality, the original DDPM still especially lags behind state-of-the-art
GANs in sampling speed [7, 26].

Nichol and Dhariwal’s [16] Improved DDPM introduced several changes to address these
issues: (i) a cosine-based noise schedule (see Figure 2.1), (ii) a learned variance param-
eterization in combination with a new objective Lhybrid = Lsimple + λLV LB to improve
log-likelihoods, and (iii) a strided sampling strategy that reduces the number of steps
from T to S ≪ T by evaluating the reverse process only at a subset {τ1, . . . , τS} of
timesteps. These modifications enable faster sampling and close the gap to the sample
quality of GAN while outperforming them in mode coverage.

Song et al.’s [26] Denoising Diffusion Implicit Model (DDIM) approaches the problem of
slow inference from a different perspective. Since the DDIM training objective depends
only on the marginal distributions q(xt|x0) rather than the joint distribution over all
timesteps, the reverse process no longer needs to be strictly stochastic. This allows the
model to utilize a non-Markovian formulation and sample over a subset of timesteps,
denoted {τ1, . . . , τS}, where S can be much smaller than the full chain length T [32].
Therefore, DDIM generalizes the variance used in the reverse step (as described in [32])

β̃t = σ2
t = 1 − ᾱt−1

1 − ᾱt
· βt. (2.12)

DDIM introduces a stochasticity parameter η ∈ [0, 1] such that the sampling variance
σ2

t is defined as η · β̃t. By setting η = 0, DDIM allows for substantially fewer timesteps
without sacrificing sample quality [32].

7
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In summary, Improved DDPM accelerates sampling by reducing the number of reverse
process evaluations via timestep sub-sampling, while DDIM achieves speedups by re-
formulating the reverse process to allow partially or fully deterministic sampling. Both
approaches reduce the number of required denoising steps, with the DDIM formulation
also enabling deterministic generation of identical samples given a fixed random seed.
These advances are particularly relevant to the motion synthesis domain, where long
sequences and high-dimensional representations make efficient sampling crucial.

2.1.4 Optimization Strategies

Beyond the fundamental optimizations in diffusion models discussed above, several op-
timization techniques have been proposed to further improve training efficiency and
stability. Among these methods are importance sampling of timesteps [16], and EMA
[9, 18].

Importance Sampling

In standard diffusion training, timesteps t ∈ [0, T −1] are sampled uniformly, when com-
puting the training loss. However, different timesteps contribute unequally to the overall
objective, and some may produce noisier gradients. Importance sampling addresses this
by weighting timesteps according to their estimated loss magniture (cf. Equation (18)
[16]):

Lvlb = Et∼pt

[
Lt

pt

]
, where pt ∝

√
E

[
L2

t

]
, and

∑
pt = 1. (2.13)

Since the expected squared loss E[L2
t ] is unknown and may change during training, it

can be approximated using a moving history of previous loss values. This approach
focuses training on the timesteps that contribute most to instability, reducing noise
and improving convergence when optimizing the variational lower bound Lvlb. While
importance sampling is most effective for objectives with high variance across timesteps,
it may be less impactful for more stable or hybrid objectives [16].

Exponential Moving Average

Loss functions in diffusion models are stochastic, as the training signal is derived from
multiple aspects, such as random noise, and conditioning variables. This stochasticity

8
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can destabilize the training dynamics, making optimization sensitive to hyperparameters
[9]. To mitigate such instability, EMA has become a common technique in deep learning,
especially in the context of generative models. Initially utilized in GANs, EMA has since
become standard in diffusion models [13].
While there are different implementations, traditional EMA is a copied model, maintain-
ing a weighted average θ̂β of the original model parameters θ over the course of training.
At each training step t, the average is updated as described in [9]:

θ̂β(t) = βθ̂β(t − 1) + (1 − β)θ(t), (2.14)

where the decay constant β ∈ (0, 1) is typically set close to one. This smooths out
parameter updates by providing an exponential decay of past values in which recent
updates have higher weight while earlier updates contribute less [9].
The benefits of EMA are mainly empirical across supervised, unsupervised, and gen-
erative training [1]. It significantly improves training stability by suppressing gradient
noise [13], and its slowly evolving parameter averages. Furthermore, EMA reduces over-
fitting due to wider minima, and is inexpensive because of its simple update rule [1].
Even though its effects can be compared to other regularizations, such as learning rate
scheduling [13], which directly impact optimization dynamics, EMA instead works by
smoothing the parameter trajectory throughout training.

2.2 Action-Conditioned Motion Synthesis

This chapter provides an overview of action-conditioned human motion synthesis, high-
lighting the key components involved in generating realistic human motion sequences
corresponding to specific actions. It begins by discussing the challenges and considera-
tions specific to datasets, introducing the UESTC dataset in Section 2.2.1. Section 2.2.2
presents the evaluation metrics commonly used to assess performance. The advantages
and limitations of DDPMs in the motion synthesis domain are then discussed, along
with an introduction to the MDM framework in Section 2.2.3. Finally, Section 2.2.4
examines domain-specific optimizations, such as pose representations and geometric loss
functions, and their role in supporting architectural approaches.

9
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2.2.1 UESTC Dataset

The action-conditioned motion synthesis task relies on datasets that provide paired ac-
tion labels and corresponding motion sequences [34]. However, there remains a scarcity
of motion capture data specifically designed for this purpose, which has led researchers
such as Petrovich et al. [17] to employ monocular motion estimation techniques for
generating motion sequences. While these methods expand data availability, they of-
ten introduce noisy artifacts into the resulting sequences [17]. Moreover, many existing
datasets lack standardized train/test splits [2], which limits the ability to reliably evalu-
ate model generalization and compare performance across approaches. Among the most
commonly used datasets for this task are HumanAct12 [6], NTU RGB+D [23], and
UESTC [8].

The UESTC dataset [8] is the only one among them that provides predefined train/test
splits. Originally created for human-robot interaction tasks, it contains 40 action cate-
gories—primarily exercises and cyclic movements—across 25,600 motion sequences per-
formed by 118 subjects. Fifteen of these actions are executed in both standing and
sitting positions. The recordings were captured using a Microsoft Kinect V2 camera and
include RGB, depth, and skeleton sequences. In total, the dataset comprises 83 hours
of video footage recorded from eight viewpoints. Sequences with fixed viewpoints last
between 6 and 7 seconds (approximately 200 frames), whereas those with varying view-
points range from 55 to 65 seconds in duration, corresponding to roughly 1,730-2,000
frames.

The dataset provides multiple evaluation protocols, including Cross-subject recognition,
two variants of Cross-view recognition, and Arbitrary-view recognition. Most studies on
action-conditioned motion synthesis adopt the Cross-subject split [2, 17, 29, 35]. In this
protocol, the training split consists of all action categories performed by a fixed subset
of 51 subjects, comprising 10,650 sequences, while the remaining subjects form the test
split with 13,350 sequences.

While Ji et al. [8] emphasize the dataset’s diversity—covering both large and fine-
grained movements that result in complex motion patterns—it is important to note that
the use of Kinect sensors inherently limits motion quality. As these sensors capture only
monocular depth information, motion sequences must be reconstructed using estimation
techniques as described above, leading to noisy artifacts [17].
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2.2.2 Evaluation Metrics

Evaluating generated motions is inherently challenging due to the one-to-many nature
of the task, the subjective perception of motion quality, and the need to assess both
motion fidelity and semantic consistency [37]. While automated metrics allow large-scale,
reproducible evaluation, human judgment ultimately determines how natural a motion
appears. Human studies can complement quantitative results by capturing perceptual
and cultural nuances, but they are time-consuming and less scalable [27]. This thesis
therefore focuses on automated metrics. For the action-conditioned motion synthesis
task, four key evaluation metrics are commonly employed: Fréchet Inception Distance
(FID), Diversity, Multimodality, and Recognition Accuracy. To compute these metrics,
a separate recognition model must first be trained [17].

Fidelity metrics evaluate generated motions based on naturalness, smoothness, and plau-
sibility [37]. FID measures the difference between the feature distributions of generated
and real motion data [6, 35]. It is widely used to assess the overall quality of generated
motions, where lower FID values indicate a higher similarity to real data [6, 17, 34].

Diversity measures a model’s ability to generate a wide range of motions while avoiding
repetitions and frozen outputs [37]. It is computed by sampling two subsets {v1, ..., vSd

}
and {v′1, ..., v′Sd} of size Sd from all generated motions and is defined as (cf. Equation (6)
in [29]):

Diversity = 1
Sd

Sd∑
i=1

∥∥vi − v′
i

∥∥
2 . (2.15)

Multimodality evaluates the diversity of generated motions conditioned on the same
action [29, 35]. Similar to Diversity, it is computed by sampling two subsets of size Sd,
belonging to the same action class c, {vc,1, ..., vc,Sd

} and {v′c, 1, ..., v′c, Sd}, and is defined
across all action classes C as (cf. Equation (7) in [29]):

Multimodality = 1
C × Sd

C∑
c=1

Sd∑
i=1

∥∥∥vc,i − v′
c,i

∥∥∥
2

. (2.16)

Optimal Diversity and Multimodality values are achieved when they approximate those
computed from real motion data [29].

The Recognition Accuracy metric assesses the overall correlation between generated mo-
tions and their conditioning signals [3, 29]. Combining these metrics provides a compre-
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hensive measure of both realism and diversity [29]. While Diversity and Multimodality
complement FID and Recognition Accuracy, FID is most commonly reported as the prin-
cipal metric for motion quality and therefore serves as the primary optimization target
[6, 17, 34]. Notably, FID remains underexplored (cf. Table 4 in [29]) in the context
of the UESTC dataset for current state-of-the-art architectures such as [2, 3, 29, 35],
leaving room for further improvement.

2.2.3 Diffusion in Motion Synthesis

Human motion synthesis is a complex task that requires capturing the inherent diversity
of possible movements [29], while simultaneously maintaining perceptual realism and
physical plausibility [37]. With the advent of deep learning, a wide range of model
architectures has been explored to address these challenges, including VAEs, GANs,
Normalizing Flow Networks, and Implicit Neural Representations [24] [34, 37]. Despite
the progress achieved by these approaches, they often remain limited in quality, and
expressiveness [29].

More recently, DDPMs have emerged as a promising alternative due to several advan-
tages over earlier architectures. Tevet et al. [29] argue that DDPMs are particularly well
suited for the motion synthesis task because they inherently model the many-to-many
nature of the underlying problem. Another advantage of the DDPM framework lies in
its ability to retain the original motion sequence throughout the diffusion process, allow-
ing additional constraints to be applied during denoising to improve motion consistency
[34]. Furthermore, DDPMs tend to produce more diverse samples compared to previous
generative approaches [34].
Despite these advantages, DDPMs also come with certain drawbacks. Yuan et al. [33]
argue that DDPMs tend to generate physically unrealistic motion sequences, due to the
absence of physical constraints during training. Moreover, they tend to be computation-
ally intensive, and challenging to control [29, 35].

Tevet et al. (2023) [29] tackle these drawbacks and utilize the advantages by proposing
MDM, a classifier-free diffusion model capable of solving multiple generation tasks, such
as text-conditioned synthesis, and motion editing. MDM currently represents the state-
of-the-art in action-conditioned motion synthesis and the UESTC dataset (cf. Table 4
in [29]).
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It uses a transformer encoder-only [31] backbone, which facilitates generating arbitrary-
length motion sequences, and offers a temporally-aware structure beneficial for the mo-
tion generation task. During training, Gaussian noise is applied to each motion sequence.
Each frame in these sequences serves as an input token, concatenated with a positional
embedding. The final input is enriched by an additional token representing the condition
and the current diffusion timestep. While a Contrastive Language-Image Pre-training
model [21] is utilized for the text-conditioned motion synthesis task, a simple learned
embedding suffices for each action in the action-conditioned task [29].
The generated motion sequence can be described as x1:N = {xi}N

i=1. The underlying
pose representation—rotations or joint positions—is denoted as xi ∈ RJxD, where J is
the number of joints and D the dimensionality of each joint. Moreover, MDM comprises
geometric losses, which require the model to predict the original motion sequence x0 at
any timestep t from the noisy input xt [29], which will be discussed in more detail in the
next section.

2.2.4 Domain-Specific Optimizations

As discussed in Section 2.2.3, DDPMs provide substantial flexibility in architectural
design. Consequently, several studies have focused on architectural innovations—for
instance, enhancing sampling efficiency by integrating a GAN discriminator [35], per-
forming diffusion in latent space [3], or incorporating a physics simulator into the diffu-
sion process [33]. In contrast, this section focuses on domain-specific optimizations that
address the unique characteristics of human motion, particularly pose representation
and geometric loss functions, which are crucial for ensuring structural coherence and
perceptual realism.

Pose Representation

Human motion can be described as a temporal sequence of body poses (see Figure 2.2).
Pose representations are commonly divided into keypoint-based and rotation-based cat-
egories (see Figure 2.3). While Forward Kinematics (FK) enables the conversion of
rotation-based representations into keypoint-based representations, Inverse Kinematics
(IK) allows reconstructing rotations from keypoints [37]. These conversions are espe-
cially useful for animations. By utilizing rotations, it is possible to apply the SMPL
model [14], which generates a triangular 3D mesh. SMPL models the body with K = 24
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joints. Each joint has a set of parameters θ ∈ RK×3, calculated with respect to the
parent joint [37].

Figure 2.2: Illustration of a sequence of body poses across 12 frames with respect to the
temporal axis (left to right) (adapted from Figure 11 in [20]).

0 (root)

(a) (b) (c) (d)

Keypoint-based Rotation-based

Figure 2.3: Typical human pose and shape representations with the same pose in (a)
2D keypoints, (b) 3D keypoints, (c) 3D marker keypoints, and (d) rotation-
based model. (reproduced from Figure 3 in [37]).

Although 3D rotations can be parameterized using representation spaces [37] such as
Euler angles, axis-angles, or quaternions, Zhou et al. [36] demonstrated that low-
dimensional representations (< 5D) introduce discontinuities that harm neural network
learning. To address this, they propose a continuous 6D rotation representation, derived
from the first two columns of a rotation matrix and orthogonalized through a cross prod-
uct. This representation has become a de-facto standard in recent motion diffusion works
[17, 29, 34, 35], as it ensures smooth interpolation, stability, and compatibility with the
application of FK and IK. A detailed explanation of the mathematical formulation and
continuity advantages of the 6D rotation representation can be found in Appendix A.

Geometric Loss Functions

One key component of the training process in MDM is the use of geometric loss functions,
which are applied in addition to the simple objective (see Section 2.1.2). Since these losses
measure geometric differences between the ground truth and the predicted samples, the
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model must predict the original data x0 at every timestep t during the reverse diffusion
process.

Geometric losses are motivated by prior work in motion synthesis, and address common
issues such as jitter by regulating the velocity [17] and foot sliding [27] by implementing
a dedicated loss term. Tevet et al. [29] propose three geometric losses:
position loss

Lpos = 1
N

N∑
i=1

∥∥∥FK(xi
0) − FK(x̂i

0)
∥∥∥2

2
, (2.17)

velocity loss

Lvel = 1
N − 1

N−1∑
i=1

∥∥∥(xi+1
0 − xi

0) − (x̂i+1
0 − x̂i

0)
∥∥∥2

2
, (2.18)

and foot contact loss

Lfoot = 1
N − 1

N−1∑
i=1

∥∥∥(
FK(x̂i+1

0 ) − FK(x̂i
0)

)
∗ fi

∥∥∥2

2
. (2.19)

For the position loss and foot contact loss, it is necessary to transform the model’s
predicted joint rotations into joint positions (denoted as FK(·)), since distances are
calculated in 3D space. In the case of the foot contact loss, fi denotes the binary foot
contact mask, which indicates whether each foot joint is in contact with the ground (cf.
Equations 3–5 in [29]). Taken together, these losses form the overall loss function (cf.
Equation (6) in [29]):

L = Lsimple + λposLpos + λvelLvel + λfootLfoot. (2.20)

Although these optimizations are sophisticated and require domain knowledge, their
contribution to improving motion quality can be modest in some cases (cf. Table 4 in
[29]).

2.3 Summary and Research Question

This chapter has highlighted advances in diffusion-based models, spanning from fun-
damental improvements in training and sampling to more advanced optimization tech-
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niques, such as importance sampling and EMA, which contribute to training stability
and enhanced training dynamics. Over the years, these improvements have led to signif-
icant performance acceleration, making diffusion models the state-of-the-art generative
approach, outperforming GANs [4].

Simultaneously, researchers in 3D human motion synthesis have explored various archi-
tectural designs (see Table B.1 for a comprehensive overview of methods), adopted more
suitable pose representations, and tailored specific loss functions to generate high-quality
samples. These models are commonly evaluated using metrics such as Diversity, FID,
Multimodality, and Recognition Accuracy. With the rise of diffusion models, Tevet et
al. [29] introduced a lightweight framework that achieves state-of-the-art results across
multiple conditional modes.

However, the action-conditioned motion synthesis task lacks sufficient datasets, with
UESTC being the only large-scale dataset with a train/test split. This scarcity of data
along with the issue of UESTC providing monocular videos, which have to be converted
using estimation methods, leaves room for improvement in the quality of generated
motions.

While the majority of research focuses on specialized architectural solutions, complex loss
functions (e.g., geometric losses), and conditional modalities, more general optimization
techniques—such as importance sampling and EMA—remain underrepresented. No-
tably, only Chen et al. [3] mention EMA, but it is not explicitly integrated into their
experiments.

Given that importance sampling and EMA are task-agnostic and relatively easy to in-
tegrate into any diffusion-based model, this thesis investigates their influence on action-
conditioned motion synthesis. Building on the lightweight MDM framework proposed
by Tevet et al. [29], the corresponding research question is formulated as follows:

To what extent do generic training dynamics and optimization strategies—
particularly importance sampling and EMA—affect the effectiveness and ef-
ficiency of action-conditioned motion diffusion models?

To examine this research question, experiments are conducted on a modified baseline
model1 derived from MDM simplified for the action-conditioned task, as well as on
versions integrating importance sampling and EMA.

1The term baseline model in this thesis is used to refer to the MDM model adapted for the action-
conditioned task, without the application of any optimization strategies.
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This chapter presents the methodology used to conduct experiments on the proposed
model, focusing on evaluating the effectiveness of EMA and importance sampling. Sec-
tion 3.1 describes the architectural design and workflow, outlining how MDM was adapted
and simplified for the action-conditioned motion synthesis task. Since this work employs
the UESTC dataset introduced in Section 2.2.1, Section 3.2 details the preprocessing
pipeline used to convert the raw video data into sequences represented in the 6D rota-
tion format.
Building upon these foundations, Section 3.3 explains the model’s training procedure,
including implementation details, hyperparameter configurations derived from an initial
pilot phase, and the applied settings for importance sampling and EMA. Section 3.4
describes the sampling process of the proposed model, justifies the chosen denoising pro-
cedure, and the weighting of the utilized evaluation metrics.
Finally, Section 3.5 outlines the experimental setup, which is structured around three
phases of experiments, and explains the workflow connecting them.

3.1 Model Architecture

Building upon the architectural foundations and domain-specific design considerations
discussed in Section 2.2, this section details the implementation of the model used in this
thesis. The design is derived from the state-of-the-art MDM architecture [29], adapted
and simplified to focus exclusively on action-conditioned motion synthesis.

The backbone of the model is a transformer encoder, originally introduced by Vaswani
et al. [31]. The input to the transformer is twofold and comprises a sequence of mo-
tion frames x1:N

t of length N , which are first passed through a linear layer to match
the model dimension. Additionally, an action label c (i.e., the conditioning signal) and
the current diffusion timestep t are embedded and concatenated to form the ztk token
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Transformer-Encoder

Linear Layer

Linear Layer

Positional
Encoding

MLP

TimestepAction Label

Embedding

Figure 3.1: Overview of the modified model architecture (adapted from Figure 2 in [29]).

(see Figure 3.1). The sequence tokens, together with the ztk token, are then augmented
with positional encodings and passed to the transformer encoder. The output of the
transformer is subsequently processed by a final linear layer to match the output di-
mension. Note that the number of output tokens equals the number of sequence tokens,
as the ztk token only serves as a conditioning token and is not reconstructed at the
output. Ultimately, the only modification to the model architecture compared to the
text-conditioned version of MDM is the replacement of the text encoder with an action
embedding layer.

The hyperparameters of the model architecture are set to match those of the original
MDM model [29], comprising 8 attention heads, 8 layers, a latent dimension of 512,
and a feedforward dimension of 1,024. As a result, the model consists of approximately
17 × 106 parameters. An extensive overview of all hyperparameters can be found in
Appendix C.2.

3.2 Dataset Preprocessing

This research utilizes the UESTC dataset [8]. Unlike many other datasets, UESTC
provides predefined train/test splits [17] and emphasizes more complex and dynamic
movement patterns. It is of particular relevance to this thesis due to its widespread
adoption in recent motion synthesis research (see Table B.1). Moreover, state-of-the-art
performance on this dataset remains open for improvement—especially regarding the
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FID metric, where the best reported test score to date is 12.81, achieved by the MDM
model [29]. As a reference point, the FID score of the ground truth data is 2.79 (see
Table 4 in [29]), indicating significant room for advancement.

The preprocessing pipeline follows the approach introduced by Petrovich et al. [17] and
subsequently adopted by Tevet et al. [29]. All video sequences are converted into 3D
motion representations using the Video Inference for Body Pose and Shape Estimation
model [11], which estimates SMPL parameters from monocular RGB videos. In scenes
containing multiple subjects, the track most closely corresponding to the provided Kinect
skeleton is selected to ensure consistency. Only sequences recorded from the eight static
camera viewpoints are retained, while those captured by the rotating camera are ex-
cluded. To maintain viewpoint consistency across samples, all motions are canonicalized
to a frontal orientation. Following the official Cross-subject protocol, subjects are di-
vided into training and testing sets. This protocol is preferred over the Cross-view split,
as viewpoint variations can be easily simulated by the model [17].

In addition to data preprocessing, evaluation features are extracted using a recognition
model provided by the MDM implementation [29], which follows the design introduced
by Petrovich et al. [17]. The model operates on pose parameters expressed as 6D ro-
tations, offering greater stability with respect to viewpoint variations than joint-based
representations. Using this pretrained model ensures consistent and comparable feature
embeddings for computing evaluation metrics such as FID and recognition accuracy.

The final dataset used for training comprises approximately 10,650 sequences (roughly 33
sequences per action on average when normalized by viewpoint), with 13,350 sequences
reserved for testing. By applying the same preprocessing steps and maintaining the
same train/test split as prior works, this thesis ensures a fair comparison of results with
existing state-of-the-art methods.

3.3 Training Procedure

The training pipeline of the proposed model largely follows the original MDM frame-
work [29], with several adaptations introduced to improve training stability and sample
efficiency. This section describes the main components of the training process and the
overall optimization setup, including the learning rate schedule, loss weighting strategy,
and stabilization techniques such as EMA and importance sampling.
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As an initial step, all hyperparameters were set to match those of the original MDM
model. However, since a detailed hyperparameter list for training on the UESTC dataset
was not available, an initial phase of pilot experiments was conducted to identify a
suitable configuration. Due to the complexity of the model and the resulting large
number of hyperparameters involved, an exhaustive overview of hyperparameter settings
is provided in Appendix C. The following discussion focuses on the key differences and
adaptations introduced in the training procedure.

A key component of the training process is the use of geometric loss functions as discussed
in Section 2.2.4. In the original formulation [29], the weights of each geometric loss are
set to either 0 or 1. However, pilot experiments revealed that the model’s geometric
losses were very small in magnitude, and using the foot contact loss did not noticeably
improve performance. Moreover, including the position loss appeared to conflict with the
primary mean squared error objective, so it was set to λpos = 0. The remaining weights
were adjusted empirically to λvel = 25.0 and λfoot = 45.0, to achieve a meaningful
contribution to the overall loss landscape.

To further enhance convergence, a learning rate schedule combining a linear warmup and
cosine annealing was employed. The learning rate linearly increases from 0.0 to 1.2×10−4

during the first 5,000 steps and subsequently decays following a cosine schedule to a
minimum value of 10−5 over the full training duration. Although this adjustment is not
strictly required for training stability, it was found empirically to improve generalization
and convergence speed.

Another observation during the pilot phase was that the dropout parameter, set to 0.1 in
the original implementation [29], appeared to degrade performance. Empirically, reduc-
ing it to 0.0 resulted in slightly improved results. As these hyperparameter adjustments
are not the main focus of this thesis, the observed improvement was considered sufficient
without conducting an extensive ablation study, thereby keeping the experimental scope
manageable.

Following the approach proposed in [29], the model was trained for a total of 2 × 106

training steps. Moreover, the diffusion process was configured with 1,000 timesteps.
However, subsequent experiments (see Section 3.5) also evaluate adjusted training and
diffusion steps. Checkpoints to save the model and EMA parameters, as well as the
optimizer state are recurrently done after 2 × 105 training steps. Following directly after
checkpointing, the current model is evaluated.
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The utilization of importance sampling follows the implementation of Nichol and Dhari-
wal [16]. During the forward propagation, importance sampling produces a tuple of
sampled timesteps and their associated weights for each batch element. The model loss
is then evaluated at these sampled timesteps and weighted accordingly during the back-
ward propagation. This implementation is straightforward, as the sampling and weight-
ing operations can be easily replaced with uniform sampling assigning equal weights for
all timesteps.

EMA1 is instantiated with the model parameters and a decay rate, which is typically
set close to 1.0 [16]. The exact decay rate is treated as a tunable hyperparameter and is
discussed further in Section 3.5. During training, the EMA parameters are updated after
each optimization step in the backward propagation phase. These averaged parameters
are saved alongside the model checkpoints to be utilized during evaluation and inference.
Evaluation with EMA is done after training, as it does not require retraining, utilizing
the saved checkpoints.

Finally, all models were trained on a server equipped with ten NVIDIA Quadro P6000
GPUs, two 18-core CPUs, and 384 GB of system memory. In practice, 8 GPUs were
utilized concurrently using Distributed Data Parallel2, with an effective global batch size
of 64.

3.4 Evaluation Procedure

To assess the performance of the proposed model, this section outlines the procedure used
for generating motion sequences and evaluating their quality. Sampling from the diffusion
model is an integral part of the evaluation, as the quality of the generated sequences
directly impacts the metrics used to measure model performance. In the following the
sampling process, the evaluation metrics utilized and the according hyperparameters are
discussed.

Sampling from the diffusion model (as depicted in Figure 3.2) is performed by the reverse
process described in Section 2.1. Based on a condition c and random noise xT sampled
from a Gaussian distribution along with the desired dimension of the output sequence,
the model iteratively denoises the input. At each step t, the model predicts the original

1https://github.com/fadel/pytorch_ema (accessed 10/29/2025)
2https://docs.pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParall

el.html (accessed 10/29/2025)
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sequence x̂0 from the noisy input xt and applies noise according to the next timestep
t−1. Although, as described in Section 2.1.2 predicting ϵ has been shown to yield better
results in image synthesis, MDM chooses to predict x̂0 (i.e., the desired motion sequence)
directly, due to the application of geometric losses.

Model

Diffuse

Model

Diffuse

Model

Figure 3.2: Overview of the samplng process (adapted from Figure 2 in [29]).

While Section 2.1.3 introduced alternative sampling strategies, this thesis employs the
original DDPM denoising process. In particular, DDIM [26] is not adopted, following
the findings of Zhou et al. [35], who report that DDIM tends to degrade sample quality
for motion data. Furthermore, the Improved DDPM variant [16] reduces the number of
diffusion steps, however, since Tevet et al. [29] already provided additional experiments3

with fewer diffusion steps—which will be discussed in Section 3.5—after the initial sub-
mission, sampling time can be reduced accordingly without deviating from the original
DDPM framework.

Following the evaluation protocols provided by Petrovich et al. [17] and Tevet et al. [29],
the generation of motion sequences is restricted to a fixed length of 60 frames. This con-
straint ensures a fair and consistent comparison across models by aligning the temporal
duration of the generated motions with the reference implementation.

To assess generated samples the four metrics introduced in Section 2.2.2—namely FID,
Recognition Accuracy, Diversity, and Multimodality—are utilized. Since, most studies

3https://openreview.net/forum?id=SJ1kSyO2jwu (accessed 10/29/2025)
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consider FID as their principal metric and due to its capability to indicate overall mo-
tion quality in terms of smoothness and plausibility, this thesis treats it the same way.
Consistent with the evaluation procedure of Tevet et al. [29] for the UESTC dataset,
this thesis generates 1,000 samples for each of 20 distinct seeds (seed values 1 to 20) to
ensure a fair comparison of results with existing methods.

3.5 Experimental Setup

The experimental setup is designed specifically to investigate the research question out-
lined in Section 2.3. To evaluate the impact of importance sampling and EMA thor-
oughly, the experiments are conducted in three different phases, which will be introduced
in the following.

Phase 1: Baseline Model and Diffusion Steps Comparison

This phase serves to validate the performance of the baseline model by comparing it
to MDM [29]. Since Tevet et al. [29] have provided additional experiments reducing
diffusion steps down to 100, the comparison will comprise evaluations of trainings with
1,000 and 100 diffusion steps. The 100-step setting is of particular interest because Tevet
et al. [29] did not evaluate diffusion step reduction on the UESTC dataset. Moreover,
it significantly reduces computation, which might be beneficial for the following phases.
Hence, if the performance is close to the 1,000-step setting, the 100-step setting will
be preferred for the other phases. Following Tevet et al. [29], experiments are run for
2 × 106 training steps, using the same hyperparameters except for those discussed in
Section 3.3.

Phase 2: Importance Sampling and EMA Hyperparameter Exploration

This phase evaluates different decay rate settings for EMA, the addition of importance
sampling to the baseline model, and their combination. To reduce computation, training
steps are limited to 1 × 106, and the cosine annealing schedule is adjusted accordingly.
Since EMA is evaluated on checkpoints created during training, these evaluations can be
compared directly to the baseline model performance at 1×106 steps without retraining.
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The EMA decay rates are set to 0.9999 and 0.9995, following the recommendations of
[16].

Phase 3: Final Evaluation with Optimized Settings

In this final phase, the most promising configuration identified in Phase 2 is selected
to perform a full-scale evaluation over 2 × 106 training steps. The primary goal is to
assess the cumulative impact of importance sampling and EMA on the final model per-
formance. The selection of the best configuration is based primarily on the FID metric,
as it provides a comprehensive measure of motion quality in terms of smoothness and
plausibility.
All other hyperparameters are kept consistent with the baseline training protocol de-
scribed in Section 3.3, ensuring a fair comparison with both the original baseline model
and the intermediate results from Phase 2. This phase serves as the definitive evalua-
tion to demonstrate the effectiveness of the optimized training strategies and to quantify
improvements achievable with the selected settings.
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This chapter presents the evaluation of the conducted experiments across the phases
described in Section 3.5. All experiments involve different configurations of the base-
line model, including variations in the number of diffusion steps and the application of
optimization techniques such as EMA and importance sampling.

Section 4.1 presents the results obtained across these phases, using quantitative met-
rics (tables) alongside qualitative visualizations (plots and heatmaps). Subsequently,
Section 4.2 interprets the results and discusses their implications.

4.1 Results

Section 4.1.1 presents the results of Phase 1, validating the performance of the proposed
model. Section 4.1.2 reports the effects of applying EMA and importance sampling
individually and combined, while Section 4.1.3 presents the final experiment, using the
most promising configuration identified in Phase 2.

4.1.1 Phase 1: Baseline Model and Diffusion Steps Comparison

This phase aims to validate the baseline model’s performance and examine the influence
of the number of diffusion steps on generation quality. Table 4.1 summarizes the results,
including ground truth metrics (Real) from the UESTC dataset. The proposed model is
denoted as Proposed with subscripts indicating the diffusion steps used during training.

The model trained with 1, 000 diffusion steps achieves comparable results to MDM on
FIDtest, Diversity, and Multimodality, with higher FIDtrain (12.37 compared to MDM’s
9.98) and lower Accuracy (0.91 compared to MDM’s 0.95). The 100-step variant shows
improved FIDtrain = 10.30 and Accuracy = 0.94, closely matching MDM.
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Method FIDtrain ↓ FIDtest ↓ Accuracy↑ Diversity→ Multimodality→

Real 2.92±.26 2.79±.29 0.988±.001 33.34±.32 14.16±.06

INR [2] 9.55±.06 15.00±.09 0.941±.001 31.59±.19 14.68±.07

MDM [29] 9.98±1.33 12.81±1.46 0.950±.000 33.02±.28 14.26±.12

Proposed1000 12.37±0.86 12.59±1.22 0.91±0.01 32.24±0.51 14.89±0.35

Proposed100 10.30±0.98 13.31±0.93 0.94±0.01 33.49±0.55 14.04±0.20

Table 4.1: Evaluation results of Phase 1 (Adapted from Table 4 in [29]). Validation of
the baseline model trained with different numbers of diffusion steps. Lower
values ( ↓ ) indicate better performance for FID; higher values ( ↑ ) are prefer-
able for Accuracy; and values closer to the real data ( → ) are desirable for
Diversity and Multimodality. The results closest to the ground truth (Real)
are highlighted in bold and reported with mean ± standard deviation.

4.1.2 Phase 2: Importance Sampling and Exponential Moving Average
Hyperparameter Exploration

This phase evaluates the model’s performance under the application of EMA, importance
sampling, and their combination. All experiments in this phase use the 100 diffusion
timestep setting established in Phase 1. Figure 4.1a shows the development of the
FID metric over the course of training, comparing importance sampling and two EMA
configurations with decay rates of 0.9999 and 0.9995 against the baseline model. While
the baseline model exhibits the highest initial FID value, slightly above 300, the addition
of importance sampling reduces it to just above 200. In contrast, both EMA variants
start with substantially lower initial FID values, around 70. Both importance sampling
and EMA lead to smoother curves throughout training. Although the baseline model’s
FID initially decreases, its improvement deteriorates slightly after approximately 6×105

training steps. Beyond this point, the FID values of all models converge to similar levels.
Figure 4.1b presents a heatmap showing the relationship between diffusion timesteps
and training steps, where the latter are grouped into bins of size 1250 for visualization
purposes. The heatmap illustrates how frequently each diffusion timestep is sampled
throughout the training process. After an initial warm-up phase, importance sampling
begins to favor higher diffusion timesteps (approximately ≳ 80) more frequently than
lower ones (around ≲ 20). Around 1, 5 × 105 training steps, timesteps above 80 are
sampled roughly ≳ 2000 times, while intermediate timesteps between 80 and 90 reach
counts of about 1250, and lower timesteps remain below 1000. This trend remains
consistent throughout training, with timesteps near the maximum value of 100 eventually
being sampled up to approximately 2500 times.
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(a) Development of FIDtest during train-
ing (1×106 steps) for EMA, importance
sampling, and the baseline model.
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(b) Heatmap displaying the frequency of
diffusion timestep samples collected
during training (1 × 106 steps).

Figure 4.1: Comparison of training progression and sampling behavior across different
methods (Phase 2).

Table 4.2 shows a detailed overview of the model performance applying EMA, importance
sampling, and their combination compared against the baseline. EMA with a decay rate
of 0.9999 is denoted as EMAA, EMA with a decay rate of 0.9995 is denoted as EMAB,
and importance sampling is denoted as IS. Regarding the isolated application of EMA

Method FIDtrain ↓ FIDtest ↓ Accuracy↑ Diversity→ Multimodality→

Real 2.92±.26 2.79±.29 0.988±.001 33.34±.32 14.16±.06

Baseline 18.287±1.081 17.904±1.318 0.886±0.010 31.884±0.550 15.089±0.308

EMAA 12.983±0.990 16.074±0.948 0.916±0.011 33.717±0.517 14.218±0.269

EMAB 12.688±1.075 15.885±0.929 0.913±0.012 33.592±0.526 14.377±0.266

IS 14.317±1.205 15.507±1.216 0.902±0.009 32.726±0.566 14.889±0.270

EMAA + IS 12.997±1.054 15.760±0.931 0.919±0.011 33.675±0.533 14.039±0.280

EMAB + IS 12.535±1.083 15.020±0.948 0.919±0.011 33.539±0.572 14.204±0.258

Table 4.2: Evaluation Results of Phase 2. Effect of introducing importance sampling
(denoted as IS) and EMA on quantitative metrics with training steps reduced
to 1 × 106.

and importance sampling, the latter achieves a slightly lower FIDtest value (15.507) than
either EMA variant. All configurations yield substantially lower FIDtest values than the
baseline, with an improvement of approximately ≳ 1.8. In terms of Diversity and Mul-
timodality, EMA produces results closer to the ground truth than importance sampling.
For example, EMAA exhibits a Multimodality gap of 0.058 compared to the real data,
whereas importance sampling shows a larger gap of 0.729.
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Regarding the combined application of EMA and importance sampling, the configura-
tion using a decay rate of 0.9999 yields a slightly higher FIDtest value (15.760) than
the isolated application of importance sampling (15.507). The combination utilizing a
decay rate of 0.9995 achieves the closest results to the ground truth across all metrics,
outperforming all other configurations.

4.1.3 Phase 3: Final Evaluation with Optimized Settings

This phase evaluates the model’s performance using EMA in combination with impor-
tance sampling. The experiment in this phase uses the 100 diffusion timestep setting
established in Phase 1, and is trained for 2 × 106 steps, with an EMA decay rate of
0.9995. Figure 4.1a shows the development of the FID metric over the course of train-
ing, comparing the combined application of EMA and importance sampling with the
baseline model, which exhibits a regressive phase after 6 × 105 and its peak at 8 × 105

training steps, eventually converging to a value below approximately 20. The enhanced
model follows a smooth curve without any regression or plateau. Eventually, both mod-
els converge to similar levels. Figure 4.2b presents a heatmap analogous to Figure 4.1b,
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(a) Development of FIDtest during training
(2 × 106 steps) for EMA combined with
importance sampling, and the baseline
model.
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(b) Heatmap displaying the frequency of
diffusion timestep samples collected
during training (2 × 106 steps).

Figure 4.2: Comparison of training progression and sampling behavior across different
methods (Phase 3).

showing that the trend observed in Phase 2 continues consistently over the full 2 × 106

training steps. Table 4.3 presents an updated overview of model performance, extending
the Phase 1 results with the conducted experiment in Phase 3. The combination of EMA
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(a) Standing toe touches

(b) Standing rotation

(c) Left stretching

(d) Head anticlockwise circling

Figure 4.3: Visualization of four rendered pose sequences. Starting from frame 1 (left-
most), every third frame up to frame 34 (rightmost) is shown. For illustration
purposes, the joint rotations generated by the model are rendered as SMPL
meshes.
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Method FIDtrain ↓ FIDtest ↓ Accuracy↑ Diversity→ Multimodality→

Real 2.92±.26 2.79±.29 0.988±.001 33.34±.32 14.16±.06

INR [2] 9.55±.06 15.00±.09 0.941±.001 31.59±.19 14.68±.07

MDM [29] 9.98±1.33 12.81±1.46 0.950±.000 33.02±.28 14.26±.12

Proposed1000 12.37±0.86 12.59±1.22 0.91±0.01 32.24±0.51 14.89±0.35

Proposed100 10.30±0.98 13.31±0.93 0.94±0.01 33.49±0.55 14.04±0.20

ProposedEMA+IS 9.468±0.819 13.166±0.826 0.939±0.008 33.783±0.487 14.120±0.216

Table 4.3: Evaluation results of Phase 3 (Adapted from Table 4 in [29]). Comparison of
the proposed model trained with EMA and importance sampling (EMA+IS)
against results of Phase 1.

and importance sampling over 2 × 106 training steps yields similar results compared to
the proposed model trained with 100 diffusion steps, with an improvement in FIDtrain

from 10.30 to 9.468, and a reduction in the standard deviation across all metrics except
for Multimodality.
Figure 4.3 visualizes four different pose sequences conditioned on actions standing toe
touches, standing rotation, left stretching, and head anticlockwise circling. Each se-
quence displays 12 frames starting from frame 1 and showing every third frame up to
frame 34. As illustrated in Figures 4.3a, 4.3b, and 4.3d, the model tends to generate
sequences that initiate from a non-neutral initial pose. Moreover, in Figure 4.3a, the
model reveals violations of physical plausibility, as the generated poses of frames 2 to
11 show the subject’s feet penetrate the ground plane. This phenomenon can also be
observed in some frames of Figures 4.3b and 4.3c. In addition, Figure 4.3b indicates
the model’s difficulty in performing rotations without foot sliding, a prevalent artifact
in human motion synthesis [37]. As the subject’s upper body rotates to the left, the
feet exhibit a slight lateral movement in the same direction. Figure 4.3d represents an
exemplary sequence of a fine-grained movement. The sequence exhibits the model’s dif-
ficulty in performing a clear circular motion with the head, as the trajectory is hardly
recognizable and most likely performed by the entire upper body instead of isolating the
head movement. In contrast to those limitations, Figures 4.3a, 4.3b, and 4.3c exhibit
smooth transitions of the upper body between poses. In particular, the arm movements
in Figures 4.3a and 4.3c appear natural and fluid. Moreover, in case no movement of the
legs is required, as in Figures 4.3b and 4.3d, the feet barely penetrate the ground plane.
Overall, with exception of Figure 4.3d, the generated pose sequences appear consistent
with the given action conditions.
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4.2 Discussion

The results of Phase 1 illustrated in Table 4.1 indicate that the initial implementation,
including the piloting phase optimizations, exhibited comparable performance to that of
the reference model by Tevet et al. [29]. In particular, the 100-step model produced re-
sults closer to those of the reference model. Despite a slight drop in FIDtest, it performed
better than the 1000-step model. One possible explanation is that, unlike image-based
generative tasks, DDPMs for motion synthesis do not necessarily benefit from a higher
number of diffusion steps. The reduced dimensional space implies lower diversity, which
potentially allows the model to learn the underlying distribution more easily. Addition-
ally, motion data exhibits strong temporal correlations that transformer architectures
can effectively leverage. Together, the observations from Phase 1 led to the selection of
the 100-step model for Phases 2 and 3.

Phase 2 investigated the effects of EMA, importance sampling, and their combination.
To enable comparison across multiple configurations, the total number of training steps
was reduced to 1 × 106. Consequently, the results of Phase 2 are not directly compara-
ble to those of Phase 1. As expected, the baseline model showed a notable drop in all
quantitative metrics due to the reduced training duration (see Table 4.2).
Both EMA and importance sampling independently demonstrated significant improve-
ments of FIDtrain and FIDtest. A comparison of FID development throughout training
in Figure 4.1a exhibits the ability of EMA in not only stabilizing the training process,
but also yielding significantly lower FID values than the baseline model early on during
training. This can be explained by the smoothing effect of EMA, as it effectively aver-
ages the weights throughout training. Especially in the early stages of training, where
the model traverses unstable loss landscapes, the benefit of EMA lies in preventing large
weight updates from affecting its weights. Thus, the curve shows steady improvement,
unaffected by instabilities and deterioration.
Ultimately, the combination of importance sampling and EMA, with a decay rate of
0.9995, achieved the best overall results across all quantitative metrics. This outcome
suggests that the two optimizations complement each other effectively. While EMA en-
hances diversity and multimodality, both methods contribute to lowering the FID values.
Furthermore, the focus on higher diffusion timesteps, which is induced by importance
sampling, does not appear to have a negative impact on the benefits of EMA.

Building on these findings, Phase 3 aimed to compare the best-performing configuration
from Phase 2, which is the combination of importance sampling and EMA with a decay

31



4 Evaluation

rate of 0.9995, with the reference model by Tevet et al. [29]. Unlike Phase 2, the training
steps were set to 2 × 106. This ensured comparability with the results of Phase 1 and
the reference model.
As demonstrated in Table 4.3 and Figure 4.2a, the proposed optimization has a negligi-
ble impact on the overall performance, as indicated by the quantitative and qualitative
results, respectively. The heatmap in Figure 4.2b further confirms the trend observed
in Phase 2. Thus, the model does not learn to effectively leverage insights provided by
noisier samples, although it was expected to gradually shift its focus towards lower steps.
In the long run, this might hinder the model from leveraging the full potential of the
geometric losses. Especially the foot loss requires lower diffusion timesteps to effectively
guide the model, as it operates on a fine-grained level. This observation suggests that the
model’s capacity to leverage these observations is reduced when importance sampling
overemphasizes higher timesteps.
Furthermore, the impact of EMA expectedly vanishes over time. As demonstrated in
Figure 4.2a, the curve exhibits a rapid convergence, yet EMA’s role in smoothing be-
comes less significant as the training duration increases. This is due to the fact that
EMA exponentially weights older model parameters less. Thus, as training progresses,
the smoothed parameters are updated with weights of the baseline model that has al-
ready stabilized. As indicated by the curve of the baseline model, the training in motion
synthesis appears to be relatively stable in general. Consequently, the effect of EMA
becomes negligible in the long run.
Ultimately, the visualization of multiple samples in Figure 4.3 underlines the aforemen-
tioned conclusions. While coarse-grained movements, particularly those of the upper
body, appear to be physically plausible, the finer-grained movements demonstrate the
limitations of the model. Even with a significantly higher weighting than other losses,
foot contact loss still leads to artifacts such as foot sliding and ground-plane penetration.
Additionally, the anticlockwise circling sequence of the head shows an unclear movement.
While Ji et al. [8] emphasize that the UESTC dataset contains challenging movements,
the applied optimizations appear insufficient in addressing these challenges effectively.

To contextualize the findings across all phases, several limitations of this thesis must be
acknowledged. Conditioning on action labels is a simple approach to guide motion, yet
the lack of context may introduce the issue of ambiguous mappings from actions to mo-
tion. In particular, categories such as "kick" rely on the context to determine, whether to
kick a ball, or perform a kick in combat sport. However, for this thesis, and the UESTC
dataset in particular, this limitation is negligible, as each category is distinct.

32



4 Evaluation

The UESTC dataset [8] was selected for its predefined train/test splits and diverse set of
complex action categories. However, state-of-the-art models such as MDM by Tevet et
al. [29] have already demonstrated difficulties in producing physically plausible motions
with respect to the FID. As a result, the observation of severe artifacts was expected
throughout experimentation. Additionally, the dataset size may not have been suffi-
cient for the model to effectively learn the complex motions it contains. The applied
train/test split was somewhat unconventional, as the test set included more samples
than the training set, while no separate evaluation set was provided. Nevertheless, the
original split was retained to ensure comparability.
While following the suggestions of Tevet et al. [29] in reducing diffusion timesteps, it
remains uncertain whether 100 diffusion steps are the best tradeoff between training
and sampling acceleration and quantitative results. However, since the overall goal of
this thesis was not to achieve state-of-the-art performance but rather to investigate the
effects of EMA and importance sampling, and the effort of an extensive ablation study
was beyond the scope of this work, this limitation was accepted.
Furthermore, importance sampling as implemented by Nichol and Dhariwal [16] was
originally designed for image generation tasks. Its applicability to motion synthesis thus
remains uncertain. The method also allows adaptive adjustment of sampling probabil-
ities across diffusion timesteps, which was not explored in this thesis to maintain the
scope manageable.
To employ geometric losses, the diffusion model was trained to predict the original
sample x0. While this approach enables the integration of losses introducing physical
constraints, it may hinder the exploration of predicting the noise ϵ instead, which has
been shown to improve sample quality in image generation tasks [16]. Moreover, these
losses are empirically computationally expensive, as they require to transform the data
representation from 6D rotation matrices to joint positions.
As the visualization of sequences in Figure 4.3 indicates, it is beneficial to evaluate gen-
erated motions qualitatively through user studies. While quantitative metrics provide
objective measures, the absence of user studies may exclude the identification of disturb-
ing artifacts and the determination of which aspects of motion could be improved.
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This thesis investigated the effectiveness and efficiency of generic training dynamics
and optimization strategies—specifically importance sampling and EMA—in enhancing
the performance of a diffusion-based motion synthesis model on the UESTC dataset.
The proposed model, derived from the MDM framework, was restricted to the action-
conditioned motion synthesis task and applied to the UESTC dataset, which features
complex and fine-grained human movements. As the dataset continues to present chal-
lenges to achieving state-of-the-art performance including the original MDM implemen-
tation—it offers a suitable basis for evaluating potential optimizations. On a broader
scale, the work also provides insights into the applicability of generated motions as a
means to augment existing motion datasets.

The results showed that the proposed model, enhanced through the application of impor-
tance sampling and EMA with a decay rate of 0.9995, achieved performance comparable
to the reference model MDM. Slight improvements in FIDtrain and motion diversity were
observed but remain negligible overall. While the optimization techniques appeared to
accelerate convergence during the early stages of training, this effect diminished over
time. The smoothing behavior of EMA contributed to more stable training; however,
since the baseline process was already relatively stable, its overall benefit appears lim-
ited. Importance sampling encouraged the model to emphasize higher diffusion steps,
but this focus also led to reduced attention to lower diffusion steps, potentially compro-
mising physical plausibility, particularly with respect to foot contact consistency.

Visual inspection of the generated samples further highlights the need for user studies
to assess perceptual realism. Quantitative metrics alone fail to capture specific artifacts
such as foot sliding or ground-plane penetration, which are easily perceptible to human
observers. Since human perception is highly sensitive to even subtle errors, subjective
evaluations could provide more reliable guidance for future refinements.
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While the primary focus of this work lay in evaluating the FID metric as an indicator
of realism, the results concerning motion diversity and multimodality suggest that the
synthetic data generated by diffusion-based models hold promise for augmenting existing
motion datasets. Nevertheless, for complex and fine-grained actions, further research
should aim to improve the naturalness and physical plausibility of generated motion to
ensure its effectiveness and comparability with real motion data.

Building upon the proposed method, several directions for future research can be iden-
tified. Importance sampling could be refined, for instance by combining it with decay
weighting strategies [19] to better balance contributions from lower and higher diffusion
steps. Similarly, alternative EMA schemes, such as the parameter exchange proposed
by Li et al. [12], may further stabilize training.

To improve physical plausibility and naturalness, integrating a physics simulator [33]
could allow training without geometric losses while still enforcing physical constraints.
Additionally, recent work by Tevet et al. [28] explores combining diffusion models with
Reinforcement Learning, outsourcing physical plausibility to it while leveraging diffusion
for generating diverse motions. Their approach is applied to the human motion interac-
tion generation domain [27], which comprises the generation of motion with respect to
environmental interactions such as human-human interaction, human-object interaction,
and human-scene interaction. Investigating this domain could be particularly promising
for generating synthetic data to enhance existing datasets, as interaction plays a critical
role in recognition and detection tasks.
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A 6D Rotation Representation

Zhou et al. [36] have shown that pose representations with dimensionality lower than five
are discontinuous, which leads to large errors when neural networks attempt to predict
rotations. Figure A.1a illustrates the definition of continuous rotation representations.
Let X denote the original space (e.g., the set of all 3D rotations). Let R denote a
representation space, e.g. Euler angles. Then, a neural network generates intermediate
representations in R. Passing a representation to a mapping function f : R → X,
recovers an element of the original space X. Based on the mapping function g : X → R

it is possible to convert elements of the original space into their representation, and
thus the pair (f, g) is called a representation if for every x ∈ X, f(g(x)) = x. Such a
representation is considered continuous if the mapping g is continuous. However, if g

is discontinuous - as illustrated in Figure A.1b, the connected rotations in the original
space might be mapped to disconnected elements in the representation space. This
creates errors in neural networks, which rely on continuity. One solution to this problem
is to rely on identity mappings, using n×n matrices. However, this approach is inefficient,
and thus Zhou et al. propose an approach enforcing orthogonality directly within the
representation. Regarding 3D rotations, they propose a mapping function g to drop the
last vector column of a n × n matrix, and convert rotations to the representation space.
They further define a mapping function f, to reconstruct X, by generalizing the cross
product to n dimensions. This approach results in a continuous representation with
n2 − n dimensions for n-dimensional rotations. In the 3-dimensional case, this yields a
6D representation obtained by flattening the first two columns of a rotation matrix

R =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 ,

into a vector
r =

(
r11, r21, r31, r12, r22, r32

)
∈ R6.
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A 6D Rotation Representation

Representation 
Space 

R

Input 
signal

Original 
Space

X

Mapping f
Neural 

Network

Mapping g

(a) Illustration of a continuous rotation rep-
resentation (adapted from Figure 2 in
[36]).

Mapping g

Connected Set
of Rotations in S1

Original Space

Disconnected Set of Angular 
Representations in [0, 2π]

0 2π

Representation Space

(b) Example of discontinuity in a 2D rota-
tion representation (adapted from Fig-
ure 1 in [36]).

Figure A.1: Continuity of pose representations and their connection to neural networks.

The third column r3 is then reconstructed using the cross product r3 = r1 × r2, followed
by an orthogonalization to ensure a valid rotation matrix. This continuous representation
is especially useful, as the resulting 3×3 matrix generated through the mapping function
f is orthogonal. Hence, the orthogonal matrices generated by the neural network allow
for further processing using methods like FK or IK. The continuous 6D representation
has been widely adopted in recent works, such as [2, 17, 29, 34, 35].
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C Overview of Hyperparameters

Parameter Value(s) Notes

seed 10 Seed used across all trainings
batch_size 8 global batch size = 64 (8 × 8GPUs)
num_steps 1e6, 2e6 Distributed Data Parallel:

local_steps = num_steps ÷ world_size
save_interval 25,000 Save a checkpoint every this many steps

Learning Rate
lr 1.2e−4 Learning rate after warmup
warmup_steps 5,000 Linear warmup over this many steps
t_max 1e6, 2e6 Number of steps for cosine annealing aligned with

num_steps
eta_min 1e−5 Minimum learning rate for cosine annealing
weight_decay 5e−5 Weight decay of the AdamW optimizer

Optimization Techniques
ema_decay 0.9995, 0.9999 Exponential moving average decay rate
schedule_sampler uniform,

loss_aware
Importance sampling strategy

Geometric Losses
lambda_rcxyz 0.0 Weight for the joint position loss
lambda_vel 25.0 Weight for the velocity loss
lambda_fc 45.0 Weight for the foot contact loss

Table C.1: Training hyperparameters
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C Overview of Hyperparameters

Parameter Value(s) Notes

n_heads 8 Number of attention heads
n_layers 8 Number of transformer layers
model_dim 512 Dimension of transformer model
ff_size 1,024 Dimension of feedforward network
dropout 0.0 Dropout rate in transformer
cond_mask_prob 0.1 Probability of masking condition (action) inputs
activation gelu Activation function in feedforward network

Dataset-specific
n_actions 40 Number of action classes
n_joints 25 Number of joints in the skeleton (SMPL)
n_feats 6 Number of features per joint (6D rotation)
data_repr rot6d Data representation: 6D joint rotations

Table C.2: Model hyperparameters

Parameter Value(s) Notes

num_diffusion_-
steps

100, 1,000 Number of diffusion steps during training

rescale_timesteps False Whether to rescale timesteps
loss_type Mean Squared

Error
Loss type for diffusion model (See Equation 2.11)

Noise Schedule
beta_schedule cosine Schedule for noise levels βt

scale_beta 1.0 Scaling factor for noise levels βt (1.0 means no scaling)
Model Output

predict_x_start True Predict x0 instead of noise ϵ

learn_sigma False Whether to learn variance
sigma_small True use smaller sigma values for improved sample quality

Table C.3: Diffusion hyperparameters
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