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Thema der Arbeit
Deep Learning basierte Kaufprognose mit Sequenz Modellen

Stichworte
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Kurzzusammenfassung
Die Identifizierung, ob ein angeklickter Artikel in einer E-Commerce Sitzung mit einem
Kauf endet, ist ein aktuelles Forschungsthema. Diese Aufgabe wurde auch bei der Rec-
Sys Challenge im Jahr 2015 gestellt. Der Wettbewerb wurde mit einem zweistufigen
Ansatz von Romov und Sokolov gewonnen. Sie erkannten zuerst die Käufer mit Hilfe
von Sitzungsdaten und bestimmten dann die gekauften Artikel auf den erkannten Kauf-
sitzungen. In den Merkmalen ihrer Modelle gibt es jedoch keine Informationen über die
genauen Klickseqeunzen der betrachteten Artikel in einer Sitzung. Daher untersuche
ich in dieser Arbeit die Frage, ob der Kauf von Produkten von der Klicksequenz der
betrachteten Artikel in einer Sitzung abhängt. Zu diesem Zweck trainiere ich Sequenz-
modelle auf den Klicks der Sitzungen mit Käufen, um zu prüfen, ob sich die gekauften
Artikel mit Hilfe dieser vorhersagen lassen. Hier verwende ich die beiden verschiedenen
Sequenzmodelle Sequence Classification und Sequence Labeling. Ich kombiniere meine
Sequenzmodelle mit den Modellen von Romov und Sokolov, um zu untersuchen, ob sich
ihr Ansatz mit Sequenzinformationen verbessert. Meine Untersuchungen haben gezeigt,
dass der Kauf eines Artikels von der Klickfolge der angesehenen Artikel abhängt und zu
einer Verbesserung der Vorhersageergebnisse eines merkmalsbasierten Ansatzes wie der
von Romov und Sokolov beitragen kann. Zudem wurde gezeigt, dass für den Ansatz die
Datenvorbereitung weniger zeitaufwendig ist als für einen merkmalsbasierten Ansatz.
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Abstract
Identifying whether a clicked item in an e-commerce session will end in a purchase is a
current research inquiry. This task was also set at the RecSys Challenge in 2015. The
competition was won with a two-stage approach by Romov and Sokolov. They first
recognized the buyers with the help of session data and then determined the purchased
items on the recognized purchase sessions. However, in the features of their models,
there is no information about the exact click sequences of the items that were viewed
in a session. Therefore, in this paper, I examine the question of whether the purchase
of products depends on the click stream of the items that are viewed in a session. For
this purpose, I train sequence models on the item clicks of the sessions with purchases
to check whether they can help predict purchased items. Here, I use the two sequence
models of sequence classification and sequence labeling. I combine my sequence models
with those of Romov and Sokolov to determine if their approach improves with sequence
information. This research demonstrates that buying an item depends on the click order
of the items that are viewed and can improve the predictive results of a feature-based
approach, such as that of Romov and Sokolov. In addition, the research illustrates
that data preparation is less time-consuming for this approach than for a feature-based
approach.
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1 Introduction

Electronic commerce (e-commerce) is the activity of buying or selling products via online
services or the Internet. Revenues in the e-commerce market has amounted to about
e1,795,989 million in 2019 and is forecasted to reach a market volume of e2,527,739
million in 2023 according to the forecast. This prediction corresponds to annual revenue
growth of 8.9% [38].

Marketing also plays a major role in this market, which attaches importance to per-
sonalization of the shopping experience and the recommendation of individual products
to each user. These elements are not always feasible with long-term collected data, such
as user profiles or information about products, as new users constantly enter online shops
for which no data are stored yet. In addition, the General Data Protection Regulation
(GDPR) restricts the use or storage of personal data of users. In addition, user inter-
ests that cannot be represented by long-term profiles also change at short notice. In
such cases, session-based information is used for personalization. One important topic
in session-based personalization is the session-based recommendation of items. How-
ever, this aspect is only one use case for buy prediction. Some approaches engage with
session-based recommendations of items that are facilitated by deep learning.

In 2015, the company YOOCHOOSE,1 which develops recommendations systems
and other personalization software, collaborated with ACM to provide a dataset with
click streams from an online shop as part of the RecSys Challenge. This challenge
requested that they identify purchase sessions and recognize the purchased items. The
motivation for the competition was the importance of the information that people buy
and whether they will buy at all. This information can be used to determine which items
to recommend and how to lead the user to become a buyer, such as through targeted
advertising and discounts.

The solution that won the competition developed two models: purchase detection,
which identifies the buyers; and item detection, which identifies the bought items from
the purchase sessions. For these models, they built large feature sets that describe a
session, which were then used to train models and predict buys.

1https://www.yoochoose.com
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1 Introduction

1.1 Research Questions

The feature sets of the winning solution do not contain any information about the actual
item click stream. There have also been published papers that successfully give item
recommendations with the click stream of the dataset. The assumption follows that the
previous clicks influence not only the next clicked item but also the purchased item. With
this assumption, I propose the following hypotheses::

1. The buying behavior will be reflected in the item click streams and this information
can be used to predict item purchases.

2. The prediction of item purchases improves if one adds the item click stream infor-
mation to the existing model (if it did not previously contain such information).

3. The combined buy prediction from a purchase detection and item detection model
improves when item click stream information is included in item detection.

4. The preparation of the input data is less time-consuming for sequence-based models
than for state-based models.

I assess these four hypotheses in this thesis. To this end, I aim to predict purchases of
items with recurrent neural networks (RNNs). These models make predictions on the
basis of sequential data. I seek to combine these RNNs with the item detection model of
Romov and Sokolov to enhance the ability of that model to forecast item purchases. The
resulting item detection model is then be combined with the purchase detection model
to determine if the overall buy prediction improves.

1.2 Outline

To evaluate the hypotheses, I first present the dataset in more detail in Chapter 2. In
addition, I describe the approach of Romov and Sokolov as well as the approaches with
RNNs on the dataset to recommender systems. Subsequently, I explain my previous ex-
periments. In chapter 3 the methods used for the experiments follow. In this chapter, I
elaborate on the relevant algorithms and evaluation metrics of the experiments. In Chap-
ter 4, I describe the reproduction of the models of Romov and Sokolov and compare my
results to those they have described. The reproduction of the models is necessary to link
them with my own models. The experiments then follow to investigate the hypotheses.
The models are described, and the results are discussed. Finally, the conclusion section
briefly summarizes the results and delivers an outlook on the topic.
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2 Buy predictions

This chapter addresses the buy prediction and the dataset considered with previous
approaches. Chapter 3 offers further details on the methods and basics.

Buy prediction belongs to predictive analytics. Predictive analytics [29] includes a
variety of statistical and analytical methods that are employed to develop models that
predict future events or behaviors. The shape of these predictive models depends on the
behavior or event that they predict. However, most predictive models calculate a score
with the likelihood that the target behavior or event will occur. In the buy prediction
context, the model predicts a buy action of an item with the session data.

Data mining [9] can be used to create a predictive model by identifying patterns,
trends and relationships among the data. These techniques are based on statistical meth-
ods, such as regression or time-series models, and can provide non-obvious knowledge.
In this thesis, I want to apply data mining techniques to develop predictive models for
buy prediction and to analyze the data to gain knowledge about users and their sessions.
Other application examples include fraud detection in credit institutes [4] and predictive
maintenance [25]. Predictive maintenance connects information from different devices
and machines in real time to improve maintenance processes by facility managers.

Buy prediction is assigned to the context of recommender systems [34]. Recom-
mender systems attempt to predict the preference that a user would give to an item.
This information can be used to offer suggestions to the user. Collaborative filtering [33]
and content-based filtering [23] are the most frequently used types. The former searches
users with the same pattern of behavior as the target user and uses their information to
predict the behavior of the target user, while the latter searches items that are similar to
those that the target user likes. The buy prediction aims to anticipate not only interest
in an item but also the act of purchasing an item. There are several ongoing inquiries in
buy prediction research. However, I first introduce the dataset before summarizing the
current research on buy prediction.

4



2 Buy predictions

2.1 Dataset

The dataset that is considered in this paper was published in the context of the RecSys
Challenge in 2015.1 This competition takes place within the ACM RecSys Challenge
conference and concerns recommender systems. In 2015, buy predictions were the topic
of the challenge, and the goal was to predict whether the user would make a purchase or
not and, if so, which items the user would buy.

The dataset was provided by YOOCHOOSE GmbH, which offers personalization
solutions for online shops. There are two relevant datasets for this thesis: the click
dataset, yoochoose-clicks.dat ; and the buy dataset, yoochoose-buys.dat. The clicks contain
all click information about a user’s session on an e-commerce website, while the buy data
contain the corresponding purchases for the sessions.

Session ID Timestamp Item ID Category
1 2014-04-07T10:51:09.277Z 214536502 0
1 2014-04-07T10:54:09.868Z 214536500 0
1 2014-04-07T10:54:46.998Z 214536506 0
1 2014-04-07T10:57:00.306Z 214577561 0
2 2014-04-07T13:56:37.614Z 214662742 0
2 2014-04-07T13:57:19.373Z 214662742 0
2 2014-04-07T13:58:37.446Z 214825110 0
2 2014-04-07T13:59:50.710Z 214757390 0

Table 2.1: Examples of the click dataset

In Table 2.1 presents some example lines of the dataset. A click consists of a session
ID, a timestamp, an item ID and a category. A row in the dataset describes a click, and
a session consists of one or more clicks.

The session ID identifies the particular session, and the timestamp indicates the
time at which an item was clicked. Meanwhile, the item ID specifies the item that was
clicked in this action, and the category is the context in which the item was clicked

The data file has a size of 1.5 GB and contains 33,003,944 clicks. Table 2.1 contains
examples of clicks. There are 9,249,729 unique sessions in the dataset and each session ID
has 3.6 clicks on average. The maximum value of clicks in a session is 200, which seems to
be a hard limit given that 26 IDs reached this number of clicks. The yoochoose-clicks.dat
has data from 2014-04-01 to 2014-09-30. The most clicks occurred in August.

1https://recsys.acm.org/recsys15/challenge/
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2 Buy predictions

The users viewed 52,739 different items in this period of time. In addition, the item
with item ID 643078800 was viewed 147,419 times and was thus the most frequently
considered item. There are 5,657 items that were only viewed once.

The category "S" is the most common category. It occurred 10,769,610 times, which
translates to 33% of all clicks. The category "S" indicates a special offer, while a number
between 1 and 12 is a real category identifier. They are the most prevalent after the
category "S," and each accounts for up to 5% of all clicks. The brands then follow. If
the context was a brand, then the value is an 8- to 10-digit number. The value is defined
by the context of the click, although the meaning of this is not explained.

Session ID Timestamp Item ID Price Quantity
420374 2014-04-06T18:44:58.314Z 214537888 12462 1
420374 2014-04-06T18:44:58.325Z 214537850 10471 1
281626 2014-04-06T09:40:13.032Z 214535653 1883 1
420368 2014-04-04T06:13:28.848Z 214530572 6073 1
420368 2014-04-04T06:13:28.858Z 214835025 2617 1
140806 2014-04-07T09:22:28.132Z 214668193 523 1
140806 2014-04-07T09:22:28.176Z 214587399 1046 1
140806 2014-04-07T09:22:28.219Z 214586690 837 1

Table 2.2: Examples of the buy dataset

Table 2.2 offers some examples of the buy session data. A column in the dataset
represents one buy in a session. A buy consists of a session ID, a timestamp, an item
ID, a price and a quantity.

The file has 1,150,753 buys and 509,696 buyers (sessions). On average, buyers pur-
chased 2.26 items each. The buyer with most purchases bought 144 distinct items.
While 20.1% of the buyers bought one item, 11.5% bought two distinct items in a ses-
sion. The yoochoose-buys.dat dataset was available for the same time period as the
yoochooseclicks.dat dataset. The most distinct items were purchased in August. The
item with item ID 643078800 was bought most often in the sessions and was the most
frequently clicked item. It was purchased in 15,203 sessions, which represents 3% of all
buy sessions.

The price describes the sale price of the item at the time of its purchase. The
minimum value is 0, which represents a missing value. The maximum value is 334,998.
However, there is no information about the currency. The average price is 1,423.

6



2 Buy predictions

The quantity describes the number of items with one ID that were bought in a
session. The minimum value is 0, which signifies a missing value. The maximum value
is 30, and the average quantity is 0.6. The average is less than 1 because there are many
missing values. If the data with missing values were removed, then the average would
increase. However, this information is not used for the sequence models, and the data
are still considered.

In the yoochoose-clicks.dat and yoochoose-buys.dat datasets, the missing values were
cleansed and replaced by 0. I did not find any missing values in session ID, item ID or
timestamp. There are 49.5% missing values for category and 53.0% missing values for
price and quantity. I did not detect any additional errors or data anomalies.

The challenge is to predict buys with the scarce information that is available. Almost
half of the data are missing from the click category, and the piece and price information
are missing for half of the purchase data. Therefore, it is difficult to anticipate without
the context underlying the category. Here, one can use the item click sequences as a type
of context through a sequence model to obtain the purchase predictions.

Unfortunately, as external actors, we received no insight into which articles corre-
spond to the item IDs or which number represents which category. Nevertheless, this
knowledge is not necessary for the modeling, as the computer does not require it. Still, as
humans, we can interpret this information; therefore, it is useful to check the plausibility
and gain knowledge about the buy predictions.

2.2 Ensemble Learning based Approaches

As part of the RecSys Challenge 2015, several solutions were presented that use ensemble
learning to achieve the buy prediction.

The winning solution of the RecSys Challenge employs ensemble models to predict
purchases. For the solution, Romov and Sokolov [32] utilized two-stage classification, nu-
merous categorical values and strong classifiers that were trained with gradient boosting
and whose thresholds were optimized on the competition score.

I describe this solution in detail in Chapter 4 since I reproduce this approach to
combine it with the sequence models that I subsequently develop.

For the challenge, Cohen et al. [6] presented two approaches with ensemble learning
models. One approach, which is similar to that of Romov and Sokolov, involves an
ensemble learning model of two trees. The other approach uses a tree to directly predict
the items that are purchased. Cohen et al. used Weka’s [2] REPTree implementation to
build the models.

7



2 Buy predictions

2.3 Deep Learning based Approaches

Hidasi et al. [17] were the first researchers to apply recurrent neural networks (RNNs)
to recommender systems. Their motivation was that recommendations in real life often
have brief, session-based data, such as those in the YOOCHOOSE dataset, instead of
long user histories. Thus, matrix factorization approaches are often not accurate. The
solution is to recommend similar items.

Hidasi et al. [17] have proposed an RNN-based approach for session-based recom-
mendations to model the whole as a superior alternative. They have focused their model
on the top items in which a user might be interested and trained RNNs with ranking
loss functions. Thus, the output of their network is the predicted preference of the items
(i.e. the likelihood of being the next in the session for each item).

They used Recall@20 and mean reciprocal rank (MRR@20) as model metrics. Re-
call@20 is the proportion of cases with the desired item among the top-20 items in all test
cases, while MRR@20 is the average of the reciprocal ranks of the desired items. The
most highly performing models gained 20–30% on these scores in comparison to their
implemented baselines on the RecSys Challenge 2015 dataset.

Hidasi et al. [17] have illustrated the possibility to identify user interests through
item-sequence-based models. This result raises the question of whether it is possible to
not only offer recommendations but also use the information for the purchase prediction.

Tan et al. [40] have further studied RNN-based models for session-based recommen-
dations after the successful model of Hidasi et al. [17]. To improve the model’s per-
formance, they employed a variety of techniques, including data augmentation, model
pretraining and generalized distillation. They have introduced a novel alternative model
that directly predicts item embeddings to reduce the output dimensions. Experiments
on the RecSys Challenge 2015 dataset have revealed relative improvements of 12.8% and
14.8% over the results of the RNN models of Hidasi et al. [17] on the Recall@20 and
MRR@20 metrics.

Villatel et al. [43] have evaluated RNN-based models on short-term and long-term
recommendation tasks. Their experimental results suggest that RNNs are capable of
predicting both immediate and distant user interactions. They found that the most
highly performing configuration was a stacked RNN with layer normalization and tied
item embeddings. Their top model in the RecSys Challenge 2015 dataset had a Recall@20
score that was superior to those of the best models of Hidasi et al. [17] but inferior to
that of Tan et al. [40].

8



2 Buy predictions

Sheil et al. [36] have presented a multi-layer RNN for purchase detection with the
RecSys Challenge 2015 dataset. Their motivation was to investigate an alternative ap-
proach to state-of-the-art methods, such as gradient boosted machines, which require
sophisticated feature engineering. The researchers used trainable vector spaces (em-
beddings) to model input data containing categoricals, quantities and unique instances.
Embeddings combined with the use of neural networks provide a learnable capacity to
encode more information beyond the original numeric value of the data input. This al-
lows the model to capture session-local and dataset-global event dependencies as well
as relationships for sessions of any length. Their approach achieved 98% of the model
result of the purchase detector of Romov and Sokolov [32]. Nevertheless, they have not
performed any domain- or dataset-specific feature engineering like that of Romov and
Sokolov [32].

The results of the RNN of Sheil et al. [36] indicate that it is possible to detect buyers
and non-buyers with the sequential session data. However, they did not investigate the
ability to detect item buys and non-buys with a sequential model on session data. Thus,
I investigate this matter.

The previously described works have addressed item recommendation with the Rec-
Sys Challenge 2015 dataset. One study concerned purchase session detection. However,
no publications on the buy prediction of items in a session with RNNs could be found
during this research.

2.4 Preliminarity Experiments

I conducted my first experiments on deep learning for buy prediction as part of my
master’s studies. The results and findings have been published in [16].

For this purpose, I re-implemented the feature sets of Romov and Sokolov [32] and
Cohen et al. [6] and then trained multilayer perceptron (MLP) models on the data.

Model Features Accuracy Precision Recall
Winning Solution RecSys 2015 Romov and Sokolov 0.77 0.16 0.77
NN 2x64 Cohen et al. 0.66 0.18 0.79
NN 2x64 FS 40 Romov and Sokolov 0.71 0.19 0.61
NN 2x128 FS 99 Romov and Sokolov 0.69 0.19 0.64

Table 2.3: Model training results
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Table 2.3 displays a selection of the best results of these experiments. The name of
the model is described under Model, and NN denotes a neural network. To distinguish
between experiments, the identifier provides more details about the model. The number
of hidden layers with the number of neurons per hidden layer then follows. For example,
2x64 signifies two hidden layers with 64 neurons per neural network. If a feature selection
was carried out in the experiment, the abbreviation FS is included in the name followed
by the number of features that were used (e.g. FS 40), as not all features were used every
time to train the models. Thus, all experiments can be identified by their model name.
The column Features indicates whether the model was trained with features from Romov
and Sokolov or Cohen et al. For metrics, I utilized the model’s accuracy, precision and
recall. In binary classification, the accuracy is the number of correct predictions divided
by the total number of predictions. The results were not adequate to surpass those of
the ensemble learning model of Romov and Sokolov [32]. Their results are presented in
the first line of the table. In addition, no neural network could be successfully trained
on the entire feature set of Romov and Sokolov.

Since these experiments did not extend the ensemble models with the feature sets
with neural networks, the idea came to try other deep learning methods that do not build
on the feature sets. Since the raw data are sequences, I wanted to use sequence-based
deep learning methods.

During the experiments for the MLP models, a development environment was cre-
ated that was used partly for this work as well. The development environment has been
described in [15].
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Machine learning algorithms differ in their approaches. Such algorithms distinguish be-
tween the type of data that they input and output as well as the type of task or problem
that they are intended to solve.

In this thesis, I concentrate on supervised learning [5, p. 3]. However, there are other
sub-areas of machine learning, such as unsupervised learning [5, p. 3] and reinforcement
learning [39]. Supervised learning is used to construct a mathematical model for a set
of data that contains the inputs and the desired outputs. The YOOCHOOSE dataset
offers both through the click stream data and the corresponding buy information. Such
data can be used to predict whether a user will buy an item in a session.

This prediction is a classification problem. Classification entails identifying to which
of a set of categories a new observation belongs [5, p. 3]. Therefore, a training set of data
that contains observations whose category membership is known is used. In the case of
buy prediction, the categories/classes are buy and non-buy. Later, I encoded the classes
in the data with 1 for buy and 0 for non-buy. A two-category classification is called a
binary classification. If there are more classes, it is multiclass classification. If there are
more classes the classification is called multiclass classification. Regression algorithms
are used when the outputs may have any numerical value within a range.

Performing classification involves creating models. There are various types of models
for classification. The following section presents those that were employed for this work.

3.1 Ensemble Learning

Ensemble learning builds a prediction model by combining the strengths of a collection of
simpler base models. Two tasks are part of ensemble learning: developing a population of
base learners from the training data and combining them to form the composite predictor.
Ensemble learning is primarily used to improve the performance of a model or reduce
the likelihood of unfortunate selection of a poor one [14].

The original ensemble method is Bayesian averaging. However, more recent al-
gorithms include error-correcting output coding, bagging and boosting [7]. Ensemble
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learning uses concepts such as Bayesian voting, manipulating the training examples, ma-
nipulating the input features, manipulating the output targets, and injecting randomness
[7].

3.1.1 Boosting

Boosting is a committee-based learning approach that combines the outputs of many
weak classifiers to produce a powerful committee [14, p. 337]. Gradient boosting is one
boosting algorithm and was used by Romov and Sokolov [32] to train their purchase and
item detection models.

One implementation of gradient boosting is CatBoost [47]. CatBoost uses oblivious
decision trees, wherein the same splitting criterion is applied across an entire level of
the tree. Such trees are balanced, less prone to overfitting and significantly increase the
speed of prediction at testing time.

I use this implementation to train my purchase and item detection models as part
of the redevelopment of Romov and Sokolov’s models. I need these detection models to
combine them with the RNNs.

3.2 Deep Learning

Ahmad et al. [1, p. 201] have noted that deep learning definitions have two key aspects
in common:

1. Deep learning models consist of multiple layers or stages of nonlinear information
processing.

2. Deep learning uses methods for supervised or unsupervised learning of feature rep-
resentation at successively higher, more abstract layers.

Deep learning is founded on research on neural networks, artificial intelligence, graphical
modeling, optimization, pattern recognition and signal processing. The main reasons for
the current popularity of deep learning are the increased capabilities in processing power,
the expanding size of the data that are used in model training, and recent advances in
machine learning and signal/information processing research. "These improvements have
enabled the deep learning methods to effectively exploit complex, compositional nonlinear
functions, and also to learn distributed and hierarchical feature representations" [1, p.
201]. Deep learning is effective with both labeled and unlabeled data [1, p. 201].

Deep learning also includes methods that make it possible to train models with
sequential data. This approach is relevant to models that will be trained directly with
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click stream data in order to discover product purchases. Therefore, the methods that I
employ in this thesis for sequence models are associated with deep learning.

3.2.1 Recurrent Neural Networks

Recurrent neural networks are a family of neural networks for processing sequential data.
A recurrent neural network (RNN) can scale to much longer sequences than is practical
for networks without sequence-based specialization. The key purpose of RNNs is to share
parameters across various parts of a model, which allows for extending and applying the
model to examples of different forms (lengths, in this case) and generalizing across them.
By comparison to fully connected feedforward networks, RNNs share the same weights
across several time steps [10].

Figure 3.1: Recurrent neural network [46]

Figure 3.1 provides a computational graph of an RNN that maps an input sequence
of x values to a corresponding sequence of output o values. The RNN has input-to-hidden
connections parametrized by a weight matrix U, hidden-to-hidden recurrent connections
parametrized by a weight matrix V, and hidden-to-output connections parametrized by a
weight matrix W. The RNN with recurrent connections is on the left sight of the figure,
while the right side displays the same RNN as a time-unfolded computational graph,
wherein each node becomes associated with one particular time instance.

Important design patterns for RNNs that are relevant to this thesis include the
following examples:

• Recurrent neural networks that produce an output at each time step and have
recurrent connections between hidden units (illustrated in Figure 3.1).

• Recurrent neural networks that read an entire sequence and then produce a single
output and have recurrent connections between hidden units.
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The first design pattern facilitates, for example, sequence labeling (see Section 3.3), and
the second one is used for sequence classification (see Section 3.4).

I use sequence labeling to label every clicked item in a session as buy or non-buy.
In addition, I apply sequence classification that utilizes the entire click stream to predict
whether an item will be purchased or not.

Gated Recurrent Neural Networks

The most effective sequence models for practical applications are gated RNNs. These
models include the long short-term memory and networks that are based on the gated
recurrent unit. Gated RNNs are founded on the notion of creating paths through time
that have derivatives that neither vanish nor explode. Gated RNNs generalize this notion
to connection weights that may change at each time step, and they learn to decide when
to forget the old state by setting it to 0.

The initial long short-term memory (LSTM) model introduces self-loops that pro-
duce paths by which the gradient can flow for long durations [18].

Figure 3.2: Long short-term memory [45]

Research has indicated that LSTM networks can learn long-term dependencies more
easily compared to simple recurrent architectures [10, p. 411].

Another gated RNN architecture is the gated recurrent unit (GRU). Its main point
of difference from the LSTM is that a single gating unit simultaneously controls the
forgetting factor and the decision to update the state unit.
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However, several investigations of architectural variations of the LSTM and GRU
have found no variant that clearly outperforms both across a wide range of tasks [10,
p. 412].

I apply the LSTM model since the architectures I use employ LSTM in their models.

Bidirectional Recurrent Neural Networks

Bidirectional recurrent neural networks (BRNNs) [35] were invented to address the need
to output a prediction of y(t) that may depend on the whole input sequence. A BRNN
can be used to label each item in a click stream by considering all of the information in
the sequence instead of taking into account only the previous clicks, which is the case
with a RNN. It is an interesting tool since the detection models of Romov and Sokolov
also utilize all available information about a session.

A BRNN combines two RNNs: one moves forward through time from the start of the
sequence, while the other moves backward through time from the end of the sequence.

Figure 3.3: Bidirectional recurrent neural network [35]

Figure 3.3 illustrates a typical BRNN. The forward states of the sub-RNN move
forward through time, and the backward states of the sub-RNN move backward through
time, which allows the output units o(t) to compute a representation that depends on
both the past and the future. The network is most sensitive to the input values around
time t without having to specify a fixed-size window around t [10].
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3.2.2 Dimensionality Reduction with Embeddings

An embedding is typically a low-dimensional vector with fewer dimensions than the
“ambient” space, of which the manifold is a low-dimensional subset. Non-parametric
manifold learning algorithms directly learn an embedding for each training example, while
other algorithms learn a more general mapping, which is sometimes called an encoder or
representation function, that maps any point in the ambient space to its embedding [10,
p. 518].

Guo and Berkhahn [12] have introduced one method to calculate embeddings for
entities. They have mapped categorical variables in a function approximation problem
into Euclidean spaces, which they refer to as the entity embeddings of the categorical
variables. The embedding is learned by a neural network during the standard supervised
training process and not with a separate model. The embedding space represents the
intrinsic properties of the categorical variables by mapping similar values proximal to
each other.

Nguyen et al. [28] have proposed a method to extract co-occurrence-based item
embeddings. They aimed to extract the relationships between items in the same manner
as that of word embedding techniques. Therefore, they used a shared positive pointwise
mutual information (SPPMI) matrix [22] of items based on co-occurrences of items in
the interaction list of a user. They have argued that items that co-occur frequently in
the interaction lists of certain users are similar, and their latent vectors should be close
to each other in the latent space.

In addition, Barkan [3] has introduced item2vec. This neural embedding algorithm
enables item-based collaborative filtering. Item2vec is based on skip-gram with negative
sampling [24] with minor modifications.
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Figure 3.4: Convert categorical features to embedding vectors [42]

Figure 3.4 visualizes the use of embeddings as representations for categorical data.
The input data are parsed to categorical data with a numerical value as representation.
Such representation can be transformed into an embedding vector or a one-hot vector.
An indicator column from TensorFlow treats each category as an element in a one-hot
vector, whereby the matching category has a value of 1, and the rest have a value of 0.
An embedding column represents that datum as a lower-dimensional, ordinary vector in
which each cell can contain any number and is not limited to 0 or 1. The advantage over
one-hot encoding is the reduced memory usage and the speed up on neural networks [12].

The concept of embeddings enable item IDs to be represented as more than a number.
Although the item IDs are numerical values, the model should not treat them as such.
It is not logical to add or multiply item IDs. Instead, the co-occurrence of items with
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an embedding is represented. Thus, I use embeddings to obtain a meaningful input
representation for my sequence models.

3.3 Sequence Labeling

Sequence labeling or sequence tagging [11] is a type of pattern recognition task that
involves the algorithmic assignment of a categorical label to each element of a sequence.
In natural language processing (NLP), it is employed for part of speech tagging, chunking
and named-entity recognition.

Huang et al. [19] have proposed a variety of LSTM-based models for sequence tag-
ging. Their work was the first to apply a bidirectional LSTM conditional random field
(CRF) (BI-LSTM-CRF) model to NLP benchmark sequence tagging datasets. It il-
lustrates that the BI-LSTM-CRF model can efficiently use both past and future input
features because of a bidirectional LSTM component. Moreover, the model also utilizes
sentence-level tag information through a CRF layer. The BI-LSTM-CRF model can
support state-of-the-art and highly accurate speech tagging, chunking and named-entity
recognition datasets. In addition, it is robust and less dependent on word embedding
compared to other models. Lample et al. [21] have also engaged this concept in their
work.

Figure 3.5: The BI-LSTM-CRF model of Huang et al. [19]

Figure 3.5 iillustrates a named-entity recognition system in which each word is
tagged. Huang et al. [19] have combined a bidirectional LSTM network and a CRF
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network to form a BI-LSTM-CRF network. With the bidirectional LSTM , the network
can use past and future sequence information. A CRF layer is represented by lines in
the figure that connect consecutive output layers, and it has a state transition matrix
as parameters. With such a layer, information about past and future tags is used to
predict the current tag, which is similar to the use of past and future input features via
a bidirectional LSTM network.

Newer implementations of sequence labeling models employ bidirectional language
models [30] or newer concepts of NLP, such as embeddings from language models (ELMo)
[31] in their models.

I transfer the BI-LSTM-CRF model of Huang et al. [19] from text to click streams in
my experiments. I chose the model because it does not exploit text-specific features that
cannot be transferred to other sequence data. In addition, it uses the whole sequence as
well as the labels through the CRF for a prognosis.

3.4 Sequence Classification

Sequence classification is a predictive modeling problem to predict a category for a se-
quence. In NLP, sequence classification is applied for text categorization and sentiment
classification.

Time series classification is one type of sequence classification. Examples of real-
world applications of time series classification include human activity recognition and
acoustic scene classification. However, buy prediction is an time series classification
problem as well. Smirnov and Nguifo [37] have found no work or experimental studies
on the efficiency of LSTMs or other RNNs as standalone classifiers for time series clas-
sification. These researchers trained simple RNNs and LSTMs with a varying number
of layers and differing layer widths for time series classification. None of their trained
RNNs was able to achieve the same average results as the fully convolutional network
of Wang et al. [44]. Additionally, Ismail Fawaz et al. [20] have re-implemented only one
non-convolutional recurrent architecture of Tanisaro and Heidemann [41] in their deep
learning for time series classification review study. Thereby, in time series classification,
convolutional networks dominanted the deep learning methods.

In this thesis, I aim to develop a sequence classification model with RNNs to advance
knowledge of the topic in this area. Therefore, I am oriented toward the architecture of
Smirnov and Nguifo’s models.
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3.5 Model Evaluation

To answer the research question, I compare the models. Certain metrics can evaluate
the quality of models. Here, to compare the models, I use the same metrics as Romov
and Sokolov: the area under the curve (AUC), precision and recall.

These metrics use test data for which the true class is known. The prediction values
of the model are compared with the true values, which results in the designations in
Table 3.1.

Hypothesized
class

True class

p n total

p′
True
Positives

False
Positives

P′

n′
False
Negatives

True
Negatives

N′

total P N

Table 3.1: Confusion matrix [8]

In this case, the binary classification is buy or non-buy. There are both true positives
(TP) and true negatives (TN) cases. These cases refer to items in sessions that have been
correctly classified as buy or non-buy and thus match their true class. Buy is the positive
class. The false positivess (FPs) and false negativess (FNs) are items in sessions for which
the false class was predicted. For example, if a buy item is predicted as a non-buy item,
it is an FN. In addition, P is the sum of all positive samples, and N is the sum of
all negative samples in the dataset. These four values form a confusion matrix, which
describes the performance of a model, and are necessary to calculate the metrics. For
purchase detection and item detection, I applied the metrics of precision, recall and area
under the curve (AUC).

Precision [26, p. 285] is the fraction of relevant instances among the retrieved in-
stances. With relevant instances, the binary classification refers to the positive class (in
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this case, the user buys the item).

Precision =
TP

TP + FP
(3.1)

The recall also called true positive rate (TPR) of a classifier is estimated as

Recall = TPR =
TP

P
(3.2)

Recall [26, p. 285] is the proportion of relevant instances that have been retrieved over
the total amount of relevant instances.

The AUC is equal to the probability that a classifier will rank a randomly chosen
positive instance more highly than a randomly chosen negative one [8]. The implemen-
tation of AUC for scikit-learn applies the trapezoidal rule to calculate the AUC. Such
implementation was conducted by Romov and Sokolov as well, and I use it to compare
the results. The AUC is given by

AUC =

∫ 1

x=0
TPR(FPR−1(x))dx (3.3)

The false positive rate (FPR) is defined as

FPR =
FP

N
(3.4)

To evaluate the item embedding, I employed the accuracy as a metric. This metric is
often incorporated for balanced datasets, wherein both classes have approximately the
same number of samples.

Auccuracy =
TP + TN

P+N
(3.5)
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4 Results and Discussion

4.1 Reproduction of Purchase Detection and Item
Detection Classifiers

This experiment reproduces Romov and Sokolov’s models. Such reproduction is necessary
for my further experiments, which combine the models with new models to investigate
the behavior of item detection with sequence models. Therefore, I consider the existing
sources of their work as a basis. The sources are the paper to the challenge and a Github1

repository with some Jupyter2 notebooks. I first present their approach before describing
my reproduction of it.

Romov and Sokolov decided to use a two-stage classifier for the buy prediction on
the YOOCHOOSE dataset. They classified the buy sessions first and then, for the buyers
only, what they bought. One model targets purchase detection, and the other supports
item detection. Romov and Sokolov assumed this approach because the dataset is not
balanced, as only 5.5% of users bought at least one item. Furthermore, they opted to
work with thresholds instead of binary classes to optimize them directly.

Romov and Sokolov developed two feature sets: one with session features that de-
scribe a session and another with session-item features that describe an item in a session.
A list of all features with descriptions is available in Appendix A.1. The purchase detec-
tion classifier uses only session features, and the item detection classifier employs both
session features and session-item features.

As the model algorithm, they applied gradient boosting. Their feature sets have some
categorical features, and such features have to be treated differently from numerical ones.
Thus, they integrated the gradient boosting implementation of [49], which uses oblivious
decision trees. This implementation uses hash tables with the MatrixNet [48] tool to
handle categorical inputs. Since the loss function mean squared error [13, p. 24] tended
to overfit the models, they used finally log-likelihood [13, p. 31]. For model training, they

1https://github.com
2https://jupyter.org
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utilized 90% of the dataset, and 10% served as a validation set. The threshold values of
the models were optimized with the validation set.

Figure 4.1: Components of the ensemble model
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Figure 4.1 visualizes the reconstruction of the ensemble model, which contains the
two detection models. The session features are incorporated into the purchase detection
model. Only those that surpass the threshold are considered by the item detection
model, which then predicts the item purchases with the session features and item-session
features. In this context, the values must exceed a certain threshold to constitute a buy.
Ultimately, all predictions are combined.

For this reproduction, I used the available code.3 The repository contains code
for downloading the data, calculating the features and threshold optimization, and con-
ducting data analysis. The only missing element was the modeling. The features were
calculated from the data with the Apache Spark’s RDD API.4 This API provides dis-
tributed calculation on the dataset and is therefore especially fast.

However, in this format, the features could not be given directly as features in a
data mining algorithm. I transformed the data into NumPy5 arrays and hashed the
categorical features at this step. Then, I trained one model for purchase detection with
the session features and the other model for item detection with the session and session-
item features. At this point, I used CatBoost from Yandex for gradient boosting, which
is freely accessible. The number of trees is 1,000 by default.

Model AUC Precision Recall
Purchase Classifier 0.85 0.16 0.77
Purchase Classifier Reproduction 0.81 0.15 0.70
Item Classifier 0.89 0.75 0.85
Item Classifier Reproduction 0.86 0.72 0.81

Table 4.1: Results of the reproduced ensemble model

Five training runs were conducted for each of the replicated models. The mean
values of the metrics are included in the table. Since the variance of the experiments was
significantly low, it is not listed in the table.

The results are similar to those of Romov and Sokolov but slightly worse. The
disparity is probably due to deviation in the implementation of the modeling.

3https://github.com/romovpa/ydf-recsys2015-challenge
4https://spark.apache.org/docs/latest/rdd-programming-guide.html
5https://numpy.org
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4.2 Item Detection with Sequence Models

This section addresses my experiments on sequence models to investigate the influence
of sequence models on buy predictions. I developed sequence models for item detection
to compare their behavior toward the ensemble of Romov and Sokolov. Then, I built
a new ensemble with the item detection model from the previous chapter and the se-
quence models, and I assessed its relation to the item detection model. In this regard,
I explored whether the sequence information had an influence on the item detection. I
then embedded the new ensemble model into the overall buy prediction and observed its
effects.

However, before creating the sequence models, the data must be prepared as suitable
input for the models, and an embedding of the items is required. This embedding is
the first point of discussion in this section. Then, the individual experiments with the
sequence models follow.

4.2.1 Item Embeddings

The input for the sequence models in this section are the sequences of the items. The
item IDs must not be given as numbers in the network, as they are not to be treated
as such but rather interpreted as categorical values. One-hot encoding [27, p. 215] is
often carried out for this purpose. However, because of the number of distinct items,
the one-hot vector has a dimension of 52,739 and needs a substantial amount of memory.
With this dimensionality, I used item embeddings to enter the item IDs into the network.
These can be learned with the network architecture; still, not all items are included in
the training set of Romov and Sokolov.

One option is to adjust the training set. However, as a consequence, the models
will no longer be trained on the same data, which limits the comparability and causes
obstacles to the construction of the ensembles in the next step. Therefore, I trained the
embeddings independently from the actual item detection models. I could then use the
pre-trained embeddings in the item detection models. I chose to train a co-occurrenced
item embedding based on skip-gram with negative sampling [24] but domain-specific
adaptions. The model is described as follows.

I trained a net, which should decide if two item IDs occur in a sequence. For the
training data, I extracted all possible tuples of item IDs from the sequences of the entire
dataset. However, I did not use duplicates of tuples, as there are 28,418,581 distinct
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pairs, and I encountered problems with memory in preprocessing this amount of data
with pandas.6

When calculating the training data, the click streams and pairs that formed must
be in memory, as pandas works only in memory and uses one thread. Otherwise, parallel
frameworks, such as dask7, have to be employed. These are the positive examples, while
the negative examples were generated randomly from the item IDs. If the sample was
not a positive example, then it was a valid negative example. Test data were created to
test the model after training. To this end, the same positive examples were selected as
for the training dataset. Negative examples were also randomly calculated, as for the
training dataset. The two datasets can differ only in the negative examples.

The network then receives input in the form of the categorical codes of the item
IDs and, as output, returns 0 or 1. The two inputs use distinct embedding layers that
are trained during the training of the network. Like Guo and Berkhahn [12], I chose
50 dimensions for the embedding. The embeddings then contain information from the
classification of items that occur together in sequences.

Instead of testing the item embedding, it is easier to evaluate the entire item co-
occurrence model, as the embeddings of the model offer the only way to store the knowl-
edge about co-occurrence. It cannot be stored in further layers, as the model has none.
Thus, the degree to which the embedding reflects the knowledge is indirectly tested.

Model Accuracy
Train Test

Item Co-Occurrence 0.95 0.95

Table 4.2: Results of the item co-occurence prediction model

Table 4.2 spresents the results of the item co-occurrence model. The model accuracy
is regarded as the only metric. It is a balanced dataset because the data have an equal
amount of positive and negative samples. The two values are highly similar, and the
training and test datasets contain the same positive samples. In the table, they are
called Train and Test. However, the negative samples differ because they are random,
which suggests that the model is not overfitted. Otherwise, the disparity in accuracy
would be more significant. Here, only the generalization for unseen negative samples can
be tested.

6https://pandas.pydata.org
7https://dask.org
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This item embeddings I use for the next experiments, these are the item detection
models with sequence data.

This is the necessary preprocessing of the data to model the purchase prediction
with item click streams. No domain knowledge is needed, which presents an advantage
over the massive feature engineering approaches, such as that of Romov and Sokolov. A
substantial amount of time is saved at this point since the relevant features do not need
to be determined for the prediction model.

4.2.2 Item Detection with Sequence Models

The purchased item detection recognizes purchased items from a session. Since this
model follows the purchase detection model of Romov and Sokolov, the assumption is
that purchased items must be detected from a session in which at least one item was
purchased. In this section, alternative approaches to the item detection classifier of
Romov and Sokolov are developed. These alternatives are based on sequence models
from deep learning since the models should classify on the basis of sequence information.

Given a sequence, I aimed to predict a buy or non-buy of an item from that session.
In the recommender systems, all 52,739 items were considered as possibilities. In the
classification with 52,739 possible items, the output of the model was highly dimensional.
I took advantage of the special feature of the domain and considered only those items
that also occurred in the session as potential purchased products, as a user could only
buy an item if he or she viewed it and it appeared in his or her click sequence. This
condition diverges from the approaches of recommender systems in that the dimension
of the output of the model was not 52,739. I limited the relevant items only to those
that occurred in the respective session. However, if only the item sequences of the session
were considered as input, then the sequences did not differ. Furthermore, different classes
could not be predicted for the same input, as some items in this sequence could be bought,
while others are not. Consequently, the model cannot predict a buy for one item and
a non-buy for another item if it received only the click stream as input for a binary
classification.

There are two options of employing the sequences and solving this prediction with
sequence models. Thereby, either the input or the output is adapted. To adjust the
input, the sequence was defined as input to the model in addition to the item for which
the prediction will be made. A sequence classification could then be performed with
this input since the inputs differ in the items of the session to be considered. The
second possibility is to adjust the output. To this end, I used a sequence labeling model
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to calculate a prediction for the considered item from a sequence at each time step.
Therefore, the output is a sequence of classes that is predicted for each click. The output
has the dimension of the input sequence. However, there may then be several predictions
for an item in a sequence in the output of the model. These values must subsequently
be combined into one prediction.

In this regard, two important design decisions were made. The first was to reduce the
output dimension by classifying only items that were viewed by the user in the session.
The second necessity was to adjust input or output to apply a sequence model to the
click streams. The approaches are presented in the following sections.

Sequence Classification

In the sequence classification model, I entered the click stream and the target item for
classification into the model. The model then returned output indicating the buy or
non-buy status of an item in that session. Figure 4.2 illustrates this process.

Figure 4.2: Components of the sequence classifier

For the sequence classification model, I used the lstm 128 dense model of Smirnov
and Nguifo [37]. This model has an LSTM with 128 neurons and a dense layer as output.
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The researchers used an Adam optimizer with default parameters, 500 epochs and a
batch size of 64.

I adapted this model to the purchased item detection as follows. I trained on only
10 epochs and increased the batch size to 1,024 for the first classifiers to increase the
iteration speed. I tried a variety of network sizes, including 128 neurons, 256 neurons
and 512 neurons with various amounts of layers. For the train set and test set, I split
the sessions in the same manner as Romov and Sokolov. Thus, the sets contain the same
session IDs as their sets. As data input, I used the target item ID and the sequence of
the item IDs of a session. The output of the model was the label of the target item ID.
Therefore, there was one label per sequence. I carried out the pretrained item embedding
and loaded the weights in the embedding layer of the network.

Model AUC Precision Recall
LSTM-128 0.79 0.68 0.69
LSTM-256 0.80 0.70 0.68
LSTM-512 0.76 0.65 0.69
LSTM-256-256 0.84 0.74 0.71
LSTM-256-256-20 0.85 0.72 0.77
LSTM-256-256-256 0.50 0.00 0.00

Table 4.3: Results of sequence classifiers for item detection with batch size 1024

Table 4.3 presents the parameters and metrics of the test set. I first trained the
model with one LSTM layer with 128 neurons, then with 256 neurons and, finally, with
512 neurons. The best results derived from the classifier of 256 neurons. Furthermore,
I trained classifiers with two layers and three layers of 256 neurons each. The classifier
with the best metric performance was that with two LSTM layers of 256 neurons each
(LSTM-256-256 ). The average values of precision, recall and AUC for this model were
0.69, 0.66 and 0.79, respectively. The model from the table demonstrated the best run;
those that followed had slightly worse metrics. In total, I performed five model trainings
of LSTM-256-256.

Model Batch size AUC Precision Recall
LSTM-256-256 64 0.50 0.00 0.00
LSTM-256-256 1 0.80 0.70 0.68

Table 4.4: Results of sequence classifiers for item detection with batch size 64
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Then, I tried with lower batch sizes to check if I could improve the model performance
metrics. However, the models performed worse compared to the LSTM-256-256 classifier.
Table 4.4 provides the metrics of the models with batch sizes of 1 and 64.

Figure 4.3: Visualization of the loss in each epoch of the sequence classifier training

Next, I checked the appropriate number of epochs for model training. For this
purpose, I trained the model 50 epochs and plotted the training and validation loss in
Figure 4.3. The figure conveys a minimum validation loss between 10 and 20 epochs.
Based on the Keras callbacks, the minimum validation loss was 11 epochs. Therefore, I
opted for my model with 10 epochs of training.

Model AUC Precision Recall
LSTM-256-256 0.84 0.67 0.83

Table 4.5: Results of the sequence classifier for item detection with threshold optimization

Finally, I performed the threshold optimization of the classifier LSTM-256-256 in
accordance with Romov and Sokolov’s models. This step further improved the recall, but
the precision decreased (see Table 4.5). The results could then be compared with those
of the item detection model of Romov and Sokolov. I treated this comparison later after
first training a sequence labeling model for item detection.
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Sequence Labeling

The sequence labeler receives the item click sequences as input and labels each item
as buy or non-buy. Thus, the output sequence corresponds to the length of the input
sequence. However, the items can occur more than once in a sequence and thus be
assigned several labels. Therefore, the results for each session and item pair must be
aggregated into a single prediction. Figure 4.4 illustrates this process.

Figure 4.4: Components of the sequence labeling model

For the sequence labeling model, I referenced the model of Huang et al. [19], which
has been described in Section 3.3. It is a bidirectional LSTM model with a CRF.

I adapted this model to the purchased item detection as follows. The embedding
layer of the model was adapted to the pre-trained item embeddings. In addition, the
weights of the embedding were loaded in the layer, and the embedding was not further
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adjusted during the training. As data input, I used the sequence of the item IDs of a
session, while the output was the sequence of labels. A label of 0 represents no purchase
of the item at the position in the click stream, while a label of 1 signifies a purchase of
the item.

The bidirectional LSTM layer was adopted, and the CRF was switched to a marginal
CRF. This is needed to adjust the thresholds and utilize them as input to the ensemble
model for purchased item detection.

Model AUC Precision Recall
BI-LSTM-CRF-Marginal-100 0.87 0.69 0.74
BI-LSTM-CRF-Marginal-200 0.89 0.68 0.79
BI-LSTM-CRF-Marginal-400 0.86 0.71 0.72
BI-LSTM-CRF-Marginal-200-200 0.91 0.68 0.83
BI-LSTM-CRF-Marginal-200-200-200 0.90 0.71 0.80

Table 4.6: Results of sequence labelers for item detection with batch size 1024

First, I trained sequence labelers with 100, 200 and 400 neurons in the LSTM layer
with a batch size of 1,024. Table 4.6 displays the results. The most highly performing
model was BI-LSTM-CRF-Marginal-200, which registered an AUC of 0.89. Thus, I
trained two more models with two and three LSTM layers of 200 neurons each. The best
model was the BI-LSTM-CRF-Marginal-200-200 labeler with an AUC of 0.91.

Model AUC Precision Recall
BI-LSTM-CRF-Marginal-200-200-1 0.90 0.77 0.81

Table 4.7: Results of the sequence labeler for item detection with batch size 1

Then, I trained the BI-LSTM-CRF-Marginal-200-200 labeler with a batch size of 1,
which is the batch size that Huang et al. [19] selected for their sequence labeling model.
Table 4.7 specifies the metrics of the BI-LSTM-CRF-Marginal-200-200-1 model. The
AUC value is reduced by 0.01, but the precision increases from 0.68 for the BI-LSTM-
CRF-Marginal-200-200 to 0.77. In view of this, I decided to employ the BI-LSTM-CRF-
Marginal-200-200-1 model; since the threshold optimization later further reduces the
precision, I wanted to use the model with the higher precision value.

The average values of precision, recall and AUC for this model are 0.77, 0.80 and
0.90, respectively. The values of the metrics are very close to each other. I trained the
BI-LSTM-CRF-Marginal-200-200-1 model three times.
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The BI-LSTM-CRF-Marginal-200-200-1 model can label the items of a click se-
quence as buy or non-buy. However, the model can yield different values for the predic-
tion of an item in a session since an item can occur more than once in the click sequence,
and the sequence labeler subsequently predicts a value for each item occurrence. For
the classification, I needed one prediction per session item pair. There are three ways to
aggregate the predictions of an item in a session to obtain one prediction.

Model AUC Precision Recall
MAX-200-200 0.84 0.70 0.79
AVG-RNN-200-200 0.83 0.70 0.77
MIN-RNN-200-200 0.82 0.70 0.74

Table 4.8: Results of RNNs for purchased item detection

For the aggregation model MAX-200-200, I took the maximum value of all predic-
tions for an item in a session as the prediction for the session item pair. In contrast,
the AVG-200-200 assumes the average of all predictions of an item in a session as the
prediction for the session item pair, while the MIN-200-200 takes the minimum of all
predictions of an item in a session as the prediction for the session item pair. Table 4.8
presents the model metrics of the three models. The metrics values are highly similar;
only the recall and AUC values can be distinguished. Therefore, I decided to continue
with the MAX-200-200 model, which exhibits the highest recall and AUC.

Model AUC Precision Recall
MAX-200-200 0.84 0.67 0.83

Table 4.9: Results of the sequence labeler for item detection with threshold optimization

The model, with the help of a sequence labeler, could calculate a prediction for each
session item pair as buy or non-buy. Finally, I performed the threshold optimization for
this model as well as for that of Romov and Sokolov. Table 4.9 provides the metrics.
The recall improved, and the precision decreased, which was consistent with the other
models.

Comparison of Item Detection Models

After implementing two approaches to item detection with sequence information, I could
compare them with the item detection model of Romov and Sokolov.
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Model AUC Precision Recall
Item Classifier 0.89 0.75 0.85
Item Classifier Reproduction 0.86 0.72 0.81
LSTM-256-256 0.84 0.67 0.83
MAX-200-200 0.84 0.67 0.83

Table 4.10: Summary of model results

Table 4.10 contains the metrics of the various item detection models with optimized
thresholds. The model Item Classifier refers to the model of Romov and Sokolov, and
the table presents the results that they published in [32]. The second row of the table,
Item Classifier Reproduction, displays the model metrics of my reproduction of the item
detection model of Romov and Sokolov. The next row contains the metrics of the first
sequence-based item detection approach with the sequence classification model LSTM-
256-256. The last row provides the metrics of the sequence-labeling-based approach with
the maximal aggregation prediction. It is called MAX-200-200.

The best model results still derive from the Item Classifier of Romov and Sokolov.
However, if one compares both sequence models with my reproduction, then the two
sequence models exhibit superior recall. Thus, the sequence data contributed to the
recognition of a higher number of bought items compared to my reproduction. However,
the precision was lower for the sequence models than for the other two classifications.
In this context, the model causes not only heightened recall but also more extensive
recognition of the non-buys as buys. Consequently, there are more false positives, which
reduces the precision. The approaches of the sequence models seem to achieve the same
acceptable results from the validation dataset, according to the metrics. In view of the
values of the metrics, both approaches can facilitate item detection. These results confirm
the first hypothesis that item buys depend on the clickstream and can be used for a buy
prediction.

The two sequence models do not achieve better results in model metrics compared to
those of the ensemble models. However, it is remarkable how closely the sequence models
resemble the other models despite receiving only the item click sequence as input, which
is displayed with an item embedding. Meanwhile, the ensemble models receive complex
states with over 300 features as input, which also consider the times and context of the
item. This model requires no domain knowledge and less time, as it involves no complex
feature engineering. This finding also confirms the fourth hypothesis, which assumes that
the approach requires less time for data preparation.
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However, examining only the item click sequences was not sufficient to surpass such
a complex model as that of Romov and Sokolov. Therefore, in the next step, I investi-
gated whether the ensemble models could be improved by adding the item click sequence
information, which is not included in the ensemble models of Romov and Sokolov.

4.2.3 Ensemble Item Detection Classifier

After developing two sequence models with the item click stream as input, I investigated
the influence of this information on the item detection model of Romov and Sokolov.
According to the second hypothesis, the addition of the item click streams will improve
the prognosis. Therefore, I created a new model that uses the outputs of the sequence
models and the reproduced item detection model as input. I implemented two models:
one with the outputs of the item sequence classifier LSTM-256-256 and another with the
item sequence labeler based model MAX-200-200. I decided to incorporate two models
as algorithms, namely a neural network and a logistic regression.

I performed the logistic regression through scikit-learn with the standard parameter
options. As input, I used two features: the prediction of the Item Classifier Reproduction
and either the prediction of the LSTM-256-256 model in one model or the prediction of
MAX-200-200 in the other model. The output was the prediction for the item detection.

The neural network is designed as follows. The input is the same as in the logistic
regression model. The neural network has two dense layers of 64 neurons each and relu as
activation function. After each hidden layer, a dropout of 0.5 was used. The output layer
had one neuron to predict a buy or non-buy of an item in a session, and the activation
was the sigmoid function. I utilized binary cross-entropy as a loss function with the
rmsprop optimizer. I trained the networks for 20 epochs with a batch size of 128.

Model AUC Precision Recall
LOG-R-LSTM-256-256 0.87 0.78 0.74
NN-LSTM-256-256 0.87 0.77 0.75
LOG-R-MAX-200-200-1 0.87 0.79 0.75
NN-MAX-200-200-1 0.87 0.78 0.75

Table 4.11: Results of ensemble models for purchased item detection

Table 4.11 displays the results. The first two rows contain the metrics of the models
with the predictions of LSTM-256-256 as the input feature. The following two rows
present the metrics of the models with the predictions of MAX-200-200 as the input
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feature. LOG-R represents the models with logistic regression, and NN signifies the
models with neural networks as the algorithm. The AUC has the same value for all
models, and the precision and recall differs by only 0.01.

Model AUC Precision Recall
LOG-R-LSTM-256-256 0.87 0.72 0.82
NN-LSTM-256-256 0.87 0.73 0.82
LOG-R-MAX-200-200-1 0.87 0.74 0.81
NN-MAX-200-200-1 0.87 0.73 0.83

Table 4.12: Optimizied thresholds of ensemble models for purchased item detection

Table 4.12 provides the item ensemble model metrics for the models with optimized
thresholds. As in the unoptimized models, the metrics are very close together. The AUC
remained 0.87 for all models. The precision decreased, while the recall increased again.

Model AUC Precision Recall
Item Classifier Reproduction 0.86 0.72 0.81
LOG-R-LSTM-256-256 0.87 0.72 0.82
NN-LSTM-256-256 0.87 0.73 0.82
LOG-R-MAX-200-200-1 0.87 0.74 0.81
NN-MAX-200-200-1 0.87 0.73 0.83

Table 4.13: Comparison of ensemble models for purchased item detection

At this point, I compare the results of the ensemble item detection models with
those of Romov and Sokolov. It is interesting to compare my replication of the item
detection model with the new ensemble models to gain insight into whether the addition
of sequence information to Romov and Sokolov’s model can lead to a more accurate
prognosis.

Table 4.13 presents the results of the item classifiers and the new ensemble models
for item detection. The ensemble methods utilize the prediction of the Item Classifier
Reproduction model as the input. A comparison of the results of the item ensemble
models with these results reveals improvement through the sequence information. All
values were rounded up to two digits from 0.5. The AUC improved by 0.01 to 0.87 in
all item ensemble models. In the models with the sequence classification predictions,
the recall improved by 0.01, and it improved by 0.02 in the NN-MAX-200-200-1 model.
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Moreover, the precision improved in some of the ensemble models, and the maximum
improvement was 0.02.

By comparing the results, I observed that the sequence information of the models led
to a positive change in the model metrics. The precision did not improve and remained
the same only in the LOG-R-LSTM-256-256 model. In the LOG-R-MAX-200-200-1
model, the recall did not improve and remained the same. However, the AUC improved
in all models. In these experiments, the addition of the sequence information resulted in
improvement in the model metrics. Thus, the second research hypothesis is confirmed.

4.2.4 Ensemble Model with the Ensemble Item Detection Classifier

With this experiment, I aimed to investigate how the new ensemble item detection models
perform compared to the reproduction of Romov and Sokolov in the broader context of
buy predictions. For item detection, I considered only sessions in which at least one
item was purchased. However, in the overall model of Romov and Sokolov, the purchase
detection first filters the sessions into buyer and non-buyer, which raises the question of
how effective the new item detection models are for the ensemble of purchase and item
detection. The third hypothesis expects that the prediction will improve.

Therefore, I used the implemented models of the purchase and item detection and
combined the results to calculate the metrics for comparison to the reproduction model
of Romov and Sokolov. I chose to continue with the ensemble item detection models
based on the neural networks in this last experiment, as most metrics displayed superior
values to those of the models with logistic regression. The ensemble model for buy
prediction consists of the Purchase Classifier Reproduction and NN-MAX-200-200-1 or
NN-LSTM-256-256.
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Figure 4.5: Components of the ensemble model
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Figure 4.5 illustrates the combination of models into a novel ensemble model for
buy prediction. First, the data were scored with the reproduced purchase detection
model, which is called Purchase Classifier Reproduction. Then, the threshold from the
threshold optimization is considered to classify the sessions as buyer or non-buyer. Only
buyer-predicted sessions are included as input for the item detection models to score.

For item detection models, I used the item detection model with sequence classifica-
tion or the item detection model with sequence labeling. The figure presents the ensemble
model for the sequence-labeling-based model. The item detection model is, in this case,
the NN-MAX-200-200-1. Therefore, I had to score them as positive-classified sessions
with the reproduced item detection model of Romov and Sokolov (Purchase Classifier
Reproduction). I labeled the positive-classified sessions with the item sequence labeling
model BI-LSTM-CRF-Marginal-200-200-1. At that point, I obtained the labeled item
sequences and aggregated the session item pairs to yield the maximum prediction for
each pair.

The outputs of both models are the inputs for the ensemble item detection model
to classify the items of the sessions as buy or non-buy. Therefore, I used the NN-MAX-
200-200-1 model and the threshold from the threshold optimization to classify as buy
or non-buy. I then combined the classifications of the ensemble item detection model
NN-MAX-200-200-1 and of the reproduced purchase detection model Purchase Classi-
fier Reproduction to evaluate these. For the evaluation, non-buyer classified sessions of
the Purchase Classifier Reproduction model were also a non-buy for each item in this
session. The classifications of the ensemble item detection model NN-MAX-200-200-
1 are combined with the classifications of the Purchase Classifier Reproduction model.
Subsequently, I could calculate the metrics for the whole ensemble model.

The same procedure is performed again for the sequence-classification-based model
NN-LSTM-256-256 as the ensemble item detection model.

Model AUC Precision Recall
Ensemble Reproduction 0.72 0.13 0.61
Ensemble SC 0.73 0.14 0.62
Ensemble SL 0.73 0.12 0.67

Table 4.14: Results of the ensemble model

Table 4.14 presents the metrics of the whole ensemble models for buy prediction.
The first row indicates the metrics for the reproduced ensemble model, for which I ag-
gregated the predictions of the Purchase Classifier Reproduction and Item Classifier
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Reproduction. The second row specifies the metrics of the ensemble model with the
sequence-classification-based item detector NN-LSTM-256-256, and the last row speci-
fies those of the sequence-labeling-based approach NN-MAX-200-200-1.

The AUC improved by 0.01 in both new models. In addition, the Ensemble SC
improved by 0.01 in precision and recall. The Ensemble SL improved the recall by 0.06
points but reduced the precision by 0.01. The model predicted a buy more often, which is
probably because it chooses the maximum prediction as its representative. So, non-buys
are also predicted as buys more frequently, and the false positives are more numerous,
which reduces the precision. Nevertheless, the recall increases significantly in contrast to
the decline in precision.

The small positive change due to adding the sequence information of the items to
the item detection also affected the entire ensemble model of the purchase prediction.
This result confirms the third hypothesis that the addition of item click streams will lead
to an improvement of the prognosis.

Model Data AUC Precision Recall
Item Classifier Reproduction Buyers 0.86 0.72 0.81
Item Classifier Reproduction Predicted as Buyers 0.72 0.14 0.70
NN-256-256 Buyers 0.87 0.77 0.75
NN-256-256 Predicted as Buyers 0.73 0.15 0.73
NN-200-200-1 Buyers 0.87 0.78 0.75
NN-200-200-1 Predicted as Buyers 0.70 0.13 0.77

Table 4.15: Results of item detection ensembles on predicted buyer sessions compared to
buyer sessions

The problem with the purchase prediction is to distinguish between and recognize
buy and non-buy sessions. This problem reflects the low precision of the purchase detec-
tion models, which also impacts the ensemble models. Moreover, many false positives in
the ensemble model are passed on to the item detection.

However, the models in this context were trained only on data from purchase sessions
(i.e. sessions in which at least one item was bought). In this case, there was a sharp
decrease in the precision of the item detection models on the dataset predicted by the
purchase detection model as purchase sessions. Table 4.15 offers the metrics for the
individual item detection models for the training set of the models with only buyer
sessions (Buyers in the Data column) and for the set with the predicted buyer sessions
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(Predicted as buyers in the Data column). The diminishing precision is a flaw of not only
my models but also those of Romov and Sokolov.

An improvement suggestion is to also train the models with a few sessions in which
no item was bought. This measure can make them more robust against the false positives
of the purchase detection.

Model Data AUC Precision Recall
LSTM-256-256 Buyers 0.84 0.67 0.83
LSTM-256-256 Predicted as Buyers 0.62 0.05 0.71
MAX-200-200-1 Buyers 0.84 0.67 0.83
MAX-200-200-1 Predicted as Buyers 0.45 0.04 0.98

Table 4.16: Results of sequence based item detection on predicted buyer sessions com-
pared to buyer sessions

Especially with sequence-based models, this leads to poor metrics, as Table 4.16
demonstrates. The model with the sequence labeling method did not cope with the false
positives. Thus, the precision decreased, and the AUC was strongly reduced.

4.2.5 Summary of Results

The experiments have illustrated that a sequence-based model can produce good purchase
predictions, which confirms the first hypothesis

This information has not been included in the features that Romov and Sokolov
used for their predictions, as its addition has improved the results of their approach.
The improvement in item detection confirms the second hypothesis, while that in the
ensemble model confirms the third hypothesis.

An advantage compared to their approach is a reduction in the preprocessing of
the data since only one embedding has to be created for the items, and no complex
feature engineering is performed. Because of these differences, it requires less time,
which confirms the fourth hypothesis.
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The thesis has addressed the buy prediction of items with the help of sequence models
on click streams of an online shop. The dataset was published in the frame of the RecSys
Challenge Challenge 2015 by YOOCHOOSE and ACM. It informed an ensemble model
by Romov and Sokolov, who developed a model for purchase detection as well as a model
for item detection. However, the exact click sequences of the sessions were not taken
into account in the models. Therefore, I have formulated hypotheses to examine in this
thesis. The first hypothesis investigated whether buying behavior is reflected in the
item click streams and if such information can be used to predict item purchases. The
second hypothesis was that a prediction of item purchases would improve upon adding
the item click stream information to the existing model, if it did not previously contain
this information. To do so, I wanted to rebuild the winning Romov and Sokolov model
and subsequently combine it with the sequence models that I developed. In this context,
I have explored whether the item detection of Romov and Sokolov can be enhanced
by adding the item click streams and whether such measure improves the overall buy
prediction of their approach. This was the third hypothesis. The fourth hypothesis was
that the preparation of the input data would be less time-consuming for sequence-based
models than for state-based models.

The first insight could be gained by developing the sequence-based models for item
detection. The models demonstrated that the inclusion of click streams could inform
predictions about the purchase of a clicked item. Therefore, I used sequence classification
and sequence labeling approaches. The model results closely resemble those of Romov
and Sokolov’s item detection model [32] even though they are based on significantly less
information. This outcome confirms the assumption that the choice to buy an item
depends on the click stream of the items in a session, which reflects the first hypothesis.
Next, my results indicate that item detection according to Romov and Sokolov’s approach
can be improved by including sequence information in the prediction with an ensemble
approach. Finally, the research has illustrated that the inclusion of item click streams
in item detection improved the overall buy prediction in accordance with Romov and
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Sokolov’s approach. Although the improvements in the results in both experiments are
not significant, the results confirm the second and third hypotheses.

The results evidence the potential to make predictions for an item purchase on
the basis of only item click streams. Such ability would avoid the expense of feature
engineering for the time being if it does not depend on top performance. However, the
restriction is that the model trainings used data from only those sessions in which at least
one buy took place. This limitation had a negative effect on the results once the models
received sessions without a purchase for the scoring. The next step is to train a sequence
model that also considers sessions without buys during its training to distinguish more
effectively between the buy and non-buy of an item.

However, preprocessing has been substantially reduced. Consequently, feature engi-
neering is no longer necessary, and only one embedding must be created for the items.
These outcomes present a major advantage for prediction, as no extensive domain knowl-
edge is required, and less time is consumed. These findings confirm the fourth hypothesis.

5.1 Transferability of Results

The item detection procedures can be applied to any online shop that records and stores
the item IDs of the click stream. The portability includes the models as well as the
preprocessing of the item IDs as represented by embeddings. Since the item IDs were
considered as categorical values in this case, strings can also be used as identifiers and
not strictly numbers. Co-occurrence-based embeddings can also be calculated from the
data. Therefore, they are realizable within the domain.

The models for prediction can be transferred to all sequence data from other domains
since no domain-specific knowledge is required for the models. However, depending on
the type of data, the preprocessing may need to be adapted; thus, it is possible that
embeddings must be calculated differently, or embeddings as representations are not
needed. The preprocessing is highly specific and always individual according to the type
of data. However, no statement can be made regarding the effectiveness of the prediction
models in other domains. It would be interesting to investigate how sequence-based deep
learning methods are used for predictions in other domains.

5.2 Outlook

It could also be insightful to examine how accurately buys can be predicted for items
with sequence models without having to perform a purchase detection and train a model
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for the entire task. Such a sequence model could then be directly used live in an online
shop and yield a prediction for buys based on the items that have been clicked so far.
However, this would have to be evaluated to allow the model to predict the purchase of
items on the partial sequences. If this sequence model works, it presents the advantage
of avoiding any large preprocessing of the data for features, which is a necessary step of
Romov and Sokolov’s approach.

Another question that emerged is how to incorporate more feature sequences. Thus
far, my models have only examined item click streams, though they still record cate-
gories and timestamps that can provide sequence information. These sequences would
enrich the models with further click information and possibly enhance prediction results.
Other datasets of click streams with further features would be an interesting resource for
investigating whether this information improves buy predictions.

44



Bibliography

[1] Jamil Ahmad, Haleem Farman, and Zahoor Jan. Deep Learning Methods and Ap-
plications. SpringerBriefs in Computer Science, pages 31–42, 2019. ISSN 21915776.
doi: 10.1007/978-981-13-3459-7_3.

[2] Machine Learning Group at the University of Waikato. Weka 3: Data mining soft-
ware in java, 2019. URL https://www.cs.waikato.ac.nz/ml/weka/. Ac-
cessed 2019-03-15.

[3] Oren; Noam Koenigstein Barkan. Item2Vec: Neural Item Embedding for Collabo-
rative Filtering. pages 1–6, 2016. ISSN 16130073. doi: 1603.04259.

[4] Siddhartha Bhattacharyya, Sanjeev Jha, Kurian Tharakunnel, and J. Christopher
Westland. Data mining for credit card fraud: A comparative study. Decision Support
Systems, 2011. ISSN 01679236. doi: 10.1016/j.dss.2010.08.008.

[5] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006. ISBN 0387310738.

[6] Nadav Cohen, Adi Gerzi, David Ben-Shimon, Bracha Shapira, Lior Rokach, and
Michael Friedmann. In-House Solution for the RecSys Challenge 2015. Proceedings
of the 2015 International ACM Recommender Systems Challenge on - RecSys ’15
Challenge, pages 1–4, 2015. doi: 10.1145/2813448.2813519. URL http://dl.

acm.org/citation.cfm?doid=2813448.2813519.

[7] Thomas G. Dietterich. Ensemble Methods in Machine Learning. pages 1–15, 2000.
doi: 10.1007/3-540-45014-9_1. URL http://link.springer.com/10.1007/

3-540-45014-9{_}1.

[8] Tom Fawcett. An introduction to ROC analysis. Pattern Recognition Letters, 27(8):
861–874, 2006. ISSN 01678655. doi: 10.1016/j.patrec.2005.10.010.

[9] Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. From Data Mining
to Knowledge Discovery in Databases. AI Magazine, 17(3):37–37, mar 1996. ISSN

45

https://www.cs.waikato.ac.nz/ml/weka/
http://dl.acm.org/citation.cfm?doid=2813448.2813519
http://dl.acm.org/citation.cfm?doid=2813448.2813519
http://link.springer.com/10.1007/3-540-45014-9{_}1
http://link.springer.com/10.1007/3-540-45014-9{_}1


Bibliography

2371-9621. doi: 10.1609/AIMAG.V17I3.1230. URL https://www.aaai.org/

ojs/index.php/aimagazine/article/view/1230.

[10] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT Press,
2016. URL http://www.deeplearningbook.org.

[11] Alex Graves. Sequence Labeling using Recurrent Neural Networks. Lancet, 346
(8988):1501, 1995. ISSN 01406736.

[12] Cheng Guo and Felix Berkhahn. Entity Embeddings of Categorical Variables. (1):
1–9, 2016. URL http://arxiv.org/abs/1604.06737.

[13] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning. Springer, second edition, 2009. ISBN 978-0-387-84857-0.

[14] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statisti-
cal Learning. 2017. URL https://web.stanford.edu/{~}hastie/Papers/

ESLII.pdf.

[15] Tasmin Herrmann. Development Environment for Buy Predictions with Ma-
chine Learning. 2018. URL https://users.informatik.haw-hamburg.de/

~ubicomp/projekte/master2018-proj/herrmann.pdf.

[16] Tasmin Herrmann. Neural Networks for Buy Prediction. 2019. URL
https://users.informatik.haw-hamburg.de/~ubicomp/projekte/

master2019-proj/herrmann.pdf.

[17] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
Session-based Recommendations with Recurrent Neural Networks. nov 2015. URL
http://arxiv.org/abs/1511.06939.

[18] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural
Computation, 9(8):1735–1780, nov 1997. ISSN 08997667. doi: 10.1162/neco.1997.
9.8.1735. URL http://www.mitpressjournals.org/doi/10.1162/neco.

1997.9.8.1735.

[19] Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional LSTM-CRFModels for Sequence
Tagging. 2015. URL http://arxiv.org/abs/1508.01991.

[20] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar,
and Pierre Alain Muller. Deep learning for time series classification: a review.

46

https://www.aaai.org/ojs/index.php/aimagazine/article/view/1230
https://www.aaai.org/ojs/index.php/aimagazine/article/view/1230
http://www.deeplearningbook.org
http://arxiv.org/abs/1604.06737
https://web.stanford.edu/{~}hastie/Papers/ESLII.pdf
https://web.stanford.edu/{~}hastie/Papers/ESLII.pdf
https://users.informatik.haw-hamburg.de/~ubicomp/projekte/master2018-proj/herrmann.pdf
https://users.informatik.haw-hamburg.de/~ubicomp/projekte/master2018-proj/herrmann.pdf
https://users.informatik.haw-hamburg.de/~ubicomp/projekte/master2019-proj/herrmann.pdf
https://users.informatik.haw-hamburg.de/~ubicomp/projekte/master2019-proj/herrmann.pdf
http://arxiv.org/abs/1511.06939
http://www.mitpressjournals.org/doi/10.1162/neco.1997.9.8.1735
http://www.mitpressjournals.org/doi/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1508.01991


Bibliography

Data Mining and Knowledge Discovery, pages 1–44, 2019. ISSN 1573756X. doi:
10.1007/s10618-019-00619-1.

[21] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami,
and Chris Dyer. Neural Architectures for Named Entity Recognition. 2016. URL
http://arxiv.org/abs/1603.01360.

[22] Omer Levy and Yoav Goldberg. Neural Word Embedding as Implicit Matrix
Factorization. Advances in Neural Information Processing Systems 27 (NIPS
2014), pages 1–9, 2014. URL http://u.cs.biu.ac.il/{~}nlp/wp-

content/uploads/Neural-Word-Embeddings-as-Implicit-Matrix-

Factorization-NIPS-2014.pdf.

[23] Robin Van Meteren and Maarten Van Someren. Using Content-Based Filtering for
Recommendation. ECML/MLNET Workshop on Machine Learning and the New
Information Age, 2000. ISSN 15506606. doi: 1011255743.

[24] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Dis-
tributed Representations of Words and Phrases and their Compositionality. Pro-
ceedings of NIPS 2013, pages 3111–3119, 2013. URL http://arxiv.org/abs/

1310.4546.

[25] R Keith Mobley. Predictive Maintenance. In Plant Engineer’s Handbook. 2001. ISBN
978-0-8493-3598-3; 978-1-4200-5618-1. doi: 10.1016/B978-075067328-0/50052-5.

[26] A.C. Müller and S. Guido. Introduction to Machine Learning with Python: A Guide
for Data Scientists. O’Reilly Media, 2016. ISBN 9781449369897.

[27] Andreas C. Müller and Sarah Guido. Introduction to Machine Learning with Python.
O’Reilly Media, Inc., third edition, 2017. ISBN 978-1-449-36941-5.

[28] Thai Binh Nguyen, Kenro Aihara, and Atsuhiro Takasu. Collaborative item embed-
ding model for implicit feedback data. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics), 10360 LNCS:336–348, 2017. ISSN 16113349. doi: 10.1007/978-3-319-60131-
1_19.

[29] Charles Nyce. Predictive Analytics White Paper. American Institute for
Chartered Property Casuality Underwriters, page 16, 2007. URL http:

//www.theinstitutes.org/doc/predictivemodelingwhitepaper.

47

http://arxiv.org/abs/1603.01360
http://u.cs.biu.ac.il/{~}nlp/wp-content/uploads/Neural-Word-Embeddings-as-Implicit-Matrix-Factorization-NIPS-2014.pdf
http://u.cs.biu.ac.il/{~}nlp/wp-content/uploads/Neural-Word-Embeddings-as-Implicit-Matrix-Factorization-NIPS-2014.pdf
http://u.cs.biu.ac.il/{~}nlp/wp-content/uploads/Neural-Word-Embeddings-as-Implicit-Matrix-Factorization-NIPS-2014.pdf
http://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1310.4546
http://www.theinstitutes.org/doc/predictivemodelingwhitepaper.pdf{%}5Cnhttp://ieg-sites.s3.amazonaws.com/sites/4e70a00a3723a839c1000042/contents/content{_}instance/4ec268ce3723a856ba00015c/files/PredictiveModelingWhitepaper.pdf
http://www.theinstitutes.org/doc/predictivemodelingwhitepaper.pdf{%}5Cnhttp://ieg-sites.s3.amazonaws.com/sites/4e70a00a3723a839c1000042/contents/content{_}instance/4ec268ce3723a856ba00015c/files/PredictiveModelingWhitepaper.pdf
http://www.theinstitutes.org/doc/predictivemodelingwhitepaper.pdf{%}5Cnhttp://ieg-sites.s3.amazonaws.com/sites/4e70a00a3723a839c1000042/contents/content{_}instance/4ec268ce3723a856ba00015c/files/PredictiveModelingWhitepaper.pdf
http://www.theinstitutes.org/doc/predictivemodelingwhitepaper.pdf{%}5Cnhttp://ieg-sites.s3.amazonaws.com/sites/4e70a00a3723a839c1000042/contents/content{_}instance/4ec268ce3723a856ba00015c/files/PredictiveModelingWhitepaper.pdf


Bibliography

pdf{%}5Cnhttp://ieg-sites.s3.amazonaws.com/sites/

4e70a00a3723a839c1000042/contents/content{_}instance/

4ec268ce3723a856ba00015c/files/PredictiveModelingWhitepaper.

pdf.

[30] Matthew E. Peters, Waleed Ammar, Chandra Bhagavatula, and Russell Power.
Semi-supervised sequence tagging with bidirectional language models. 2017. URL
http://arxiv.org/abs/1705.00108.

[31] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. 2018.
URL http://arxiv.org/abs/1802.05365.

[32] Peter Romov and Evgeny Sokolov. RecSys Challenge 2015. In Proceedings of
the 2015 International ACM Recommender Systems Challenge on - RecSys ’15
Challenge, pages 1–4, New York, New York, USA, 2015. ACM Press. ISBN
9781450336659. doi: 10.1145/2813448.2813510. URL http://dl.acm.org/

citation.cfm?doid=2813448.2813510.

[33] Badrul Sarwar, George Karypis, Joseph Konstan, and J. Riedl. Item-based collabo-
rative filtering recommendation algorithms. Proceedings of the 10th . . . , 2001. ISSN
09501991. doi: 10.1145/371920.372071.

[34] J Ben Schafer, Joseph Konstan, and John Riedl. Recommender systems in e-
commerce. In Proceedings of the 1st ACM conference on Electronic commerce, pages
158–166. Elsevier, 1999.

[35] Mike Schuster and Kuldip K. Paliwal. Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing, 45(11):2673–2681, 1997. ISSN 1053587X. doi:
10.1109/78.650093.

[36] Humphrey Sheil, Omer Rana, and Ronan Reilly. Predicting purchasing intent: Au-
tomatic feature learning using recurrent neural networks. CEUR Workshop Proceed-
ings, 2319, 2018. ISSN 16130073.

[37] Denis Smirnov and Engelbert Mephu Nguifo. Time Series Classification with Recur-
rent Neural Networks. ECML/PKDD Workshop on Advanced Analytics and Learn-
ing on Temporal Data, pages 1–8, 2018.

48

http://www.theinstitutes.org/doc/predictivemodelingwhitepaper.pdf{%}5Cnhttp://ieg-sites.s3.amazonaws.com/sites/4e70a00a3723a839c1000042/contents/content{_}instance/4ec268ce3723a856ba00015c/files/PredictiveModelingWhitepaper.pdf
http://www.theinstitutes.org/doc/predictivemodelingwhitepaper.pdf{%}5Cnhttp://ieg-sites.s3.amazonaws.com/sites/4e70a00a3723a839c1000042/contents/content{_}instance/4ec268ce3723a856ba00015c/files/PredictiveModelingWhitepaper.pdf
http://www.theinstitutes.org/doc/predictivemodelingwhitepaper.pdf{%}5Cnhttp://ieg-sites.s3.amazonaws.com/sites/4e70a00a3723a839c1000042/contents/content{_}instance/4ec268ce3723a856ba00015c/files/PredictiveModelingWhitepaper.pdf
http://www.theinstitutes.org/doc/predictivemodelingwhitepaper.pdf{%}5Cnhttp://ieg-sites.s3.amazonaws.com/sites/4e70a00a3723a839c1000042/contents/content{_}instance/4ec268ce3723a856ba00015c/files/PredictiveModelingWhitepaper.pdf
http://www.theinstitutes.org/doc/predictivemodelingwhitepaper.pdf{%}5Cnhttp://ieg-sites.s3.amazonaws.com/sites/4e70a00a3723a839c1000042/contents/content{_}instance/4ec268ce3723a856ba00015c/files/PredictiveModelingWhitepaper.pdf
http://www.theinstitutes.org/doc/predictivemodelingwhitepaper.pdf{%}5Cnhttp://ieg-sites.s3.amazonaws.com/sites/4e70a00a3723a839c1000042/contents/content{_}instance/4ec268ce3723a856ba00015c/files/PredictiveModelingWhitepaper.pdf
http://arxiv.org/abs/1705.00108
http://arxiv.org/abs/1802.05365
http://dl.acm.org/citation.cfm?doid=2813448.2813510
http://dl.acm.org/citation.cfm?doid=2813448.2813510


Bibliography

[38] statista. E-commerce worldwide, 2019. URL https://www.statista.com/

outlook/243/100/ecommerce/worldwide?currency=eur. Accessed 2019-
08-06.

[39] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning.
MIT Press, Cambridge, MA, USA, 1st edition, 1998. ISBN 0262193981.

[40] Yong Kiam Tan, Xinxing Xu, and Yong Liu. Improved Recurrent Neural
Networks for Session-based Recommendations. 2016. doi: 10.1145/2988450.
2988452. URL http://dx.doi.org/10.1145/2988450.2988452http://

arxiv.org/abs/1606.08117.

[41] Pattreeya Tanisaro and Gunther Heidemann. Time series classification using time
warping invariant Echo State Networks. Proceedings - 2016 15th IEEE International
Conference on Machine Learning and Applications, ICMLA 2016, pages 831–836,
2017. doi: 10.1109/ICMLA.2016.166.

[42] TensorFlow Team. Google developers: Introducing tensorflow feature
columns, 2017. URL https://developers.googleblog.com/2017/11/

introducing-tensorflow-feature-columns.html. Accessed 2019-06-17.

[43] Kiewan Villatel, Elena Smirnova, Jérémie Mary, and Philippe Preux. Recurrent
Neural Networks for Long and Short-Term Sequential Recommendation. (October),
2018. URL http://arxiv.org/abs/1807.09142.

[44] Zhiguang Wang, Weizhong Yan, and Tim Oates. Time series classification from
scratch with deep neural networks: A strong baseline. Proceedings of the Inter-
national Joint Conference on Neural Networks, 2017-May:1578–1585, 2017. doi:
10.1109/IJCNN.2017.7966039.

[45] Wikipedia. Long short-term memory unit, 2019. URL https://en.wikipedia.

org/wiki/Recurrent_neural_network#/media/File:Long_Short-

Term_Memory.svg. Accessed 2019-08-22.

[46] Wikipedia. Unfolded basic recurrent neural network, 2019. URL https://

en.wikipedia.org/wiki/Recurrent_neural_network#/media/File:

Recurrent_neural_network_unfold.svg. Accessed 2019-08-22.

[47] Yandex. Catboost, 2019. URL https://catboost.ai. Accessed 2019-05-29.

49

https://www.statista.com/outlook/243/100/ecommerce/worldwide?currency=eur
https://www.statista.com/outlook/243/100/ecommerce/worldwide?currency=eur
http://dx.doi.org/10.1145/2988450.2988452 http://arxiv.org/abs/1606.08117
http://dx.doi.org/10.1145/2988450.2988452 http://arxiv.org/abs/1606.08117
https://developers.googleblog.com/2017/11/introducing-tensorflow-feature-columns.html
https://developers.googleblog.com/2017/11/introducing-tensorflow-feature-columns.html
http://arxiv.org/abs/1807.09142
https://en.wikipedia.org/wiki/Recurrent_neural_network#/media/File:Long_Short-Term_Memory.svg
https://en.wikipedia.org/wiki/Recurrent_neural_network#/media/File:Long_Short-Term_Memory.svg
https://en.wikipedia.org/wiki/Recurrent_neural_network#/media/File:Long_Short-Term_Memory.svg
https://en.wikipedia.org/wiki/Recurrent_neural_network#/media/File:Recurrent_neural_network_unfold.svg
https://en.wikipedia.org/wiki/Recurrent_neural_network#/media/File:Recurrent_neural_network_unfold.svg
https://en.wikipedia.org/wiki/Recurrent_neural_network#/media/File:Recurrent_neural_network_unfold.svg
https://catboost.ai


Bibliography

[48] Yandex. Matrixnet: New level of search quality, 2019. URL https://yandex.

com/company/technologies/matrixnet/. Accessed 2019-03-15.

[49] Yandex. Yandex, 2019. URL https://yandex.com/company/. Accessed 2019-
03-15.

50

https://yandex.com/company/technologies/matrixnet/
https://yandex.com/company/technologies/matrixnet/
https://yandex.com/company/


A Appendix

A.1 Feature Engineering

Feature Description Number/Type
Numerical time features of the start/end
of the session (month, day, hour, minute,
second, etc.)

2× 7 Num

Categorical time features of the start/end
of the session (month, day, month-day,
month-day-hour, hour, minute, weekday)

2× 7 Categ

Length of the session in seconds 1 Num
Number of clicks, unique items, categories
and item-category pairs in the session

4 Num

Top 10 items and top 5 categories by the
number of clicks in the session

15 Categ

IDs of the first/last item clicked at least
k = 1, 2 . . . , 6 times in the session

12 Categ

Vector of click numbers and total
durations for 100 items and 50 categories
that were the most popular in the whole
training set

150× 2 Num

Table A.1: List of session features used in models of Romov and Sokolov [32]
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A Appendix

Feature Description Number/Type
Item ID 1 Categ
Total and relative number of clicks in the
session for the given item

2 Num

Numerical time features of the first/last
click on the item (month, day, hour,
minute, second, etc.)

2× 7 Num

Categorical time features of the first/last
click on the item (month, day, month-day,
month-day-hour, hour, minute, weekday)

2× 7 Categ

Number of seconds between the first and
the last click on the item

1 Num

Total duration of the clicks on the item
in the session and of all item’s categories
seen in the session

2 Num

Number of unique categories seen in the
session for a given item

1 Num

Table A.2: List of paired session-item features used in models of Romov and Sokolov [32]

52



Glossary

ACM The Assocoation for Computing Machinery is an organization which brings to-
gether computing educators, researchers, and professionals to inspire dialogue,
share resources, and address the field’s challenges..

API An application program interface is a set of routines, protocols, and tools for building
software applications..

RDD The resilient distributed dataset is the main abstraction of a Spark application
and contains collection of elements partitioned across the nodes of the cluster that
can be operated on in parallel..

RecSys Challenge The RecSys Challenge is held within the RecSys Conference every
year and deals with current topics of recommender systems..
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Erklärung zur selbstständigen Bearbeitung einer Abschlussarbeit
Gemäß der Allgemeinen Prüfungs- und Studienordnung ist zusammen mit der Abschlussarbeit eine

schriftliche Erklärung abzugeben, in der der Studierende bestätigt, dass die Abschlussarbeit „— bei einer

Gruppenarbeit die entsprechend gekennzeichneten Teile der Arbeit [(§ 18 Abs. 1 APSO-TI-BM bzw. § 21

Abs. 1 APSO-INGI)] — ohne fremde Hilfe selbständig verfasst und nur die angegebenen Quellen und

Hilfsmittel benutzt wurden. Wörtlich oder dem Sinn nach aus anderen Werken entnommene Stellen sind

unter Angabe der Quellen kenntlich zu machen.“

Quelle: § 16 Abs. 5 APSO-TI-BM bzw. § 15 Abs. 6 APSO-INGI

Erklärung zur selbstständigen Bearbeitung der Arbeit
Hiermit versichere ich,

Name:
Vorname:

dass ich die vorliegende Masterarbeit – bzw. bei einer Gruppenarbeit die entsprechend
gekennzeichneten Teile der Arbeit – mit dem Thema:

Deep Learning basierte Kaufprognose mit Sequenz Modellen
ohne fremde Hilfe selbständig verfasst und nur die angegebenen Quellen und Hilf-

smittel benutzt habe. Wörtlich oder dem Sinn nach aus anderen Werken entnommene
Stellen sind unter Angabe der Quellen kenntlich gemacht.

Ort Datum Unterschrift im Original
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