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Kurzzusammenfassung

Empfehlungssysteme (RS) sind weit verbreitet und werden in vielen Bereichen einge-
setzt, z.B. bei der Empfehlung von Artikeln im elektronischen Handel, beim Musik-
und Videostreaming oder in Nachrichtenportalen. In dieser Arbeit wird ein proprietärer
Datensatz für Nachrichtenempfehlungen vorgestellt, für den eine Basis an Messergeb-
nissen erstellt und verschiedene Fragen behandelt werden, z.B. ob die Schlagzeile, der
Teasertext oder der vollständige Artikeltext für Nachrichtenempfehlungen geeignet sind.
Ein immer größerer Teil der RS -Forschung befasst sich mit Deep Learning (DL), da-
her wird sich diese Arbeit auf diesen Bereich von RS konzentrieren. Um ein geeignetes
Empfehlungsmodell auszuwählen und festzustellen, welche Methoden zur Darstellung
des Artikelinhalts verwendet werden können, wird eine breite Auswahl an aktuellen
DL-basierten Sprachmodellen (LM) und RS betrachtet. Im Zuge der Implementierung
des Modells und der Verarbeitungspipeline werden die Schwierigkeiten im Umgang mit
einem großen realen Nachrichtendatensatz untersucht. Es stellte sich heraus, dass für
das gewählte Modell der Teaser-Text am besten für Nachrichtenempfehlungen geeignet
ist. Es hat sich ebenfalls gezeigt, dass bei der Verarbeitung eines realen Datensatzes die
große Datenmenge und die hohe Dimensionalität der Daten die größte Herausforderung
darstellten. Schlussendlich hat die Analyse der Daten das große Potenzial für person-
alisierte Nachrichtenempfehlungen aufgezeigt, da die meisten Artikel nur wenige Seite-
naufrufe haben und viele Nutzer nur ein bis zwei Artikel ansehen. Daher könnten sehr
gezielte Empfehlungen die Anzahl der Seitenaufrufe vieler Artikel, die eine sehr kleine
Zielgruppe haben, erheblich steigern.
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Abstract

Recommendation systems (RS) are widely used and prevalent in many areas like recom-
mending items in e-commerce, music and video streaming, as well as news portals. In this
thesis, a proprietary news recommendation dataset is introduced for which a baseline will
be established and several questions will be approached, like whether the headline, teaser
text or full article text is suitable for news recommendation. An ever growing amount
of RS research is going in the direction of deep learning (DL), so this work will focus
on this domain of RS. To select an appropriate recommendation model and determine
which methods can be used to represent the article content, a broad selection of current
DL based language models (LM) and RS are reviewed. In the course of implementing
the model and the processing pipeline, the difficulties in handling a large real world news
dataset are examined. It turns out, that for the selected model, the teaser text worked
best for news recommendation. Also it has shown, that in handling a real world dataset,
the large amount of data and the high dimensionality of the data posed the biggest
challenge. Lastly, the analysis of the data unveiled the great potential for personalized
news recommendation, as most articles have just a few pageviews and many users just
view one to two articles. So very targeted recommendations could significantly rise the
pageview count of many articles, which have a very niche target audience.
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1 Introduction

Mankind is in the age of information where everybody is confronted with an ever growing
amount of information. In the era of big data and the overwhelming amount of infor-
mation users are confronted with, Recommender Systems (RS) can help to overcome
the information overload. Ricci et al. describe "Recommender Systems (RSs) are soft-
ware tools and techniques providing suggestions for items to be of use to a user."[42]
This can be supplemented by Jannach et al. with "The construction of systems that
support users in their (online) decision making is the main goal of the field of recom-
mender systems. In particular, the goal of recommender systems is to provide easily
accessible, high-quality recommendations for a large user community."[21] Also [41] add
their description of RS with the distinction of different roles RS play on behalf of the
service provider and the user. The users expects relevant item suggestions which meets
their personal taste and needs whereas the service providers expectations from the RS
are in the direction of increase of sold items, higher turnover, sell more diverse items,
increase user satisfaction and fidelity. RS are mainly classified into Collaborative Filter-
ing (CF) based, Content-Based, Knowledge-Based and Hybrid Systems. This work uses
deep learning for Collaborative Filtering and Content-Based recommendations combined
to a Hybrid System. Whereby systems using CF to provide suggestions to a user rely
on the assumption that users with similar interests in the past share their interest also
in the future. If two users share a very similar history of liked items, if one user likes a
new item the other user may also be interested in this item. Whereas Contend-Based
recommendations rely on context data for the items, like item descriptions for products
or the topic and content of a news article.

The primary goal of this thesis is to examine news recommendation methods and tech-
niques in the context of a proprietary news recommendation corpus. The corpus is
composed of news articles and pageviews. The news articles of the dataset are in the
German language and contain the full content body and additional metadata like publi-
cation date and publisher. A pageview represents an article view of a user with additional
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1 Introduction

metadata like start time to read, engagement time, article publisher, and portal where
the article was published. A comprehensive analysis of the dataset is carried out in sec-
tion 3.1. Publicly available datasets usually do not contain the full content body and
have a relatively small amount of articles. Additionally, most datasets contain articles in
the English language. Also, most public available news datasets have viewer metadata
about the articles and pageviews. Furthermore, the size of the dataset is remarkable with
313 565 551 pageviews from 56 199 311 users and 823 947 corresponding articles. The re-
cently published MIcrosoft News Dataset (MIND) [62] for news recommendation research
is a big step into the direction of a publicly available big real world news dataset but is
nevertheless not comparable in size and extend to the here examined dataset. The exam-
ination of news recommendation methods is addressed by extensively analyzing current
recommendation techniques and especially news centered recommendation algorithms.
Non news specific methods are investigated for their adaption ability to the field of news
recommendation. Furthermore, methods for representing news content are explored, as
modeling of news is a key component for news recommendation systems. To this extend,
an extensive amount of current Language Models are analyzed.

1.1 Research Question & Contribution

The questions this master thesis tries to answer are:

1. Q1: How to establish a baseline with the German news recommendation dataset
using deep learning?

2. Q2: How is the dataset structured and how to take advantage of specific properties
of the dataset for recommendation?

3. Q3: What are the challenges in utilizing a real world dataset for a RS for design
and implementation in contrast to academic datasets?

4. Q4: What are the challenges in the adaptation of a general RS model to the news
recommendation domain?

5. Q5: Which techniques can be utilized to incorporate metadata into the news RS?

6. Q6: Does the use of metadata yield better recommendations?

2



1 Introduction

7. Q7: Does the full article content yield significantly better recommendation perfor-
mance compared to headline/teaser text as article content?

The main contributions of this thesis are as follows:

1. Introducing a large real world news recommendation dataset with German article
texts.

2. Adapting a recommendation model of the e-commerce domain to the news recom-
mendation domain.

3. Unveil challenges in the use of real world data.

1.2 Outline

This thesis is split into five chapters. Chapter one gives a general introduction to this
work. In chapter two NLP methods, in particular Language Models, are introduced
which can be leveraged for recommender systems, especially for news modeling. The
second chapter also gives an introduction to recommender systems with a special focus
on Deep Learning based systems and news recommendation, where notably works are
introduced. Chapter three presents the experimental design for the investigations of
this work. In the forth chapter the evaluation of the experiments is done. The last
chapter concludes this thesis and gives an outlook to future directions.
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2 Analysis

Problem Statement Recommender Systems are a broad field which spans a wide
collection of different methods. To this extend, Recommender Systems in general are
introduced which is complemented with an additional specialization on news recommen-
dations. Since this work focuses on Deep Learning based recommendations, this chapter
presents Deep Learning algorithms and methods used by RS systems. Before this chapter
is discussed at the end, a brief review of related work is conducted. Starting with RS
related work, a small section is dedicated to Natural Language Processing (NLP). As
this work deals with text data, NLP methods are inevitable to access the information
contained in the text.

2.1 NLP

Natural Language Processing (NLP) is closely connected with recommender systems.
Either as a tool for content extraction from texts or as adaptations of sequence processing
algorithms developed for NLP to process sequences in recommendation tasks. Figure 2.1
from [47] shows a timeline with some notable steps, how NLP techniques have influenced
the field of RS.

Figure 2.1: “A timeline illustrating the influence of NLP research in Recommender Sys-
tems” [47]

4
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An overview of current DL based NLP methods is given by [52].

To leverage the information of news articles (or text documents) for recommenders,
capture their characteristics, and understand their content, it is crucial to model these
articles. News modeling techniques can be roughly divided into two categories, which
are feature-based and deep learning-based. Feature-based techniques are not learned from
scratch and mainly represented by handcrafted features, which is time consuming and
costly. To this extend, this work is focused on deep learning methods to automatically
learn news representations. These deep learning techniques comprise mostly of neural
NLP methods to learn news representations from news texts. [58] Language models are
a field of NLP. So in this section, the utilized NLP methods are sketched out as well
as some notable Language Models, which are used by RS described in section 2.2.1. In
[5] is shown, that language models aggregate much knowledge when trained on a large
dataset and equipped with many parameters, so specific tasks can be solved in a few
shot scenario. Furthermore, Petroni et al.[34] investigate in how far pre-trained LM can
be seen as knowledge bases and find that BERT contains relational data, works well on
open-domain question answering, and learns certain types of factual knowledge. This
indicates that deep learning based language models are able to extract rich information
from news text to leverage for recommendations and may be a crucial building block for
news modeling and recommendation.

2.1.1 Language Models

“Language modeling is the art of determining the probability of a sequence of words.” [14]
More precisely “Language modeling is the task of assigning a probability to sentences in
a language [...]. Besides assigning a probability to each sequence of words, the language
models also assigns a probability for the likelihood of a given word (or a sequence of
words) to follow a sequence of words [...].” [65, p. 105] Furthermore, “The notion of a
language model is inherently probabilistic. A language model is a function that puts a
probability measure over strings drawn from some vocabulary.” [31, p. 238] So Language
Models (LM) are a probabilistic method to learn from a text corpus how a language (or
multiple languages) are constructed. LM in combination with Transfer Learning can be
a powerful technique for downstream tasks as shown by [19]: “Language modeling can
be seen as the ideal source task and a counterpart of ImageNet for NLP: It captures
many facets of language relevant for downstream tasks, such as long-term dependencies,
hierarchical relations, and sentiment. In contrast to tasks like MT and entailment, it
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provides data in near-unlimited quantities for most domains and languages. Additionally,
a pre-trained LM can be easily adapted to the idiosyncrasies of a target task, which [...]
significantly improves performance [...]. Moreover, language modeling already is a key
component of existing tasks such as MT and dialogue modeling. Formally, language
modeling induces a hypothesis space H that should be useful for many other NLP tasks.”
[19] Furthermore, “LMs have played a key role in traditional NLP tasks such as speech
recognition, machine translation, or text summarization. Often (although not always),
training better language models improves the underlying metrics of the downstream task
(such as word error rate for speech recognition, or BLEU score for translation), which
makes the task of training better LMs valuable by itself.” [23]. For this reason, it is
important to understand how current LM work and how they can be incorporated into
RS.

Next, some notable recent LM are presented. This list is by far not comprehensible as so
many LM were proposed recently, e.g. LM which have remarkable results on benchmarks
but have a huge amount of parameters and are essentially scaled up versions of previous
models, without substantially improved methods, are left out. This applies also for LM
whose improvements in benchmarks are essentially due to training on bigger datasets. As
the LM must be applicable to the RS domain, only models which work with a reasonable
amount of parameters are considered, due to the real time requirements at inference
time, like low latency and high throughput of recommendations. Methods to scale LM
to large sizes and train them efficiently despite large parameter sizes are shown by [37].
Techniques to explicitly make transformer based models more efficient and independent
from scaling, is examined by [46]. The letter used evolutionary search to find efficient
architectures in the search space of combinations of Tensorflow (TF) primitives. Their
findings can be dropped into existing code bases without further modifications and may
be useful for transformer based RS, either to reduce hardware requirements or make
more complex models possible. The LM also have to be integrated into the RS, which
can be done via embeddings of the texts. An example of how sentence embeddings can
be extracted from BERT is given by [39].

ELMo

The ELMo (Embeddings from Language Models) model by [33] is the first LM which uses
the whole context of a word (all preceding and following words) as context to compute
word embeddings, so that it is a function of the entire input sentence. ELMo learns
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high quality representations of words and addresses the challenges of “(1) complex char-
acteristics of word use (e.g., syntax and semantics), and (2) how these uses vary across
linguistic contexts (i.e., to model polysemy)” [33]. ELMos vectors are learned functions
of the internal states of a deep bidirectional language model (biLM) based on LSTMs,
which is pre-trained on a large text corpus with a coupled LM objective. Here a biLM
combines a forward and backward LM, so it computes the input sentence from the begin-
ning to the end and from end to beginning. Furthermore, with the formulation of [33] the
log likelihood in the forward and backward directions is jointly maximized. The learned
representations can be added to existing models to enhance their performance over the
usage of e.g. simple word embeddings. The representations are a function of all internal
layers of the biLM, which differentiates the method from previous ones, which uses only
the top LSTM layer. For each end task, a linear combination of the vectors stacked above
each input word (intermediate layer representations in the biLM) is learned.

Figure 2.2: ELMo pre-training model architecture: “ELMo uses the concatenation of in-
dependently trained left-to-right and right-to-left LSTMs to generate features
for downstream tasks” [11]

The architecture of ELMo is shown in figure 2.2. The parameters for both the token
representation and Softmax layer in the forward and backward direction are tied while
the parameters of the forward and backward LSTMs are separated. Furthermore, residual
connections between the LSTM layers are added. For each token of the input, the L-layer
biLM computes a set of 2L + 1 representations. For usage in a downstream model, all
layers of the representations are collapsed into a single vector.
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BERT

Bidirectional Encoder Representations from Transformers (BERT) is a LM which is pre-
trained with the Masked Language Modeling (MLM) objective and can be finetuned
with one additional output layer for a wide range of downstream tasks without profound
architecture changes specific for the task. TheMLM objective is similar to the Cloze task,
where the blanks in a sentence have to be filled, e.g. "Mice likes to eat _". It is designed
for unsupervised pre-training of text for deep bidirectional representations, which are
jointly conditioned on left and right context. At its introduction, BERT achieves state-
of-the-art (SOTA) results in many NLP tasks and is the basis for many later announced
architectures which further pushed the SOTA on many NLP problems. BERT also got
adapted to the RS domain by [48, 3, 66], see section 2.2.1 for more details.

Figure 2.3 shows the overall architecture of BERT. From bottom to the top, the input
tokens get embedded first, then several transformer layers follow, and at the end the
output tokens are generated for every input token. The Transformer in the architecture is
a multi-layer bidirectional Transformer encoder and is based on the original Transformer
[53].

Figure 2.3: BERT pre-training model architecture: “BERT uses a bidirectional Trans-
former. [...] BERT representations are jointly conditioned on both left and
right context in all layers” [11]

Figure 2.4 shows the pre-training and fine tuning architecture. At pre-training BERT is
fed with a sequence of two sentences and two special tokens. The [CLS] is a special classi-
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fication token whose final hidden state represents the aggregated sequence representation
and is used for classification tasks. The [SEP] symbol is a special separation token which
separates the first sentence A and second sentence B. At fine-tuning time, the [SEP] can
be either used as separator for the specific task, e.g. to separate the question from the
context in a question answering task, or can be left out for tasks which require just a
sequence of a single sentence.

Figure 2.4: BERT pre-training and fine tuning [11]

Figure 2.5 shows the aforementioned input embeddings, which uses WordPiece embed-
dings, where words are further separated into pieces like "play" and "ing" for "playing",
which reduces the vocabulary size substantially and preserves more information in con-
trast to stemming. The input embedding constitutes of three different embeddings, which
are concatenated for each token. The embedding of the token itself, an embedding which
indicates to which sentence it belongs to and a positional embedding. The positional
embedding is needed as Transformers have no intrinsic sense for sequences like recurrent
models, so the order of the sequence have to be encoded.

9
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Figure 2.5: BERT input representation [11]

BERT has two training objectives: Firstly, the MLM and secondly a Next Sentence
Prediction (NSP) objective. The MLM task is used to train on the left and right context
of the masked token, which separates BERT from autoregressive (AR) models like GPT.
15 % of the tokens are replaced with [MASK] by 80 % chance, 10 % by a random token
and 10 % left unchanged. The random replacement/unchanged strategy is used as the
[MASK] token is not used during fine-tuning time. This creates a mismatch between
pre-training and fine-tuning and the strategy mitigates this. The NSP objective serves
the model to learn the relationship between two sentences, which is not directly addressed
by the LM objective. The NSP is simply achieved by choosing the sentence B 50 % of
the time to be the next sentence and otherwise chosen to be a random sentence and the
model has to predict whether it is the next sentence or not.

BERT Family In this paragraph, some BERT derivatives/improvements are briefly
listed:

SpanBERT SpanBERT is a pre-training method, which advances the training of the
BERT model to better predict and represent spans of text. It masks random spans of text
instead of single tokens. Further, it trains to predict the span boundaries representations
to predict the whole content of the masked span, where only the boundary tokens of
the span are used. Also the NSP objective is omitted and a single contiguous sequence
is used per sample. These changes in pre-training improves the basis BERT model for
many tasks. [22]

StructBERT StructBERT incorporates language structures into the pre-training with
two auxillary tasks, which leverages word and sentence structures. At first, after word
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masking, a certain number of tokens are shuffled randomly and the model has to pre-
dict the right order. Secondly, sentences are randomly swapped and the model has to
predict which is the next and previous sentence. The two new objectives are supposed
to better encode the dependencies between words and sentences and rise the ability for
generalization and adaptation of the model. [56]

RoBERTa Robustly optimized BERT approach (RoBERTa) introduces an improved
pre-training for BERT models. Liu et al. found that BERT was significantly under-
trained and improved results with longer training with bigger batch sizes on more date.
To increase the amount of training data they collected a large news dataset called CC-N
EWS Furthermore, the NSP objective was removed and the model is trained on longer
sequences. Additionally the masking pattern on the training data is changed dynami-
cally, where BERT generated masks initially once for the hole dataset and used the same
masking per sentence over the whole pre-training. This showed, the MLM objective alone
is competitive with other proposed pre-training methods. Also the Robustly optimized
BERT approach following [36] is used. [30]

ALBERT A Lite BERT (ALBERT) introduces two parameter reduction techniques
to reduce the memory consumption and speed up the training of BERT, which leads to
SOTA results with fewer parameters as the BERT-large model. The first technique is
to factorize the large vocabulary embedding matrix into two smaller matrices. Secondly,
cross-layer parameter sharing is utilized, thus deeper networks do not rise the parameter
count. A BERT-large like model has 18 times fewer parameters and trains 1,7 times
faster. These techniques also function as regularization and stabilize the training as well
as improving generalization. Additionally, the sentence-order prediction (SOP) objective
is utilized which focuses on inter-sentence coherence to overcome the ineffectiveness of
the NSP objective from BERT. [27]

DistilBERT DistilBERT uses knowledge distillation during pre-training which reduces
the model size by 40 % and retains 97 % of the language understanding capabilities, which
comes also with a speedup of 60 %. The model has half the layers of BERT-base and the
same size of hidden units per layer. The layers of the distilled model are initialized with
every second layer of the original model. The distilled model is trained with three linear
combined losses. a) The distillation loss over the soft target probabilities the teacher
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(original model), b) the MLM loss and c) a cosine embedding loss, which aligns the
hidden state vector of the original and distilled model. [44]

DeBERTa Decoding-enhanced BERT with disentangled attention (DeBERTa) surpasses
for the first time the human performance on the SuperGLUE benchmark. It uses two
novel techniques: The disentangled attention mechanism and an enhanced mask decoder.
The disentangled attention separates the embeddings for content and position into two
vectors, and the attention is computed using the content and relative position embed-
ding. The final attention score of two words is the sum of four attention scores between
content-to-content, content-to-position, position-to-content, and position-to-position. The
enhanced mask decoder supplies absolute position information after all transformer lay-
ers and before the softmax layers, which helps the model to distinguish masked words
with the same relative context, e.g. “a new store opened beside the new mall” where
store and mall masked. Additionally, a new virtual adversarial training method called
Scale-invariant-Fine-Tuning (SiFT) is used for fine-tuning. It is a regularization method
to enhance the models generalization through more robustness to adversarial examples
by perturbations to the normalized input word embedding. [15]

GPT

The Generative Pre-Training (GPT) model is a unsupervised pre-training LM with task
specific supervised fine tuning. The architecture of GPT is shown in figure 2.1.1. From
bottom to the top, the tokenized input words are embedded, which are further processed
by several Transformer decoder layers, which finally produce the output tokens. As can
be seen from the arrows, tokens can only attend to the tokens to the left and did not
see the tokens to the right. This makes an autoregressive LM possible. The model is
trained on contiguous sequences of text without any additional tokens to learn long range
dependencies. For the input, BPE is utilized, the tokenization is done via SpaCy, and
data is cleaned with the ftfy library. For fine-tuning, an additional linear layer followed
by a softmax-layer is added, which predicts the labels of the labeled task specific dataset.
Additionally, an auxiliary objective during fine-tuning is added to improve generalization
and accelerating the convergence. Beside the extra linear layer, only embeddings for
delimiters add extra parameter to the task specific model. For fine-tuning on structured
inputs, the data is converted into an ordered sequence, seperated by special tokens like
[Start], [Delim] and [Extract]. Radford et al. conclude, that the pre-training compared
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to only training on the specific task improves the performance substantially and trough
the pre-training on a diverse corpus with long stretches of contiguous text the model
acquires a significant world knowledge and the ability to solve long-range dependency
tasks which is transferred to downstream tasks. [35]

Figure 2.6: GPT pre-training model architecture: “OpenAI GPT uses a left-to-right
Transformer” [11]

The GPT model received two updates in further work which are briefly described be-
low.

GPT-2 The main difference to the first version lies in a bigger, more diverse dataset,
which is crawled from outbound Reddit links above a rating threshold to ensure a certain
quality of the text, and an order of magnitude more parameters as the first version to
1,5 billion. Architectural changes include the move of layer normalization into the input
of each sub-block, additional layer normalization after the final self-attention block, and
adaptation of the initialization accounting for the changes. The aim of the paper is to
show how big LM can learn to perform specific tasks without fine-tuning when they are
big enough and trained on a large corpus. [36]

GPT-3 The major difference of the model is again a rise in parameter count to 175 billion,
and the only change in architecture is the use of alternating dense and locally banded
sparse attention patterns in the Transformers layers. The authors demonstrate that a big
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enough LM can perform well in a few-shot and zero-shot setting without any additional
supervised training on labeled data. [5]

XLNet

To account for BERT did not use the dependencies between masked tokens and the
pretrain-finetune discrepancy, XLNet is a generalized AR pre-training method, which
addresses the pretrain-finetune discrepancy with its AR formulation, combined with
learning bidirectional contexts by train over all permutations of the factorization order
of the tokens with maximization of the expected likelihood. Architecture wise XLNet
integrates the segment recurrence and relative encoding of TransformerXL. [10] To be
AR and also have a bidirectional context, the Permutation Language Modeling Objective
and Two-Stream Self-Attention are crucial for the model.

Permutation Language Modeling Objective To be AR and also have a bidirec-
tional context, the factorization order of a sequence is permuted but not the ordering of
the sequence. Meaning the position of each token remains the same but the context to
predict a token is permuted. E.g. the sequence [1,2,3,4] is permuted to [3,2,1,4] where
the number represents their position, then token 3 has no context, token 2 has context
[3], token 1 has context [3,2] and token 4 has context [3,2,1]. This is achieved through
a relative position encoding for each token and a proper attention mask accounting for
the right context for each token.

Two-Stream Self-Attention To be able to compute the permutation LM, each token
has a separated embedding for the content and the position of the token. To predict a
token, the attention has only access to the position embedding of that token and not
its content embedding, which would make the prediction trivial. Also without access
to the position encoding, the model would reduce to a simple bag-of-words model. The
attention is also masked to only see tokens before in the current permutation order.
[64]
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ERNIE 1/2/3/TITAN

Enhanced Language RepresentatioN with Informative Entities (ERNIE) uses a mostly
standard BERT model combined with a knowledge injection module, which incorporates
embedded entities from a Knowledge Graph (KG) into the LM. This improves the perfor-
mance on knowledge-driven tasks while maintaining the score of BERT on other common
NLP tasks.

Figure 2.7 shows the architecture of ERNIE. On the left bottom, the input tokens are
processed by the textual encoder (T-Encoder), which comprises of multiple transformer
layers pretty much the same as the BERT model. The output of the T-Encoder is
further processed by the knowledgeable encoder (K-Encoder), which comprises of several
stacked Aggregator layers. The Aggregator has two multi-head self-attentions, one for the
input token embeddings and one for the entity embeddings. The output of both attention
layers, with aligned input token and entity embeddings, is fed into the Information Fusion
layer, which integrates the heterogenous information and outputs the input token and
entity embeddings, which now have both information mutually integrated. The outputs
of the top Aggregator, both input token and entity embeddings, are then used as features
for specific tasks. The Information Fusion layer basically consists of two dense layers
for the input tokens and the entities, which share one hidden layer, where the token and
entity embeddings, after multiplication with the wight matrix, are added up and have a
common bias vector.
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Figure 2.7: ERNIE model architecture with textual encoder (T-Encoder) Transformer
and knowledgeable encoder (K-Encoder) on the left and one Aggregator layer
of the K-Encoder on the right. [71]

To generate the entities, the knowledge embedding model TransE [4] is trained on Wiki-
data1. These entities are then aligned with the entities in English Wikipedia, which are
annotated via TAGME [13]. Then English Wikipedia with the KG from Wikidata is
used for pre-training, where the underlying Transformer blocks are initialized with the
weights of the original BERT model released by Google2.

For pre-training the three objectives NSP, MLM, and denoising entity auto-encoder
(dEA) are used. The dEA objective is introduced by ERNIE to inject knowledge from
informative entities into the language representation by randomly masking some token-
entity alignments and let the model predict the aligned entities from the corresponding
tokens. [71]

ERNIE 2.0 In ERNIE 2.0, a continual pre-training framework is introduced to better
capture, beside the common co-occurrence of words or sentences, lexical, syntactic and
semantic information from the training corpora like named entities, semantic closeness,
and discourse relation. To accomplish this, the authors incrementally build pre-training
tasks and train pre-trained models on it via continual multi-task learning. This enables
to surpass the performance of BERT and XLNet on several NLP tasks.

1https://www.wikidata.org/
2https://github.com/google-research/bert
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Figure 2.8 shows the differences in Sequential (Continual) Multi-task, Multitask and Con-
tinual Learning. In Continual Multi-task Learning the model is trained on one task for
some iterations. Afterwards the model is initialized with the trained weights and is
trained on another task but keeping the previous task in training. This procedure is
repeated for every new task and all preceding tasks are jointly trained again with the
new task. This is to not forgetting the knowledge gained on the previous task, how it
may happen by just Continual Learning, and the joint training on multiple task aid one
another for better learning from the data.

Figure 2.8: Three different learning methods on multiple tasks. Left: Sequential (Con-
tinual) Multi-task Learning, where after learning a task, a new one is added
and the model is trained on the previous and new test, continual adding new
tasks. Middle: Multitask-Learning, where all tasks are learned jointly at
once. Right: Continual Learning, where all tasks are learned sequentially.
[50]

ERNIE 2.0 is trained on three different kind of tasks to grasp diverse aspects of informa-
tion. The word-aware tasks, structure-aware tasks, and semantic-aware tasks to capture
lexical, syntactic, and semantic information. [50]

ERNIE 3.0 ERNIE 3.0 uses an architecture, where a universal representation is
learned by a Universal Representation Module, which is basically a network like ERNIE
2.0 with the same pre-traing task, except the standard Transfromer is exchanged for a
TransformerXL. [10] The novelty is the usage of Task-specific Representation Modules for
fine tuning. There are two modules for fine tuning, one natural language understanding
and one natural language generation module. These modules are also TransformerXL
based but with fewer parameters then the Universal Representation Module. During
fine-tuning, only the parameters of the Task-specific Representation Modules are up-
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dated. Also the parameter count for the model is rised to 10 billion and the amount of
training data is increased to 4 TB. [49]

T5

The authors seek to explore current techniques in NLP like architecture, pre-training
objectives, and transfer approaches. For this endeavor they introduce a unified frame-
work which treats all text-based language problems as text-to-text problems, which takes
only texts as input and producing texts as output. The task is specified by a special
token which prefixes the input sequence. This enables to directly apply the same model,
objective, training procedure, and decoding process to all examined tasks. The authors
created the Text-to-Text Transfer Transformer (T5) to examine existing techniques and
do not propose new methods. To train the model they also created a new dataset called
“Colossal Clean Crawled Corpus” (C4) by cleaning up Common Crawl’s web extracted
text and filter out any pages that were not classified as English. The final dataset is
about 750 GB in size. The T5 model is an encoder-decoder Transformer very close to
the original one with the modifications of removed Layer Norm bias, layer normalization
placed outside the residual path, and using an alternative position embedding scheme.
The configuration of encoder, respectively decoder is similar to BERT-base and the text is
encoded by SentencePiece. [25] The encoder and decoder share the same weights, which
do not affect computation but halves the parameter count. The most effective train-
ing objective they used, was corrupting spans like SpanBERT. Also the authors found
training longer (more steps), rise the batch size and increased parameter count have all
positive impact on model performance. Bigger datasets are also beneficial as the fewer
repeated data the model is trained with, the better the performance gets. Furthermore,
pre-training on unsupervised data worked as well as pre-training on a multi-task mixture
of unsupervised and supervised tasks before fine-tuning. Additionally, fine-tuning was
most effective when all parameters of the model where updated jointly without parameter
(un-)freezing, albeit this is the most computational intensive strategy. [38]

ELECTRA

Efficiently Learning an Encoder that Classifies Token Replacements Accurately (ELEC-
TRA) is an LM, which introduces a more sample-efficient pre-training task than MLM,
called replaced token detection. For pre-training, the input is corrupted by replacing

18



2 Analysis

some tokens with plausible alternatives, sampled from a generator network. The actual
LM is trained by detecting if the tokens of the input sequence are replaced or not. So
the sample efficiency of this method is higher than MLM, because the task is defined
over all input tokens instead just over the masked ones, which boils down to typically
just learning from 15 % of the tokens per sample by models like BERT. Also no [MASK]
tokens are needed, which prevents the pre-training/fine-tuning discrepancy. This method
is supposed to be especially effective for small models and the method can be used to
either train a model with much less compute or with the same compute and getting a
better performing model. E.g. to reach the performance of RoBERTa and XLNet, just
1/4 of the compute is required for ELECTRA. Furthermore, ELECTRA is also more
parameter-efficient, as smaller models reached or surpassed the performance of much
larger models.

Although the generator/discriminator approach is reminiscent to GANs, the generator
produces no adversarial tokens and is trained with maximum likelihood. The architecture
of the discriminator is mostly the same as BERT, and the used generator is an MLM
about 1/2 or 1/4 of the discriminators size, but the generator can be any model that
produces an output distribution over the tokens. [9]

2.2 Recommender Systems

Recommender Systems are software tools using algorithms to suggest recommendations
to a user. Generally, RS serve a big audience of users and are available as online services
as part of other online services like e-commerce websites, music, and video streaming
platforms or news websites. To make personalized recommendations possible, RS need
information about the users, either as explicit or implicit feedback.

Explicit Feedback The users provide information directly. This can be user profile in-
formation like age, gender, origin, interests etc. Also direct feedback on items like
ratings, likes or reviews fall under this category.

Implicit Feedback This category subsumes all traces of behavior patterns that users
show. This can be clicks on items, buys of items, the time a user engages with an
item like how much of a video, music track or news article a user consumed. Click
streams on websites count as well as every piece of data a company collect due to
the use of their online service.
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Generally, the data a RS deals with are a set of users U and the set of items I. Whereby all
user data like profile information, session data and pageviews are associated with the user
u and all item data like content, description and metadata are associated with the item i.
Furthermore, it is distinguished between observed and unobserved user-item interactions.
Where observed interactions describe all interactions where a user has engaged with an
item like a pageview or a like/dislike and unobserved describes all interactions between
user and items which do not took place yet.

Machine Learning (ML) based RS need objective functions, which will guide the learning
process. Usually two kinds of objective functions are used, either a function for a classifi-
cation task or a ranking task. Where the classification function measures how well a RS
can predict the items a user will buy, read, watch etc. in the future, with no ordering.
On the other hand, the ranking function measures how well a RS can predict an ordered
list of items where higher ranked items will match the users interest more than lower
ranked.

Some RS, which operate on a very large corpus of millions of items, divide the task
into subtasks to make the problem tractable. The systems typically have a candidate
generation stage, which pick a few hundreds/thousand items from the large corpus which
may interest the user. This stage typically uses less features for computation reasons and
is a classification task, whether the user is interested or not. Next comes a scoring stage,
which scores the items for user interest and ranks them into an ordered list. This stage
can utilize more features as the input is much smaller, which reduces computation costs
a lot. The last stage may be Re-ranking, which takes additional constraints for the final
ranking like diversity, freshness, and fairness into account.

General Methods

Collaborative Filtering (CF) The assumption in CF method is, that users with
similar interests in the past will also have similar interests in the future. If one user is in-
terested in an item, another user with a similar history will probably be also interested in
that item. So the similarity of user interest is calculated trough the similarity of the rat-
ing/view history of the users. Therefore, CF is also referred by [45] as "people-to-people
correlation". Through a high amount of user-item interactions, the users collaborate
with each other. This allows pure CF methods to work without any knowledge about
the items. To yield a good recommendation performance an as big as possible amount of
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users must be available. For recommendations with CF a user history must be present.
New users and items have to be learned and the recommendation model has to be up-
dated or trained from scratch. This can be circumvented by combining CF with Content
based in a hybrid model and using deep learning models. [16] In CF a distinction is
made mainly in two methods: Neighborhood and Latent Factor Models. Neighborhood
methods are focused on the relationship between users or items. Whereas Latent Factor
Models transform the users and items into the same latent factor space. These factors
characterize the users and items and can be used to compare the users interests with the
characteristics of the items. [42, 21]

Content based Contend based systems learn to recommend items, which are similar to
that of a users history. The similarity measure is based of descriptions/features associated
with the items and profiles, which assigns importance to these characteristics. These are
either manually created or automatically extracted. Thus recommender systems research,
especially with the contend based methods, are strongly rooted in the field of information
retrieval and information filtering. The recommendation is based on how similar the
user profile and the item features are. The profiles are generated through analysis of user
behavior, user feedback, and information the user provides directly. For a good precision
no big user group is mandatory but a user history must be present. Moreover, new items
can be recommended without new model training. [42, 21]

Knowledge-Based Knowledge based recommenders are based on available, detailed
content like technical or qualitative properties. These usually have to be provided man-
ually and have to be available for items and users. Here typically a user interaction is
mandatory to generate the user profile. An example are constraint-based recommenders,
which suggest items by properties like price, category or genre. These systems are espe-
cially useful if no user history is available. [42, 21]

Hybrid Systems In hybrid systems, different methods are combined to compensate
for weaknesses of one method or to integrate more information to yield better recom-
mendation performance. [42, 21]
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2.2.1 Deep Learning

Deep Learning methods are relatively new in the field of RS. Here, Deep Neural Networks
(DNN) are used to suggest recommendations. Due to their non linear computations, very
complex relationships in the data can be modeled in contrast to linear models like Matrix
Factorization. They are typically used to implement CF or Content based methods and
often combine several methods to a hybrid system. DNN are also useful to retrieve
information from different sources like text, pictures, videos, music, categorical and many
other data modalities.

There is a broad collection of neural networks, which are utilized for current RS like
Multi Layer Perceptron (MLP), Convolutional Neural Networks (CNN), Recurrent Neu-
ral Networks (RNN) and its specializations Long Short Term Memory (LSTM) and Gated
Recurrent Unit (GRU), and recently Transformer based neural networks. A comprehen-
sive description of these neural networks is given by [20], except for Transformers which
is described in [53]. A good overview over deep learning based systems are given by [68].
[55] also covers DL Systems, albeit with a focus on session-based recommendations. In
the course of this section, some selected works are presented, which are representative of
the concerned NN architecture, are especially noticed by the RS research community or
use interesting methods. Some other NN architecture like Graph neural Networks (GNN)
or methods like Deep Reinforcement Learning (DRL) are also utilized by RS but will not
be covered by explicit examples as they are less broadly used and would go beyond the
scope of this work.

Transformer Based RS

RS with the most recent type of Artificial Neural Network (ANN) architecture, Trans-
formers [53], are very sparse compared to traditional DL based recommenders but gain
traction. Examples are [7, 3, 66, 24, 48, 63, 67, 70, 6]. The adoption of Transformers in
the RS field is also underlined by [47] with the creation of the Transformers4Rec library
to make the usage of Transformers in RS more accessible. Some of the more noticed
Transformer based RS are [24, 48, 7], which are now briefly introduced as representation
of this kind of RS.
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Self-Attentive Sequential Recommendation Self-Attention based Sequential Rec-
ommendation model (SASRec) uses the decoder module of a standard Transformer model
for recommendations with just a few changes. The model is a causal Transformer, which
attends only to previous tokens like GPT. The input to the model is the user history per
sample. The item IDs in the user history are the input tokens for the model, like words
are input tokens for a LM. First, the items are fed into an embedding layer, which learns
an embedding for the item and the position. The difference to the standard Transformer
is the learned position embedding, which performs better than the fixed position em-
bedding. Next, the embeddings are processed by stacked self-attention blocks, with the
difference that the authors used single-head instead of multi-head self-attention, which
performed better in their experiments. The next item prediction, given the first t tokens,
is produced with a Matrix Factorization (MF) layer with shared weights with the input
item embeddings. This essentially boils down to computing the inner product of the
next output token embedding with all item embeddings and ranking the results by the
computed score. For training the authors adopt the binary cross entropy loss to make
the score between the output token embedding and the expected item embedding higher
than the score for a randomly sampled negative item embedding. [24]

BERT4Rec: Sequential Recommendation with Bidirectional Encoder Repre-
sentations from Transformer BERT4Rec adopts the BERT LM to the RS domain
and hypothesizes that the users historical behavior may not always follow a rigid ordered
sequence due to various unobservable external factors, and that the power of hidden
representations for items will benefit if they can encode the information from left and
right context. Thus, unidirectional left-to-right models do not exhibit the full poten-
tial to model optimal representations for the user behavior sequence. It uses essentially
the same architecture as BERT inclusive the cloze/MLM task but utilize learned em-
beddings, remove the next sentence prediction task, and segment embeddings since the
authors model the user behavior as only one sequence. Additionally, the model is used
in an end-to-end fashion without pre-training, as knowledge is not transferable between
datasets with different items. For the output, a two layer feed-forward network is used,
whose output is multiplied with the shared item embedding matrix, and a final softmax
layer assigns probabilities to the items. The training objective is a negative log-likelihood
of the masked targets which maximizes the probability of the output embedding to be
the actually masked item. The masked items training create a mismatch between the
training and the final sequential recommendation task. This is addressed by inserting
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the mask token at the end of the user’s history and predict the next item based on the
output embedding corresponding to the mask token. The experiments show that the
bidirectional context of the model significantly improves its performance as well as the
cloze task. [48]

Behavior Sequence Transformer for E-commerce Recommendation in Alibaba
User Behavior Sequence Transformer (BST) models the recommendation task as Click-
Through Rate (CTR) prediction problem, using a Transformer to take advantage of the
behavior sequence of users. BST is build upon the Wide and Deep model by concate-
nating miscellaneous features and sequential features from the user behavior and feed
them into an MLP, which predicts the click probability of a target item. The miscel-
laneous features like user profile, context, item, and cross features are embedded and
concatenated into one vector. The items from the user history are represented by the
embedding of their features like item_id and category_id, which are concatenated with a
positional embedding into a single item representation vector. The item representations
are processed by a Transformer layer, whose output is fed into the final MLP. [7]

MLP Based RS

Neural Collaborative Filtering With short for Neural network-based Collaborative
Filtering (NCF) the authors introduce a general framework with General Matrix Factor-
ization (GMF) MLP (NCF) and Neural Matrix Factorization (NeuMF) as instances of
that framework. They focus on CF on the basis of implicit feedback and thus propose
a probabilistic model, which predict the interaction probability of a user and an item.
The input to the model is a one hot encoded vector for users, respectively items. These
input vectors get transformed into dense embeddings, which can be seen as user (item)
latent vectors in the context of a latent factor model. Next, the embeddings are fed
into a multi-layer neural architecture which maps the latent factors to prediction scores.
The model is trained by minimizing the binary cross-entropy loss between the predicted
probability score of the model and the ground truth. Negative instances are randomly
sampled from unobserved interactions.

In the GMF instance the element-wise product (Hadamard product) of the user and item
embeddings are projected trough a learned weight matrix and sigmoid as the activation
function to produce the final output score. In the MLP (NCF) instance, the user and
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item embeddings are concatenated and fed trough an MLP, which learns the interactions
between users and items and outputs the probability score trough a sigmoid. This en-
dows the model with a large level of flexibility and non-linearity to learn the user item
interactions compared to an MF model. The NeuMF model combines GMF and MLP
(NCF) into an ensemble model, which leverages the linearity of MF and the non-linearity
of MLPs. The overall architecture of NeuMF is shown in figure 2.9. [16]

Figure 2.9: NeuMF model: On the Left the GMF layer can be seen. On the Right the
MLP instance is shown. The layer on the Top combines the final embedding
layers of both models and yield the final score. [16]

Wide & Deep Learning for Recommender Systems In the Wide & Deep learning
framework the authors combine a wide linear model and a non-linear deep MLP. The
joint training of both models leverage the memorization capabilities and effectiveness
of cross-features of the linear model under sparse and high-rank user-item interaction
conditions and the generalizeability to unseen feature combinations and the need for less
feature engineering effort of deep networks. Memorization in the wide model is achieved
by learning frequent co-occurrence of features or items in the historical data. The input
to the wide model is raw input features and transformed features like cross-product
transformations, e.g. “AND(gender=female, language=en)”. The sparse input features
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for the MLP are converted into embeddings and concatenated with dense input features
and fed into the model. The final prediction of the wide and deep part are the weighted
sum of their output log odds. [8]

CNN Based RS

Personalized Top-N Sequential Recommendation via Convolutional Sequence
Embedding The ConvolutionAl Sequence Embedding Recommendation Model(Caser)
is a CNN based model, which represents the behavior sequence of users as "images" of
ordered items (rows) x latent dimensions (columns). This embedding matrix is searched
with various convolutional Filters for sequential patterns by modeling them as local
features and thus do not model sequential behavior as adjacent actions. These filters are
applied vertically and horizontally to capture point-level, union-level and skip behaviors.
Where at point-level the target action is only influenced by the previous action, at union-
level the target action is jointly influenced by ordered previous actions and skip behaviors
where the impact of previous actions skip some steps between these and the target action.
Caser is made up of three components, embeddings, CNN and MLP. The item input to
the model is translated into embeddings, which are learned together with the other
components. Beside the sequence embeddings, the model also maintains an embedding
for user features. The input to the CNN is the stacked embedding matrix E ∈ RL×d

with L items of d dimensional embeddings. The Horizontal Convolutional Layer captures
union-level patterns with multiple union sizes by sliding filters of various heights and full
width d from top to bottom and thus interacting with all successive items. The Vertical
Convolutional Layer captures point-level sequential patterns through weighted sums of
previous item embeddings by sliding filters of dimension L× 1 from left to right, where
each filter acts as a different aggregator. To get more high level abstract features, the
concatenated output of the CNN layers is fed into an MLP, whose output represents the
sequence embedding. The sequence embedding is concatenated with the user embedding
and gets projected into the output layer. For training, the output is transformed into
a probability by the inner product of the output layer and the target item with a final
sigmoid. The training samples for Caser are generated by a sliding window of L + T ,
where L successive items are the input and T successive items are the target, whereby
each window produces one training sample. Skip behaviors can be considered by skipping
the direct target item and replace it with the next target items. The model learns by
minimizing the binary cross-entropy with three randomly sampled negative items. [51]
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DKN: Deep Knowledge-Aware Network for News Recommendation The deep
knowledge-aware network (DKN) is a model, which incorporates external knowledge from
a Knowledge Graph (KG) into the sentence representations from news titles and use an
attention mechanism over a users history to predict the users interest in a candidate news
article. The key component is a knowledge-aware convolutional neural network (KCNN)
with multiple channels and word-entity alignment to fuse the semantic and knowledge-
level representations of news articles. The words in a news title are associated with a
relevant entity from the KG and its contextual entities. The KCNN treats word, en-
tity and contextual entity embeddings as multiple channels like colors in an image. To
eliminate the heterogeneity of the word and entity embedding spaces the entity embed-
dings are projected into the word embedding space with the same size trough a linear or
non-linear learnable transformation function. The news and candidate news articles are
transformed into an embedding by the KCNN to which an attention module is applied.
This dynamically aggregates the users history by matching viewed articles with different
weights to the target article. Specifically, two article embeddings are fed into an atten-
tion DNN, which assigns an impact weight to the article. This is done for all viewed
articles, whose weights are normalized trough a softmax, which is used to calculate the
weighted sum of all viewed articles to generate the user embedding. The final prediction
is computed by an MLP, which is fed with the user embedding from the attention module
and the target news embedding. [54]

RNN Based RS

Session-based Recommendations with Recurrent Neural Networks This work
is a seminal paper, which proposed GRU4Rec, an RNN based RS for session-based rec-
ommendations. As input, the network is fed with a sequence of one-hot encoded items,
which was superior to embeddings for this model. The model consists of possible mul-
tiple GRU layers with skip connections from input to intermediate GRU layers and an
optional MLP for the output, while the authors achieved best performance with just one
GRU layer without MLP. The output of the model is the most probable next item of the
input sequence. The model is trained by minimizing a ranking based loss where TOP1
and Bayesian Personalized Ranking (BPR) showed the best performance, whereby TOP1
was devised for this model and is the regularized approximation of the relative rank of the
relevant item. To train the model, mini-batches from different sessions are constructed
where each batch consists of the current event of the corresponding session the next even
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of the session as target. The next batch is constructed from the next event and next
target. As sessions have different length, on the place of an exhausted session the next
unprocessed session is used and the network state for the session is rest. Negative sam-
ples for the ranking based loss are drawn from the sessions of the current batch, which
corresponds to popularity-based sampling, because the likelihood of a sample to be in
the other sessions is proportional to its popularity. [18]

Additional improvements to the original algorithm is made by the author in [17]. Firstly,
improved loss functions TOP1-max and BPR-max are proposed, which tackle the van-
ishing gradient problem when having many negative samples with a low score. This is
achieved by a weighted sum of the negative example scores with a softmax, which assigns
high scoring samples more weight. Further, they improved sampling by also sample from
the whole dataset in addition to sampling from the sessions in the batch, because high
scoring negative examples are crucially for the model to learn efficiently and the batch
of sessions is too small to draw many high scoring samples. The additional samples are
drawn proportional to the support of the item with a hyperparameter to slide between
more uniform and more popularity based samples. Additionally, the use of embeddings
which share weights for the input and output embedding show further minor improve-
ments.

Embedding-based News Recommendation for Millions of Users The authors
propose a news RS with three components in an end-to-end manner. First, the articles
are converted into a distributed representation, a.k.a. embedding, based on a variant of
denoiseing autoencoder (DAE), where the output of the encoder represents the article
embedding. Next, the article embeddings are fed as sequences, representing the users
history, into an RNN to generate a user representation. Lastly, candidate articles are
matched to the user by taking the inner product of the candidate article and user repre-
sentation and ranked by score and additional factors like freshness and expected number
of page views. Importantly, the candidate articles are de-duplicated to not dissatisfy the
user with many different articles on the same content. This is done by skipping articles
whose cosine similarity with other higher scored articles surpass a threshold. The DAE
is trained with the elementwise cross entropy objective with an additional loss, which
ensures that articles in similar categories have more similar representations than articles
of different categories. The noise is produced by masking the input tokens with stochas-
tic corruption and corruption rate p. For the user representation a single layer RNN is
used, whereby a GRU performed slightly better than an LSTM. The user representation
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component is trained with a log loss by forcing the relevance score of all clicked articles
in a session to be higher than all shown not clicked articles. The relevance score is simply
computed by the inner product of the user and article embedding. [32]

Attention Based RS

MARS: Memory Attention-Aware Recommender System TheMemory Attention-
Aware Recommender System (MARS) model tries to model the diverse interests of users
by using a memory component of the user’s history and an attention mechanism to dy-
namically adapt the user representation to a candidate item. The attention mechanism
also has the effect of greater interpretability to explain the recommendation. The user
memory component is built by computing an embedding of all items liked by a user
through a CNN and concatenate the embeddings to a single memory component vector.
The item embedding is generated from the textual description of an item. First, a word
embedding layer is utilized, which produces the embedding matrix. This matrix is pro-
cessed by one CNN layer with several filters, which span the whole embedding dimension
and a window size c. From each filter the most important feature is extracted through
max-pooling and a final fully connected layer projects the features in the item embed-
ding dimension. The candidate item embedding is generated the same way as the item
embedding, only with differing inputs and weights. The dynamic user representation
is computed with the attention mechanism. Therefore, an attention vector is obtained
through a softmax of the inner product of the memory component vector and candidate
item. The user representation is the weighted sum of the memory components by the
attention vector. The final score of the candidate is given by the inner product of it and
the dynamic user representation. The training of the model is inspired by BPR and done
by pair wise ranking loss of the relevance scores of a positive and negative sample of user
liked items, while user, positive and negative items are uniformly sampled. [73]

2.2.2 News Recommendation

News recommendation comes with important properties, which have to be taken into
account. News articles are very time-sensitive with a quickly expiring relevance and
out-of-date news are substituted with newer once frequently. People are topic sensitive
and usually interested in multiple specific news categories, so an RS must dynamically
extract the current user’s interest from a diverse reading history. News texts are highly
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condensed and comprised of a large amount of knowledge entities and common sense.
[54] Thus, it is important to understand the content of articles, the user preferences and
select articles individually for users based on content and preference. Also, the RS have
to be scaleable and must respond with a very low latency to every user access. [32]
Additionally, usually no explicit user feedback like reviews, ratings or likes is available,
so the personal user interest has to be inferred from his implicit feedback like clicks.
[58] Further challenges in news recommendation are described by [12] and summed up
in table 2.1.

Collaborative Filtering
Approach Challenges

Content-Based Ap-
proach Challenges

Hybrid Approach Chal-
lenges

Cold-start Problem Recency Data Sparsity
Explicit User Feedback Continuous Changes in

News Items Set
Scalability

Continuous Changes in
User Interests

Unstructured Content Serendipity Problem (rec-
ommending same item
again)

Changing User Interest
due to Topic Divergence

Response Time Fraud

User Modeling or Profiling News Recommendation
from Multiple Sources

User’s Privacy Problems Cross Lingual News Rec-
ommendations

Gray Sheep Problem
The Context-Dependent
Relevance of Items
Unpredictable Behavior for
the Same Items
Unwillingness of Users to
Register
Using Shared Devices

Table 2.1: Challenges in news RS collected by [12]

An example workflow of personalized news recommendation is depicted by figure 2.10.
First, the user visits a news platform. Second, the RS has to recall candidate news from
a large-scale news pool. Third, the candidate news are ranked by the RS, which may
include criterions like relevance, recency and filtering by e.g. de-duplication. Forth, the
narrowed down top k list of news is displayed to the user. Lastly, if the user chooses an
article, the user interaction is logged and used to update the user profile. [58]
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Figure 2.10: “An example workflow of personalized news recommender systems.” [58]

In figure 2.11 a common personalized news recommendation model development frame-
work is shown with key problems to solve. In news recommendation, the modeling of
news is crucial, with the core problem to understand content and characteristics of news.
To understand the personal interests of users, a user model has to be developed to infer
their interests based on user profiles, including behavior and other user characteristics.
Now, the RS have to rank candidate news based on the user and news representations
generated by the news and user model with certain criteria like relevance and freshness.
The next step for a well performing RS is a proper model training with defining objectives
as a critical part. Lastly, the model has to be carefully evaluated. [58]

31



2 Analysis

Figure 2.11: “A framework of the key components in developing personalized news rec-
ommendation model.” [58]

User modeling in news and general recommendation, like e-commerce or movie recom-
mendation, have a close relation. The core NN architectures, like CNN, RNN and
self-attention, are often the same and widely used in news and sequential recommenda-
tion. Despite related techniques and methods, there are unique characteristics in user
modeling for personalized news recommendation [58]:

Short news lifecycles Interactions with news typically span only a few days in compar-
ison with e-commerce, where items can be relevant for years. So ID embeddings
are often not very useful to represent news items and it is better to use the content
for learning a representation. Also, the exploitation of collaborative signals in user
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modeling is limited due to the quick vanishment of old news and the large fraction
of cold news in the inference stage.

Fine-grained candidate-aware user modeling The rich content and context information
of news can be leveraged to model fine grained interactions (e.g. word-level inter-
actions) between user behavior and candidate news instead of just overall item
embedding with user behavior.

User modeling as document modeling News contain rich text and user modeling can
be reformulated as document modeling where texts of clicked news are embedded
in user "documents". PLM can be utilized to enhance user modeling and shows
the proximity of NLP and news recommendation.

Potential strong temporal diversity preference Users prefer diverse news and other than
in general recommendation, the next clicked news tend to be different from the pre-
vious one. A recent study [60] suggests that news modeling should not be considered
as a standard sequence recommendation task, which is supported by the success
of standard self-attention models [48] over causal self-attention [24] and other se-
quential models, as they focus more on global context then sequential dependency.

Some of the reviewed works already concern the news RS domain. Where Okura et
al. of section 2.2.1 modeled news content with a GRU based AE and the users as
a sequence of article embeddings likewise with a GRU. Wang et al. of section 2.2.1
used a CNN combined with entity embeddings of a KG to model the news and an
Attention Network to model the user based on clicked news embeddings and candidate
news embeddings. Other approaches are taken by [72], [66] and [59]. Zheng et al. [72]
proposed a Deep Q-Learning based recommendation framework, which is a DRL based
method and can model future rewards explicitly, thus keeping track of current and future
rewards simultaneously where the reward is determined by user clicks and activeness.
The model predicts the click probability for candidate news with a multi-layer Deep
Q-Network. The Q-Network essentially models the user behavior and is divided into
two networks, which represents the value function and advantage function. Due to the
nature of RL, they are able to do online recommendation with exploration and actively
explore the user’s interests instead of just learning from historical data. For exploration,
they use an additional exploration NN and a Dueling Bandit Gradient Descent (DBGD)
method to choose between recommendations from normal and exploration NN. This
leads to more diverse recommendations while not hurting accuracy too much in contrast
to random exploration. Additionally, to click streams, they use user return patterns
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and maintain an activeness score per user as a supplementary signal to capture more
user feedback information. As input, they do not use the news content but one-hot
encoded features, which describe whether a certain type of property appears in the news,
context of the pageviews like time, and user features like properties of previous clicked
news. Initially, the model is trained with recorded offline logs and in the online phase, the
model learns by interacting with the users. Zhang et al. [66] propose User-News matching
BERT (UNBERT), which achieves the first rank in the MIND leaderboard.3 at the time
their paper was published. UNBERT uses a pre-trained BERT model to obtain a news
representation from news titles and adopt the pretrain-finetune strategy to fine-tune the
whole model to the in-domain news data to generate scores for all candidate news by
predicting their click probabilities. It captures multi-grained user-news matching signals
at word-level and news-level using a Word-Level Module (WLM) and News-Level Module
(NLM). The candidate news as "News Sentence" and the sequence of user clicked news
as "User Sentence" is both fed into the same BERT model by separating them with the
special [SEP] token and the concatenated words of clicked news titles with the [NSEP]
token. The word level news representation is given by the embedding of the BERT
typical [CLS] token. The news level representation is generated by aggregating the word
embeddings of each news with an Attention Aggregator and process them with the same
Transformer layers from the WLM. The NLM representation is likewise given by its
[CLS] token. The final click prediction is given by an MLP with the WLM and NLM
representations as input. In this model, the news and user representations are tightly
coupled and not modeled with separate modules. Wu et al. [59] achieved the highest
rank on the MIND leaderboard at the time of writing this thesis. They explore the
effectiveness of combining different PLM for news representation with existing methods
like Okura et al. of section 2.2.1, which improved the recommendation performance
significantly. The best results are achieved by combining the UniLM PLM by [2] for
news representation with an attention network for pooling word embeddings and the
model from [57]. The model is modified by exchanging the standard Transformer layers
with the Fastformer [61]. So the user is modeled by feeding the PLM encoded news
articles into the Fastformer, whose final news embeddings are pooled by an attention
network. The click probability score is obtained through the inner product of the user
and news representation vector. For a comprehensive overview over personalized news
recommendation the recent survey by [58] can be consulted.

3https://msnews.github.io/
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2.3 Conclusion

As shown in the analysis so far, a successful news recommendation system has to meet
different criteria and the user modeling and news modeling module are crucial compo-
nents. To establish a baseline for the news recommendation dataset, a relatively simple
model with an extendable architecture will be chosen. The model should be trainable in
a preferably short period of time for easy reproduction and to be able to rapidly perform
experiments and test prototypes. Also, the RS have to meet low latency and resource
consumption criteria to make in production serving to users possible. The system has
to be extendable, to use the baseline as starting point for further experiments, which
may incorporate advanced user and news modeling. To not relay on pre-trained models
whose training parameters are not under own control, the baseline will not incorporate
PLM. Recently, Transformer base models have shown to be performant but also very
sensitive to datasets and hyperparameters, so these types of models will not be chosen
for the baseline. Although RNN based models have shown good performance in RS, due
to their sequential nature they are difficult to parallelize and may have too expensive
training time.

A previous project [29] has shown that the CNN based MARS: Memory Attention-Aware
Recommender System from [73] has several advantages, which qualify it for the baseline.
Benefits on the technical site are a fast training with very few training epochs to converge,
insensitivity to batch sizes and a good parallelizability with many GPUs due to the CNN.
The insensitivity to batch sizes is important as the data is high dimensional with large
deviations in the view history of users and word count per news article. This leads
to the need for much padding in large batches, which consumes a very big proportion
of the computational and memory resources. Alternatives for using large batches are
Ragged Tensors4 or sorting the training data by length of user history and articles,
which both have also downsides. According to [29] Ragged Tensors have shown to be
immature and thus of very limited use in Tensorflow for this kind of models and not
implemented at all by PyTorch. The sorting of training data may have a huge negative
impact on recommendation performance and may also lead to a poor data efficiency so
the model needs to train on more samples, which compensate or overweigh the gain in
data throughput.

4A kind of nested arrays of different length also called jagged/ragged array, see: https://en.
wikipedia.org/wiki/Jagged_array
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The MARS model meets all criteria for a news recommendation system. It is able to
distinguish the user’s diverse interest in possible multiple specific news categories through
the deep adaptive user representations. The model understands the news content with
news modeling using a CNN. The user’s preference is modeled with a memory component
and recommended articles are selected based on the candidate articles content and the
user’s preference. Also, the model needs no explicit user feedback and infers the user’s
interest from the implicit feedback of clicked articles. The attention mechanism which
models the user’s diverse interest through deep adaptive user representations is a unique
feature to the best knowledge of the author. The model attends to a context item,
which can be for example the currently read news article, and derives a user profile
dynamically adapted to the context item. Moreover, the representation of the items
and the user profile is trained and optimized jointly in an end-to-end fashion, whereas
many other RS models train different parts of the model separately. This simultaneous
training of the news and user model makes the training pipeline less complicated and
promise a good tuning of the components with each other without manual tuning of
the individual model to each other. Furthermore, the neural network topology is easily
implementable for its relative simplicity and its architecture is easy adaptable to different
recommendation scenarios and types of context data. A drawback of the model is,
that it does not consider the sequential ordering of the view history. This drawback
is mitigated, since the different parts of the model, e.g. the CNN and Dense networks,
are straightforward to replace with more powerful and sophisticated Neural Networks,
like PLM for news modeling and Transformer based networks for user modeling with
consideration of sequential/temporal features. Additionally, through the use of standard
CNNs and basic dense networks, the speed to yield a recommendation for a user should
comply with the strict latency requirements in a real world recommendation scenario.
Furthermore, the architecture is suitable to adapt the user profile to a live stream of
user interactions without the need to precompute user profiles. Finally, as the model has
its origin in e-commerce recommendation, the implementation can help to answer the
question of challenges in the adaptation to the news recommendation domain.

So far with this analysis some questions have already been answered and can be summa-
rized as follows:

Q1: After thoroughly analyzing the requirements of a news recommendation system and
exploring DL based RS techniques in different directions, a model for the baseline
has been chosen. This is the first part to fully answer the question, which will be
continued in the next chapter.
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Q4: The challenges in news recommendation are addressed in section 2.2.2, which states,
that news modeling is one of the most crucial parts in news recommendation. A
framework to develop news RS is shown in figure 2.11 and a listing with special
news RS charactteristics in distinction from other RS is paraphrased in listing 2.2.2.
Practical challenges are discussed in the next chapter.

Q5: In section 2.2.1, some models are introduced, which incorporate different features
from items and users which can generally be used to incorporate different metadata
into a (news) RS. E.g. the BST model embeds miscellaneous categorical features
from items and concatenates them into one representational item embedding. Like-
wise, different features from a user are embedded and concatenated with sequential
user history features and collectively fed into a final MLP. Also, the Wide & Deep
model uses embeddings for categorical features and concatenates them with dense
features, which are the input for an MLP. Also, the Caser model uses concate-
nation of different feature embeddings, which are jointly processed by an MLP.
Also, the possibility to indirectly using metadata by applying it in filtering in the
pre-processing stage or using it as labels to be predicted by the model as auxiliary
tasks are plausible.

In the next chapter the questions Q2 and Q3 are addressed and open points of Q1, Q4
and Q5 are approached.
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In this chapter, the experimental design is described, which is divided into dataset anal-
ysis, model, pre-processing and toolchain description. The dataset is introduced and
analyzed to find useful metadata, which can be accessed to enhance the RS and to plan
the pre-processing pipeline. Hereafter, the MARS model, which serves as baseline, is
described, which was already briefly introduced in section 2.2.1. Since the model was
implemented from scratch, as there is no implementation from the original authors avail-
able, its implementation and technical details are described. In a previous work [29], the
paper from [73] was replicated and the reproduced model implementation of this work
was validated through the use of public available datasets used in the paper. The three
datasets used in [73] consist of user rated items where movies have a short synopsis as
text data and e-commerce items have a textual description. In contrast to the afore-
mentioned datasets, the news dataset has no user ratings but user engagement data and
the textual data of the articles is the item content itself instead of a description of the
item. Next, the pre-processing of the data is described, including data processing for
the training and inference stage. Also, the adaptions of the whole RS pipeline from the
e-commerce to the news recommendation domain is described. Lastly, the toolchain and
the decision for the used tools over others are explained.

3.1 Dataset Analysis

The Dataset is kindly provided by SCHICKLER Unternehmensberatung GmbH 1 to sup-
port this research. Schickler work together with different publishers and dpa Deutsche
Presse-Agentur GmbH 2 to enhance the users news reading experience. The dataset is
fully anonymized and does not contain any personal data.

1https://www.schickler.de
2https://www.dpa.com
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The dataset is composed of 313 565 551 pageviews from 56 199 311 users and 823 947 (+1
with no full text content) articles. This leads to a density (ratio of observed to total
possible pageviews) of 0,000 677 171 %, which makes this dataset much more challenging
than the datasets in the original MARS paper with 0,24 %, 0,037 % and 0,0128 % density.
There are 47 fields for articles and 35 fields for the pageviews, respectively 54 and 63

when expanding the record fields. A selection of the fields of the pageviews and articles
are listed in table 3.1 and 3.2 together with statistics about number of unique values,
percent of not null values and minimum, average, maximum, and standard deviation of
fields containing texts or numerical values. The latter statistics are concerning number
of words in texts and values of numerical data, where boolean fields are treated as one
and zero values. Tables with all fields can be found in appendix A.2.

The most important field in the pageviews table 3.1 are the user_id to identify the user
and the article_drive_id to reference the corresponding article. The publisher_id and
portal_id are likewise important to do recommendations only for the portal or publisher,
whose service is accessed by the user. Another essential information is the fraction_-
article_read field, which indicates how much of the articles are read by the user. For
the RS baseline, the fraction the user reads is accessed to filter out pageviews, which
are actually not important for the user. For further refined models, the geo record field
with geographic information like city, county and approximated geographic coordinates
of the pageview could be very useful, e.g. to recommend articles of local interest. The
session_id could be leveraged for session based recommendation, especially when the
history of the user is very short. Session based recommendations are also a possibility
for personalized recommendations when a user does not allow to be tracked, respectively
delete browser cookies. Also, the session_referer_medium and session_referer_source,
which say something about how the user came across the article, may hold very useful
information for the recommendation. A future task will be to investigate for which fields
a DL model is able to find patterns to enhance the personalized recommendations.

The most important fields of the articles table 3.2 are the article_drive_id to connect
the article with the pageviews and the content fields article_header, article_teaser and
article_full_text. These content fields are in focus of this work and the most important
information to represent the articles, where the article_full_text also contains the text
of the header and teaser. For future work, the is_plus_article, which indicates a paid
content article and publishing and modification date could be beneficial information for
the RS. Also, the article_dpa_id field is very interesting, as it could be used to connect
the articles from this dataset with articles from the dpa, which have very rich metadata
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Field name Type Unique % Not Null Words/Values
min avg max Std.

user_id string 56199311 100.00
session_id string 167711970 100.00
session_referer_medium string 7 100.00
session_referer_source string 87 36.64
geo Record
useragent Record
publisher_id string 10 100.00
portal_id string 17 100.00
page_view_id string 312908725 100.00
user_type string 3 100.00
x_scroll_pct double 101 99.95 0.00 98.66 100.00 8.73
y_scroll_pct double 101 99.99 0.00 40.74 100.00 28.31
time_engaged_in_s int64 1036 100.00 0.00 30.88 489825.00 53.06
article_type string 3 60.53
is_paywall bool 2 92.39 0.00 0.26 1.00 0.44
content_type string 5 100.00
user_engagement_segment string 7 61.90
article_drive_id string 823944 48.14
fraction_article_read double 79904 48.14 0.00 0.24 1.00 0.28

Table 3.1: Schickler News Recommendation dataset: Statistics about pageviews.

as examined by [28]. The only drawback is the relatively low proportion of about 12 %

of articles connected to dpa articles.

In table 3.3 statistics are shown about pageviews per user, article, publisher, portal,
and session. It can be seen that users have a relatively low average view history length
with a big standard deviation. The histogram of figure 3.1 with pageviews per user
shows that the majority of users just view one to two articles. This indicates that the
current recommendation methods do not catch most first time users with interesting
further articles. This also promises that, through good recommendations, the increase
of just one pageview per user would have a massive impact on overall pageviews and
time spent on the portal. The average number of just 183,21 pageviews per article also
shows that most articles have a relatively niche audience, which would likely also benefit
from a targeted promotion to users. This is supported by the high standard deviation
and the histogram of figure 3.2, which shows that most articles have very low pageviews,
well below 100 and just a few over 1000. Figure 3.3 shows the pageviews per publisher
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Field name Type Unique % Not Null Words/Values
min avg max Std.

publisher_id string 10 100.00
article_drive_id string 823944 100.00
article_header string 755922 100.00 0.00 6.35 29.00 2.60
article_teaser string 738363 100.00 0.00 24.08 1485.00 15.38
article_full_text string 821750 100.00 0.00 398.35 30642.00 279.24
is_plus_article bool 2 97.77 0.00 0.19 1.00 0.39
article_dpa_id string 47290 11.92
is_dpa bool 2 100.00 0.00 0.12 1.00 0.32
published_at_local timestamp[us] 542925 100.00
modified_at_local timestamp[us] 736714 100.00

Table 3.2: Schickler News Recommendation dataset: Statistics about articles.

and its portals. It can be seen, that there is a big deviation between publishers and
especially portals in the amount of generated pageviews. All portals and particularly
the small portals should benefit greatly from the aggregated amount of pageviews when
it comes to train an RS, since more data is generally very beneficial for training a DL
model. This also brings the pre-tain and fine tuning technique into play. Further work
should investigate if training on the whole dataset with subsequent fine tuning of the
portal/publisher specific data improves the RS performance.

Data Unique Pageviews
min avg max Std.

PV per users 56 199 311 1 5,58 59 161 59,20
PV per article 823 947 1 183,21 4 007 936 6775,87
PV per publisher 10 11 421 549 31 356 555,10 73 769 662 20 521 363,43
PV per portal 17 475 987 18 445 032,41 73 769 662 21 215 710,41
PV per session 167 711 970 1 1,87 173 2,23

Table 3.3: Schickler News Recommendation dataset: Statistics about pageviews (PV)
per group.
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Figure 3.1: Histogram of pageviews per user with 59 161 bins and log scale on both axes.

Figure 3.2: Histogram of pageviews per article with 823 948 bins and log scale on both
axes.
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Figure 3.3: Pageviews per publisher with corresponding portals of the publisher.
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3.2 Model Architecture Overview

In this section an overviews of the MARS model architecture and its implementation is
given. The model generates recommendations by creating a user profile representation
based on the user’s view history and the content representation of the items in the history.
Furthermore, the user profile representation is dynamically adapted to the candidate
items by generating a representation of the candidate item, which is used for an attention
mechanism to weight the different items in the user’s history. Through the attention, the
proportion of items in the user’s history to contribute to the user profile representation,
which are similar to the current candidate item, is increased. On this way, the diverse
user’s interest is reflected by selecting items from the user’s history which are more
important to reason about the candidate item’s usefulness for the user. Figure 3.4 shows
an example for the adaptive user representation, where similar items are closer together
in the representation space and the distance between the user and the items indicate
the interest of the user in the item. A user i liked a list of different kinds of items (j1,
j2, j3, j4). Because of the diversity of the liked items by user i, their corresponding
representation vectors (vj1 ,vj2 ,vj3 , vj4) form two clusters in the space. This results in
the fixed user’s representation resides between the two clusters. So with a fixed user
representation, the RS would recommend item s to the user, although item j or k are
more close to the items liked by the user. The adaptive user representation on the other
hand is able to pay attention to the users diverse interest.[73]
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Figure 3.4: “A fixed user representation ui fails to express user i’s diverse interests. Adap-
tive user representations dynamically adapt to relevant items.”[73]

The overall architecture of MARS is shown in figure 3.5. The model from the bottom to
the top is structure as followed:

Input Y ni and Y j represents the documents, which describe the liked item by the user
and the item to attend to.

Item Representation Layer fuser(:; Ψ) and fitem(:; Ω) are the item representation layers,
which generate an item embedding used in the memory component and the context
item j. Ψ and Ω represent the learnable parameters of the item modeling layer.

Memory Component & Item Representation C depicts the users memory component,
which is the concatenation of the embeddings of all items liked by the user. Vj is
the item embedding of the context item which is attended to.

Attention Vector αij is the attention vector, which weights each item embedding i in
the memory component C by softmax(CT vj).

Adaptive User Representation The adaptive user representation uij is obtained through
the weighted sum of C by alphaij .
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Preference Score The final preference score rij is computed by the inner product of the
user and context item embedding uji

T
vj .

The final item recommendation list is obtained by computing the preference score rij for
all candidate items and by sorting the items by their score in descending order.

Figure 3.5: Overall MARS architecture. [73]

User Model The users are basically modeled by the summed item representations the
users have viewed. The dynamic user representation is achieved by weighting with an
attention layer, which attends to the context items.

Item/News Model The item representation is modeled with a CNN according to the
architecture outlined in figure 3.6. On the bottom, the models input layer consists of the
tokenized words of the input document. On top of that follows a word embedding layer,
which transforms the word tokens into embedding vectors. Next, the word embeddings
are processed by one convolutional layer. The CNN extracts contextual features, where
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each kernels height spans the whole word embedding vector, while sliding over the em-
beddings and is intended to capture one feature. A Max-pooling layer extracts the most
important feature value from each kernel. Finally, a dense layer projects the extracted
features of all kernels into the final item representation space.

The neural network topology for the items in the user’s history and the context items are
the same and only differ in the input and model parameters, hence the above description
and depiction in figure 3.6 applies to both CNNs, fuser(...) and fitem(...), in the architecture
overview of figure 3.5.

Figure 3.6: MARS CNN architecture used for learning item representations. [73]

Model Training

The training of MARS is designed to optimize the model for ranking and the authors
took inspiration from [40]. The key aspects they adopted are the process to generate the
training data and the loss function.
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Training Data The training data generation process is formalized as:

D = {(i, I+i \ j, j, j
′)|i ∈ U ∧ j ∈ I+i ∧ j

′ ∈ I−i } (3.1)

Where i, j, and j′ are uniformly sampled from U , I+i and I−i and represent the set of users
i, the viewed items j by a user and the not viewed items j′ of that user. According to [40],
this data generation strategy is intended to account for the skew in data, where some
few items are overly present in many user’s histories and would lead to train excessive
on these few items when just iterating the samples. Also there are typically much more
not viewed items in contrast to viewed ones. Additionally, [40] states that this sampling
strategy leads to a much faster convergence than simply iterating the training data e.g.
user wise.

Loss Function To train the model on ranking, the loss function takes pairs of viewed
and not viewed items to represent the user’s u preference of item j over item j′ as shown
in equation 3.2. So the model is trained to score each item viewed by the user higher
than each not viewed item.

L = − 1

|D|
∑

(i,I+i \j,j,j′)∈D

{ln(σ(uji
T
vj−uj

′

i

T
vj′))+λuu

j
i

T
uj +λuu

j′

i

T
uj′ +λvv

T
j vj +λvv

T
j′vj′}

(3.2)
Here, uji is the adaptive user representation of user u for item j and vj is the item
representation of j. The counterpart for the not viewed item j′ and its corresponding
adaptive user representation are vj′ and u

j′

i . The user’s i’s preference of item j over item
j′ is mapped into probabilities by the sigmoid function σ. The overall training minimizes
the negative log likelihood. λu and λv are regularization terms.

Model Implementation

Training Model Figure 3.7 shows the schematic representation of the MARS imple-
mentation with Tensorflow and Keras. As training input, the model gets an item the
user liked, extracted from the view history, the history minus the extracted item and an
item the user does not like/has viewed as shown on the bottom and already described
in section 3.2. To compute the liked and not liked context item and the corresponding
adaptive user representations for the loss computation, two instances of the model with
shared weights are applied to the different context items and the same view history. This
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is illustrated by the mirrored components on the left and right side of the figure. The
turquoise box in the center of the figure represents the CNN model, which is used for
all user/context item representations, with the only difference being the different model
parameters for user and context items. The adaptive user representation is computed by
first applying the User Item Model to all viewed items of the history through a Keras
Time Distributed Layer. This layer sees the input as time steps and applies the model
stepwise, which yields the Memory Component. The Memory Component is just an inter-
mediate result, rather than a real model component and represents the Tensor holding all
user item embeddings. The adaptive user representation is computed by a dot-product
attention layer, respectively Luong-style attention, with user item embeddings as keys
and values and the context item as query.

A more detailed graph generated by Tensorboard from the implemented code can be
found in appendix A.1.

  

User History InputItem Input Liked Item Input Not Liked

User Item Model

Time Distributed Layer

Attention Layer

Memory Component

Context Item Model
Context Item Model

Adaptive User Representation 
Liked

Item 
Model

1 2

3 4 ...
*

1 2 3 4 5

6 7

8 9

*

6 7 8 9 1

5 … 9

max(.) max(.)

Embedding 
Layer

Conv2D 
Layer

GlobalMaxPool2D 
Layer

Dense 
Layer

User Item Model

Time Distributed Layer

Attention Layer

Memory Component

Adaptive User Representation 
Not Liked

Loss Function

Figure 3.7: MARS implementation with Keras layers

Inference Model Theoretically, the same model from the training can be used for
inference ,with additionally just applying a sort over the scores for all candidate items to
get a ranked list. But this naive approach will be computationally very expensive and way
too slow for real time recommendations as the amount of candidate items is potentially
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very large. To avoid recomputations of user and context items embeddings, they are
precomputed as shown on the right side in figure 3.8. On The bottom of the inference
model, the embedding layers can be seen, which are initialized with the precomputed
embeddings, so the model just has to look up the representations for the items. To
efficiently compute the scores for all candidates a different Scores Model is implemented
as seen in the center of the figure. For very compact, expressive, and efficient code, the
einsum operator in Tensorflow is used, which is shown in listing 3.1. The final ranked
top k items are computed by a layer, which uses tf.math.top_k and tf.gather to fully
utilize the parallelism and potential usage of GPUs of Tensorflow, in contrast to sorting
the candidate scores in Python.
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Figure 3.8: MARS inference model

1 import tensorflow as tf

2 ...

3 # each batch entry corresponds to the memory component of one user

4 user_memory_batch, items_repr_batch = inputs

5 # compute the scores for each item with the memory components of each user

6 scores = tf.einsum("ijk,ilk->ilj", user_memory_batch, items_repr_batch)

7 # compute the attention for each item to the user memory components for

8 # all users

9 attention = tf.nn.softmax(scores, axis=-1)

10 # multiply the the embedding vector of each user memory component with the

11 # corresponding item attention and sum the embedding vectors of all memory

50



3 Experimental Design

12 # compoments together to get the deep adaptive user representation

13 user_repr = tf.einsum("ijk,ilj->ilk", user_memory_batch, attention)

14 # compute the scores for each item with the deep adaptive user representation

15 # generated individually for each item

16 all_scores = tf.einsum("ijk,ijk->ij", user_repr, items_repr_batch)

17 return all_scores

Listing 3.1: Inference model using tf.einsum() operator

3.3 Processing Pipeline

The processing pipeline is depicted in figure 3.9. The data processing is structured in
the following four main parts with different steps.

Preprocessing The preprocessing steps represent practically the ETL (Extract, Trans-
form, Load) process. First, the data has to be decrypted as the parquet files are GPG
encrypted. For a fast decryption, all parquet files are decrypted with GPG using pythons
Multiprocessing library for parallelization. The file content for pageviews and articles are
streamed to PyArrow for further processing. PyArrow is used to extract only columns,
which are needed for model training and evaluation and filtering rows for null values
as well as metadata for specific criteria. Afterwards, the pageviews are grouped into
users with their view history. For the MARS baseline, the used fields for pageviews
are ’user_id’, ’article_drive_id’, ’fraction_article_read’ and for the articles ’article_-
drive_id’, ’article_full_text’. To get a sufficient history per user, only users with at least
10 pageviews are selected. Also only pageviews where an article is read at least 20 %

are kept, to ensure the user find the information useful. All articles which have no cor-
responding pageview after filtering the pageviews are excluded. To extract tokens from
the articles, the library Spacy is used. Also the filtering of stopwords and punctuation
is done via Spacy. As in the MARS paper, words with a frequency less than four are
dropped. Finally, the textual representation of the articles is transformed into indices
as input to the embedding layers of the model. This conversion is done with Keras text
processing module. Also, texts which are shorter than the CNNs kernel size are zero
padded to the width of the kernel.
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Training Data Generation After the pre-processing, the training data for the model
is processed. The split into training, test and validation data is done before the training
begins, all further data processing is done on the fly while training the model using
Tensorflows Data API. The data sampling and creation of the input tuple, according
to 3.2, happens in a python generator. In this step, the length of the user history and
document length is cut to the last 50 pageviews, respectively the first 500 word tokens to
account for computational and memory constrains. The python generator is consumed
by a TF Dataset, which handles padding and data prefetch.

Evaluation Data Generation Like the model training data, the data for the model
evaluation is created on the fly while feeding the inference model. As the amount of
candidate items which have to be filtered is very high, the whole computation occurs
within the Tensorflows Data API with pure Tensorflow operations, which is much faster
as python code and automatically parallelized. For the baseline, just the already viewed
articles by a user are filtered. A worthwhile addition would be to filter the candidates also
for publisher/portal and freshness, which should yield better and faster recommendations
for a relative small effort.

Training & Evaluation For training, the model with its parameters are initialized
or loaded from a previous checkpoint. The model with its current parameters is saved
each epoch and statistics about the training are recorded. At the end of each epoch,
the model is evaluated using the inference model. Therefore, the user and context items
are precomputed with the fresh trained user and item model and the inference model is
initialized with the new user and context item embeddings. After computing the top k
candidate rankings for each user, the metrics are calculated.
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Figure 3.9: (Pre)processing Pipeline

3.4 Adaptations to the News Domain

Adaptions to the model architecture itself are not necessary, because of the already con-
sidered modeling of texts. Only the direct integration of pageview and article metadata
into the model would require an adjustment. Since the baseline takes advantage of the
metadata indirectly in the (pre)processing stage, no modifications on the model architec-
ture were required. The main adaptions concern the preprocessing phase and inference
model. Major restructurings are owed to the orders of magnitude more data than used
in the MARS paper, which required more efficient and parallelized data processing.

Preprocessing Adjustments For the news domain, the possible multiple pageviews
of the same article have to be considered in contrast to ratings/likes, which just occur
once per item. Further, the loading of data had to be adjusted as the proprietary dataset
is stored in parquet files protected by GPG encryption. Since the python bindings of
available libraries to read the parquet format do not support the integrated encryption
specification of the format yet, the files had to be encrypted with the external GPG tool.
The integrated encryption would allow to read and decrypt only a subset of the files, but
the external encryption made it necessary to load the whole file at once and drop unused
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columns afterwards. To accelerate the data loading, each file is decrypted and loaded via
its own process from a ProcessPoolExecutor. In order not to risk a leak of unencrypted
data and reduce complexity of the pipeline, the whole processing happens in memory
without any intermediate file caches. The last major change in the processing pipeline
was to abandon Pandas and just use PyArrow operations, because Pandas internal data
structures have an inefficient memory representation and PyArrow operations perform
much faster. Missing functionality in PyArrow, like GroupBy with custom aggregations,
are done in python with multiprocessing.

Inference Model Adjustments To compute the metrics for every user with all can-
didate items as input, the inference model and its input pipeline had to be adjusted. To
deal with the massive amount of data, the whole pre-processing for the inference model
is moved from Python/numpy to Tensorflow DATA API. This prevents from converting
large model inputs from python to Tensorflow data structures and leverages efficient
Tensorflow operations. Since Tensorflow has no similar functionality like numpy.isin()
and set operations are very slow, this function had be implemented. The usage of a
TF Dataset also enabled the utilization of all GPUs through a conversion to a Dis-
tributedDataset. To further improve the performance, the user item embeddings are now
precomputed, as the context item embeddings were already before. The precomputed
item representations are now used to initialize item embedding layers in the model and
the inputs are just item ids instead of embedding vectors. Furthermore, the computation
of the top k scores are now part of the model instead of outputting all item scores and
sorting them in Python. So the sorting of scores is done in Tensorflow with support of
the GPUs. These steps led from a not working implementation for this amount of data
to a ∼60 times throughput increase compared to the first working implementation.

3.5 Toolchain

In this section the used tools are briefly reviewed.
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3.5.1 Environment

Docker

Docker3 is a tool for container virtualization and separates the environment inside a
container from its host operating system and other containers running on the host. It
was used for easy deployment of the RS on different host systems through a guaranteed
consistent environment inside the container, regardless of the host system. Another
crucial benefit of Docker was to use pre build containers for Tensorflow with a pre
configured environment for GPU usage.

Jupyter Notebook

Jupyter Notebook4 is an interactive web-based environment to create notebook documents
and execute code on a remote machine. It was used for convenient data exploration,
prototyping and execution of some experiments.

3.5.2 Data Format & Processing

Parquet

Parquet5 is a widely used column based data format for efficient storage with fast file
access. The columnar design enables to load only subsets of columns for efficient and fast
data analytics. The format allows compression on column level granularity, which enables
economical usage of storage with different compression algorithms allowing to tune the
files to speed up I/O throughput or saving space. For the news recommendation dataset,
it provided a fivefold data compression and fast data loading. Unfortunately, the specified
integrated data encryption is not yet available for Python libraries, which would bring
an additional speedup in data loading and more convenient usage of encryption.

3https://www.docker.com/
4https://jupyter.org/
5https://parquet.apache.org/
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Apache Arrow/PyArrow

Apache Arrow6 is a cross-language framework for columnar in-memory data processing.
It defines an efficient columnar in-memory data format, provides basic data processing
and a language agnostic shared in-memory object store. The object store provides zero-
copy reads on the system between different processes without serialization overhead. It
is also integrated into Parquet and Pandas, which allows to read Parquet files directly
from Pandas. Arrow is currently used for loading the data and major preprocessing steps
through its PyArrow Python bindings.

GPG (GNU Privacy Guard)

GPG7 is a cryptographic software suite for symmetric and asymmetric cryptography. It
was used to initially encrypt the data and encryption in the data pipeline.

Numpy

Numpy8 is a library, which provides the ndarray data structure, a multidimensional
array with homogeneous data types and fixed allocated memory, and a large collection of
functions operating on these arrays. These data structures provide an efficient memory
usage and enable fast computation. Several libraries like Pandas, SciPy and scikit-learn
use ndarrays as data structure or provide compatibility to it. The same ndarrays are
used by Tensorflow as underlaying tensor representations, which makes numpy arrays
a good choice as Tensorflow input and provides a cheap and easy conversion between
numpy arrays and Tensorflow tensors. This enables also the use of a broad collection of
libraries without the need to convert between different data structures in preprocessing.
So numpy arrays are used at many stages in the processing pipeline and as input to
Tensorflow.

6https://arrow.apache.org/
7https://gnupg.org/
8https://numpy.org/
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Pandas

Pandas9 is a library for data manipulation and analysis, especially of tabular and time
series data. Its data structures are Datafarmes and Series, which are based on numpy
arrays and the operations on these allow SQL like queries. Pandas was mainly used
to analyze the dataset and for preprocessing of the small datasets for validation of the
MARS implementation. Though the usage of Pandas for some preprocessing steps were
very convenient, it can not be used for pre-processing of the news dataset as its memory
usage was about three times higher than Arrow Tables and the processing speed was also
not competitive to Arrow. Nevertheless, it served well for data exploration and analyses
of the news dataset.

Spacy

Spacy10 is an NLP library, which offers tokenization, part-of-speech tagging, dependency
parsing, text categorization, named entity recognition and more. It was used in the the
data pipeline to tokenize the news articles and filter out stop words and punctuation. For
this, the ML model de_core_news_sm11 in version 3.3 was utilized, which is trained on
German news data.

3.5.3 ML Framework

Keras

Essentially, Keras12 is a high level API for Tensorflow. It provides high level abstractions
to create ML models on top of Tensorflow, without using low level operations and thus
makes ML model creation faster. Once supporting several ML frameworks as a backend,
it is now an integrated part of Tensorflow, which is the sole backend available. As
Keras is the official high level API for TF, it provides an excellent integration. The easy
creation of models and the possibility to seamlessly interweave high level Keras and low
level Tensorflow operations was the reason to decide for Keras. So Keras was used to
create the implemented model and as it provides some text processing utilities, also for

9https://pandas.pydata.org/
10https://spacy.io/
11https://spacy.io/models/de
12https://keras.io/
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some preprocessing steps. The tokenizer from Keras is used to create a vocabulary index
and to transform the article texts into integer tokens, so each article is represented as a
vector of integers. Additionally, the tokenizer was used to filter the words by frequency
to reduce the vocabulary.

TensorFlow

Tensorflow (TF) 13 is the ML framework doing the actual computation, automatic back-
propagation and distributed execution on clusters and different devices like CPUs, GPUs
or TPUs. TF has two execution modes, an eager called mode with a Define-by-Run
execution like PyTorch, which enables a step by step execution of operations with easy
debugging and a static execution mode, where operations define a computational graph
in the form of a directed acyclic graph (DAG), which enables advanced automatic opti-
mizations and better performance. TF was chosen for its high performance, scalability,
broad community support and wide adoption.

3.6 Discussion

Considering the dataset analysis and computational requirements through the high di-
mension of the data, a limitation of the view history and article length to a maximum
of 50 pageviews and 500 words is chosen. For the history, the last 50 pageviews are
used and the first 500 words for articles. This is well above of the average pageviews
per user of 5,58 and also above the average article length of 398,35 and should not limit
the recommendation performance too much. The article length only affects the full text
and to a small extend the teaser text. The header text length is always below the 500

limit. To get a sufficiently long user history for effective training, just users with at least
10 pageviews are considered. This is also necessary since the experiments are conducted
with a training, validation and test data split like the MARS paper of 30 %, 35 % and
35 % and the split is performed on the history of the user instead of splitting between
users. Furthermore, to just consider pageviews of articles the users liked, the minimum
fraction a user read is set to 20 %, which is a bit below the average of 24 %. This was
chosen, because the user may have taken enough information for their need with the first
few lines without reading the whole article but pageviews where the user has noticed very

13https://www.tensorflow.org/
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quickly the article is not interesting for them should be ruled out. With this constellation
the resulting training data and number of model parameters are summarized in table 3.4.

Content Vocabulary Size # Users # Items # Ratings # Parameters

article_header 34 665 722 241 359 332 31 713 946 18 441 648
article_teaser 72 093 722 241 359 332 31 713 946 38 274 648
article_full_text 442 282 722 241 359 332 31 713 946 216 153 048

Table 3.4: Training data after filtering for article header, teaser and full text.

Hyperparameter Value

Embedding Size 300

CNN Kernel Width 5

Batch Size 512

Latent Vector Dimension 64

# CNN Filters 64

Learning Rate 0,001

λu 0,002

λv 0,002

Table 3.5: Hyperparameter for
training.

The different parameter sizes come from the differ-
ent vocabulary sizes resulting in different amount
of word embeddings. The amount of parameters
stemming from the item representation is actually
relatively small compared to the parameters, due
to word embeddings. The training will be con-
ducted with the same hyperparameters for all runs,
which are mostly the same as in the MARS paper,
see table 3.5. Only the Latent Vector Dimension
with 64 is between the 50 and 70 in the MARS
paper, as a size with a multiple of 8 is beneficial
for optimal usage of GPU resources.

In this chapter further questions are answered:

Q1: The final part for the question how to establish a baseline for this dataset was
to explain the model architecture, describe the implementation, including training
procedure and processing pipeline, and the necessary adjustments for the news
domain, which compromise mainly the optimizations to account for the very large
dataset. As the MARS model includes already a text modeling part, no changes
on the model architecture were needed.

Q2: In section 3.1 the dataset was analyzed and data fields for the experiments were
selected. The final used fields are user_id, article_drive_id, fraction_article_read,
article_header, article_teaser and article_full_text. Other very useful identified
fields are publisher_id, portal_id, geo record, session_id, session_referer_medium,
session_referer_source, is_plus_article, and article_dpa_id. These may be used
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in further experiments to examine if they can contribute to enhance the recommen-
dation performance by including them directly in the model input or using them
for candidate selection.

Q3: The challenges in utilizing a real world dataset for an RS was actually the sheer
amount of data to be processed. The received data was actually well structured with
clean text, without the need to extensively filter for special characters or missing
content. Where the clean text is on the one hand due to the news domain and on
the other hand due to receiving the data from the creators instead of scraping it
from the web.

Q4: Challenges in the adaptation of a general RS model to the news recommendation
domain, in the context of the concrete model and implementation, was to imple-
ment the model in a way to efficiently handle very long texts in comparison to
movie synopsis or product descriptions. In general, the high dimensionality of the
data, with [batch size × history length × document length × embedding size] was
challenging for performance reasons and available GPU memory.
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4.1 Metrics

The metrics to evaluate the baseline are recall@N and Mean Average Precision(MAP)
like in the MARS paper, shown in equation 4.1 and 4.2. Recall is used to measure how
good the model can retrieve all relevant documents, respectively how much of the actual
viewed articles of the users are recommended by the model. MAP is used to measure how
well the model can rank the retrieved documents, respectively if relevant articles ranked
higher than not relevant articles. These metrics are suitable to the news recommendation
scenario, because they evaluate how well the RS generates the typical used top n lists.
It is also important to note, that these metrics do not measure the ordering between
relevant articles. Deviating from the usual method to make the validation and test data
split per user, the pageviews per user are split into training, validation and test data
according to MARS [73], to make the results comparable with the original experiments.
So one have to keep in mind, that it is measured how good the model generalizes to new
views of a user and not how good it generalizes to new users. For scenarios where the
model is continuously and rapidly trained on new data, this makes sense as the majority
of recommendations will be provided to known users. If the model will not be updated
in a short period of time or many new users use the service during model update, it
would make sense to take the measures on a traditional per user data split to account for
unknown users. For resource reasons, the tests are just run one time. For more expressive
results and to measure the standard deviation, it would be appropriate to run each test
at least three, better five to ten, times.

recall@N =
# items the user likes among the top N
total number of items the user likes

(4.1)
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MAP =
1

|U |
∑
i∈U

AveP (i)

AveP (i) =
1

|K|

K′∑
k=1

Pi(k)reli(k)

Pi(k) =
|{relevant documents} ∩ {retrieved documents}|

|{retrieved documents}|

reli(k) =

1, if k in {relevant documents}.

0, otherwise

(4.2)

Where AveP (i) describes the average precision for user i. Pi(k) denotes the precision for
user i for the top k articles recommended to user i and reli(k) the relevance of the kth
document for user i, which leads to irrelevant documents being ignored.

4.2 Results

In this section, the results of the three runs for article header, article teaser and article
full text as content data are shown, and as comparison the results from the previous
work [29] for validating the model implementation with the original used datasets. For
every training run the model was trained on 9 514 184 samples which are divided into
10 epochs. Figure 4.1 shows the recall@50 metric for all runs and 4.2 the recall@50 for
the model validation experiments. Figure 4.3 shows the MAP@500 metric for all runs
and 4.4 the model validation experiments for the MAP@500 metric. The green graph
in figure 4.1 and 4.3 represents the header content, the yellow graph the teaser content
and the red one the full text content. In figure 4.5 the losses of all runs are shown with
grey for the header, dark blue for teaser and light blue for full text. Note that in figure
4.1 and 4.3, the zero epoch represents the measure for the untrained model, with initial
weights, to show the difference between the untrained model with model after the first
training epoch. The loss for the zero epoch in figure 4.5 represents the value after the
first epoch of training. So to relate the figures one has to offset the loss epoch with 1.

In figure 4.1 it can be seen that the runs with teaser and full text content clearly out-
perform the run with the header text at the recall@50 metric. The run with header text
reached its peak at epoch 10 with 0,0268, teaser text at epoch 5 with 0,0387 and full
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text at epoch 7 with 0,0362. The teaser text run reached an about 6,9 % higher score
than the full text run and a 44,4 % higher score than with header text. All three runs
have in common that after the first epoch they reached a score, which is relatively close
to its peak performance. For comparison, the runs for the original datasets in figure 4.2
show a pretty similar behavior with a steep ascent in the first epochs, which comes very
close to its peak performance. The big difference is the extremely higher score for the
Yahoo! Movies dataset with 0,4449 (original paper 0,3230), which is about 11,5 times
higher than for the news recommendation dataset. The Runs for Amazon Video Game
and Amazon Movies and TV with 0,038 44 (original paper 0,1337) and 0,0227 (original
paper 0,1196) come very close to the news dataset with teaser text, when not considering
the original papers numbers.

Figure 4.3 shows that the runs with teaser and full texts also outperforms the header
text runs at the MAP@500 metric. The peak performance for header texts is reached
at epoch 10 with 0,0043, teaser texts at epoch 7 with 0,0126 and full texts at epoch
2 with 0,0106. The teaser texts run reached an about 18,86 % higher score than the
full text run and a 193 % higher score than with header text. Similar to the recall@50
metric figure, all three runs reach a score close to its peak performance relative early. In
comparison, the original papers datasets show also a very steep ascent, closely to its peak
performance, in the first epochs. Again the difference is high with 0,136 (original paper
0,1692) for Yahoo! Movies, 0,005 265 5 (original paper 0,0934) for Amazon Video Game
and 0,002 837 2 (original paper 0,0895) for Amazon Movies and TV. This time the score
for the Yahoo! Movies dataset is 10,8 higher than for the news dataset but the teaser
text run reaches 2,4 times and 4,4 times higher scores than for the Amazon Video Game
and Amazon Movies and TV dataset.

The loss in figure 4.5 shows that on all runs the model learns continuously without
fluctuations and a typical curve with an initial steep descent, that becomes increasingly
flat. If one relate the loss with the recall@50 metric, it indicates, that training on more
epochs would probably increase the recall and the model do not overfit. If one relate the
loss with the MAP@500 metric, it indicates that the model, at least for the full text run
and possibly for teaser texts, is overfitting on the data and does generalize worse with
more training just after a few epochs.

Table 4.1 shows the highest scores for different top k recall@ and MAP@ and lowest
losses for the training runs with article header, article teaser, and article full text content
data. The corresponding epoch, where the highest score/lowest loss were reached, are in
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parenthesis with plus 1 for loss epoch to account for the mentioned offset. The highest
score/loss in a row is marked bold. It can be seen, that the model with teaser text reaches
the best scores, regardless of the chosen top k. Interestingly, the advantage of the model
trained on teaser text is especially high at the low top k of 5, 10 and 20 which are the
most important positions, as these are the most noticed positions in top recommendation
lists on websites.
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Figure 4.1: Tensorboard scalar graph of MARS Recall@50 metric for content header,
teaser, and full text.
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Figure 4.2: Tensorboard scalar graph of MARS Recall@50 metric for the original papers
tested datasets.[29]
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Figure 4.3: Tensorboard scalar graph of MARS MAP@500 metric for content header,
teaser, and full text.
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Figure 4.4: Tensorboard scalar graph of MARS MAP@500 metric for the original papers
tested datasets.[29]
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Figure 4.5: Tensorboard scalar graph of epoch loss metric for content header, teaser, and
full text.
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Metric Article Header Article Teaser Article Full Text

recall@5 0,0042 (3) 0,0150 (5) 0,0114 (3)
recall@10 0,0116 (10) 0,0195 (7) 0,0188 (5)
recall@20 0,0160 (10) 0,0279 (7) 0,0248 (1)
recall@50 0,0268 (10) 0,0387 (5) 0,0362 (7)
map@5 0,0020 (10) 0,0097 (7) 0,0079 (3)
map@10 0,0028 (10) 0,0104 (7) 0,0085 (3)
map@20 0,0031 (10) 0,0111 (7) 0,0092 (2)
map@50 0,0035 (10) 0,0115 (7) 0,0096 (2)
map@500 0,0043 (10) 0,0126 (7) 0,0106 (2)
loss −0,3811 (9) −0,3974 (9) −0,3756 (10)

Table 4.1: Recall and MAP metrics for different k for the three training runs for header,
teaser and full text.

4.3 Discussion

The results of the experiments have shown that the teaser text is very well suited to
model the article for news recommendation, and superior to the headline and the articles
full text, which answers question Q7 whether the full text performs better for recommen-
dations as the headline and teaser text. The lower performance of the headlines could
possibly be attributed to two properties. First, with average word length of 6,35 it is
very short and can not contain as much information about the article content as the full
and teaser text. Second, headlines are often lurid and contain less meaningful statements
about the actual article content as initially assumed, see appendix A.3 for an example
article from the corpus. The superior performance of the teaser texts could be due to
that they contain very condensed information and very much important information from
the full article content. Also, teasers are meant to support one in the decision to read
the article or not, which is exactly the information which is useful for the RS to make a
recommendation. The performance of the full text lies between the headline and teaser
text, which may be due to it holding the full information of the article but it is much
more difficult for the model to capture the meaning of the text. In compression to the
teaser, the full text is not already filtered for the most important information and due to
the much longer text, the model has to capture dependencies for a much longer range.
Another explanation why the full text is not as effective for training as the teaser text
may be the different vocabulary and thus parameter sizes, already shown in table 3.4.
The large parameter size makes the model harder to optimize but does not necessarily
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help to better understand the content of an article. Many words, which occur rarely
make the dataset hard to learn, because the embeddings for infrequent words, which
occur only a few times in a dataset, are only optimized on a few examples, which makes
them not suitable for representing these words. Also, the word structure from infrequent
words is overlooked, so the information from frequent words can not be used by the model
for infrequent words. This is especially impactful for morphologically-rich languages like
German with a high combinatorial count of word forms, used in this dataset [26, p. 76].
In comparison to the datasets used in the MARS paper, the results on the news dataset
are significantly worse. Taking the different densities of the datasets into account, which
is 354,42 times lower for the news than the Yahoo! Movies dataset, puts the results into
another light. So the news dataset is much more difficult for the model to learn.

In the following, some improvements are discussed, which are independent from the model
architecture. A way to overcome problems with a large vocabulary, without changing the
model architecture, is to use sub-word tokenization like BPE to reduce vocab size without
loosing information in comparison to limit the vocabulary to a fixed size or filter out
infrequent words. So using BPE to reduce vocab size and simultaneously increase other
model parameters would potentially improve results by giving the model more capacity to
represent the content and interactions of words and do not distract it by optimizing many
embedding parameters. Also to improve results, the split between training, validation
and test set could be changed to raise the amount of training data. Smaller validation and
test sets should not reduce the meaningfulness of the results, given the size of the dataset.
Additionally the use of normal sample splits between users and not pageviews per user
would be helpful to increase the possible training size and makes training with as low as
two pageviews possible and would make the model train to recommend for completely
new users. Also a mixed split between samples of users with the full history and hold out
pageviews would help the measure generalization for new and known users. Additionally,
the candidate item selection can be improved. In this experiment just already viewed
articles are filtered out. One has to realize that the dataset is constituted of different sub
datasets as it is the aggregated data of several portals/publishers. So a candidate item
selection with just selecting articles from the portal the user uses, can greatly improve
results. The missing portal/publisher filter may explain the drop in theMAP@500 metric
while the recall@50 metric may profit from more training. Different portals may have
similar articles, while training for more epochs results in catching more relevant articles,
the ranking of the articles is more difficult since actually relevant articles are ranked
high because they have a very similar representation to the actual viewed article but
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do not appear in the users history because they are from another portal. So the model
may not really overfit but gets better to generate similar embeddings for similar articles
and articles which are very similar to the actually viewed ones but originate from other
portals are ranked high. Further, filtering for articles, which are much older than the
last viewed item in history and for articles in the future by taking the date of the next
pageview in the history which are held out, can reduce the candidate items significantly
and ease the final article selection. Lastly, no hyperparameter tuning were conducted
due to to little resources.
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5.1 Conclusion

This thesis gave a broad overview over current LM and RS with a special focus on
the news recommendation domain and introduced a proprietary dataset with news ar-
ticles and pageviews from several publishers and portals. After the analysis of current
RS, the MARS model was chosen to create a baseline for this dataset and to answer
further research questions. The analysis could already answer some of the research ques-
tions. Question Q1 was partly addressed by analyzing the requirements for news RS
and choosing the MARS model as baseline. Q4 was partly answered by identifying the
news modeling as a critical part and special characteristics of news RS like short life-
cycles of news with relatively few user interactions per article compared to e-commerce
items. For answering Q5, techniques for incorporating metadata from the different re-
viewed RS models could be referred to, like the concatenation of embedded categorical
features and dense features into one representational item embedding, which gets fur-
ther processed by deeper model layers. Metadata could also be used indirectly either for
pre-processing the data or using it as labels for auxiliary tasks. The next chapter dealt
with the experimental design, where first the news dataset was analyzed and addressed
Q2 by selecting data fields like the head, teaser and full text or the fraction a user read
of an article. Useful fields for further experiments are for example the record with geo
data or session id. The section describing the model architecture and adaptations to the
news domain addressed the technical part of Q1. The model was adapted to the news
domain, including implementation of the model and processing pipeline from scratch due
to a lack of an open source implementation. The described challenges in the use of a real
world dataset was mainly about dealing with the huge amount of data, which answered
Q3. As the selected MARS model already was suitable to operate on text data, the
main challenge in adapting the model was to implement the model to efficiently handle
long article texts and the high dimensional data, which addressed Q4. Surprisingly, the
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experiments of the evaluation showed that the model reached the best results with the
article teaser text as content to model the news articles, which could probably be ex-
plained by the fact that teaser texts are very condensed and contain the most important
information about the article, which may help the model to grasp the article’s content.
Even when the full article text could be exploited by stronger LM, the teaser text may
be nevertheless good enough for an RS, especially when considering the computational
requirements as the full text needed about 6 times more training time. The header text
worked worst, which may not surprise as it is very short and headlines are often lurid
and not necessarily reflect the article’s content sufficiently. So the evaluation was able to
answer Q7. Question Q6 could not be answered in this thesis, due to short resources to
extensively run experiments with different metadata and is subject to further work. In
conclusion, the analysis of the dataset has shown great potential for personalized news
recommendations, and the usage of advanced techniques from the reviewed RS and LM
could improve the user satisfaction and engagement, which will result in a raised number
of pageviews and a higher fraction of an article the user reads.

5.2 Outlook

5.2.1 Transferability & Limitations of the approach

The selectedMARS model can be used in any domain where the items can be represented
by an embedding of their content, like text, picture or sound. The effectiveness is mainly
affected by how strong the item representation model is and by the dataset domain. As
shown by the evaluation, the performance of an RS model is highly dependent on the
dataset, especially the domain of the data. This is highlighted by the huge difference
between the Yahoo! Movies and the news dataset. Even the Amazon datasets used in the
original MARS paper did not work as well in the model validation experiments, probably
through different pre-processing methods. It has to be noted, that the MARS model was
developed on datasets, which are very different from news data. The recommendation
of news is a much harder task than e.g. e-commerce item recommendation, since the
relevance of news articles has a shorter time period and they have fewer user interactions
per item, which makes it more difficult to relate similar users. Many factors have to
be considered for news recommendation as shown in section 2.2.2, for instance the news
representation model plays a key role. Another limitation is the lack of sequence data
usage. If the next preferred item of the user is highly influenced by the order, the user has
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accessed previous items, like streaming music recommendation, the model is not able to
distinguish different permutations of the user’s history order. Domains where it depends
more on the entirety of the viewed items like recommending relevant research papers
for a selection of paper of a topic, the model may perform relatively well. Additionally,
the expressiveness of offline experiments is limited in relation to online A/B test in a
production deployment. E.g. the model may recommend articles, which indeed interests
the user but will be counted as false recommendation, because the item is not in the
user’s history.

5.2.2 Future Directions & Improvements

Furthermore, the following list shows possible improvements and future research direc-
tions:

• The usage of sub word tokenization like BPE may improve the results and shrink
the number of parameters for large vocabularies.

• Replacing the attention mechanism with a sequential model like BERT4Rec and
extend it by the training method of the ELECTRA LM could massively improve
the performance and especially the sample-efficient training.

• Also using LM for article representation as shown by [59], will be key to better
understand the article content and improve recommendations.

• Methods for simultaneously learning from different data modalities like [1], could
improve the article representation by also considering pictures or videos in addition
to the text content.

• DRL models are a very promising direction for training a model online and will be
essential to actively explore the user’s interest.

• Explainable recommendations are also a notable research direction, where a com-
prehensive overview is given by [69].
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A Appendix

A.1 Training Model Implementation

"The implementation of the model is done via Keras and Tensorflow, where the high-
level Keras functional API is used when possible and lower level Tensorflow operations
when necessary. Figure 3.7 shows the operational graph generated by Tensorboard. The
big outer box includes the whole MARS model, where the output to the loss function is
shown at the top and the input at the bottom, represented by an arrow. The right light
purple box named Model_context_items is the CNN which computes the representation
of the items liked and not liked from the input tuple. Both items are processed by two
exact same CNNs sharing their weights and are thus depicted by just one sub model. On
the left side in a light yellow box, called time_distributed, the item representations for the
items in the user history are computed, whose result is the memory component shown in
figure 3.5. The time_distributed layer is a built-in Keras layer which applies an passed
layer to the data stepwise. In this case, the passed layer is the CNN to generate the users
history items representation called Model_user_items, which is applied to each item in a
users history. To eliminate any confusion, in Keras, models can also be treated as layers.
Finally, with the memory component and the liked/not liked item representations, the
attention for the two items is computed from which the user representations for the liked
and not liked items are derived. Both, item and user representations are concatenated
and feed to the loss function."[29]
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Figure A.1: Tensorboard graph of MARS implementation [29]

A.2 Dataset Tables

Further analysis of the dataset and detailed explanation of the data fields can be found
in [43].

Field name Type Unique % Not Null Words/Values
min avg max Std.

user_id string 56199311 100.00
session_id string 167711970 100.00
session_referer_medium string 7 100.00
session_referer_source string 87 36.64
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Field name Type Unique % Not Null Words/Values
min avg max Std.

geo
.city string 55970 92.73
.country string 228 99.80
.latitude double 71819 99.91
.longitude double 78556 99.91
.region string 1408 93.51
.region_name string 3274 93.51
.timezone string 348 99.91
.zipcode string 55411 93.35
browser
.doc_width int64 6408 100.00 0.00 862.87 84731896.00 12213.21
.doc_height int64 133135 100.00 0.00 12154.72 82113264.00 28841.89
.view_width int64 4310 100.00 0.00 813.75 45008.00 581.51
.view_height int64 17825 100.00 0.00 767.59 571698.00 370.66
os
.family string 0 0.00
.manufacturer string 0 0.00
.name string 0 0.00
.timezone string 83 100.00
device
.browser_engine string 0 0.00
.type string 0 0.00
.is_mobile bool 0 0.00
useragent
.device_class string 13 97.77
.device_name string 10616 97.77
.device_brand string 938 97.77
.agent_class string 7 97.77
.agent_name string 558 97.77
.agent_version string 17226 97.77
.operating_system_class string 8 97.77
.operating_system_name string 52 97.77
.operating_system_version string 648 97.77
.webview_app_name string 185 13.01
.layout_engine_class string 4 97.77
publisher_id string 10 100.00
portal_id string 17 100.00
page_view_id string 312908725 100.00
url_ebene_1 string 3272 76.82
url_ebene_2 string 69908 49.73
url_ebene_3 string 89921 17.01
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Field name Type Unique % Not Null Words/Values
min avg max Std.

referer_url_ebene_1 string 3912 20.25
referer_url_ebene_2 string 40686 11.99
referer_url_ebene_3 string 26383 3.53
user_type string 3 100.00
x_scroll_pct double 101 99.95 0.00 98.66 100.00 8.73
y_scroll_pct double 101 99.99 0.00 40.74 100.00 28.31
x_scroll_pct_min double 1 99.95 0.00 0.00 0.00 0.00
y_scroll_pct_min double 35 99.99 0.00 0.00 60.00 0.01
time_engaged_in_s int64 1036 100.00 0.00 30.88 489825.00 53.06
article_type string 3 60.53
is_paywall bool 2 92.39 0.00 0.26 1.00 0.44
content_type string 5 100.00
user_engagement_segment string 7 61.90
article_drive_id string 823944 48.14
page_view_start_local timestamp[us] 307171178 100.00

Field name Type Unique % Not Null Words/Values
min avg max Std.

page_view_end_local timestamp[us] 307862602 100.00
pv_article_completion
.completion_time_in_s double 2710 48.14
.fraction_article_read double 79904 48.14
.fraction_article_read_binned double 21 48.14
.completion bool 2 48.14
completion_time_in_s double 2710 48.14 0.40 199.73 11932.40 254.00
fraction_article_read double 79904 48.14 0.00 0.24 1.00 0.28
completion bool 2 48.14 0.00 0.06 1.00 0.24

Table A.1: Schickler News Recommendation dataset: Statistics about pageviews.
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Field name Type Unique % Not Null Words/Values
min avg max Std.

publisher_id string 10 100.00
article_drive_id string 823944 100.00
article_header string 755922 100.00 0.00 6.35 29.00 2.60
article_teaser string 738363 100.00 0.00 24.08 1485.00 15.38
article_full_text string 821750 100.00 0.00 398.35 30642.00 279.24
is_plus_article bool 2 97.77 0.00 0.19 1.00 0.39
article_dpa_id string 47290 11.92
is_dpa bool 2 100.00 0.00 0.12 1.00 0.32
published_at_local timestamp[us] 542925 100.00
modified_at_local timestamp[us] 736714 100.00
pad_pleasure double 302096 37.18
pad_arousal double 302353 37.18
pad_dominance double 302099 37.18
preview_pad_pleasure double 359778 46.77
preview_pad_arousal double 360095 46.77
preview_pad_dominance double 358928 46.77
emo_aerger double 293978 37.18
emo_erwarten double 299558 37.18
emo_ekel double 280939 37.18
emo_furcht double 298868 37.18
emo_freude double 300252 37.18
emo_traurigkeit double 295867 37.18
emo_ueberraschung double 293821 37.18
emo_vertrauen double 301083 37.18
article_preview_emotion
.emo_aerger double 127817 46.77
.emo_erwarten double 172357 46.77
.emo_ekel double 79353 46.77
.emo_furcht double 165101 46.77
.emo_freude double 231700 46.77
.emo_traurigkeit double 132540 46.77
.emo_ueberraschung double 114664 46.77
.emo_vertrauen double 226332 46.77
preview_emo_aerger double 127817 46.77
preview_emo_erwarten double 172357 46.77
preview_emo_ekel double 79353 46.77
preview_emo_furcht double 165101 46.77
preview_emo_freude double 231700 46.77
preview_emo_traurigkeit double 132540 46.77
preview_emo_ueberraschung double 114664 46.77
preview_emo_vertrauen double 226332 46.77
article_header_contains_quote bool 2 100.00
article_header_contains_question bool 2 100.00
article_header_contains_doppelpunkt bool 2 100.00
article_header_contains_pronoun_writer bool 2 100.00
article_header_contains_pronoun_reader bool 2 100.00
article_preview_contains_quote bool 2 100.00
article_preview_contains_question bool 2 100.00
article_preview_contains_doppelpunkt bool 2 100.00
article_preview_contains_pronoun_writer bool 2 100.00
article_preview_contains_pronoun_reader bool 2 100.00
topic string 17 71.39
locality string 4 71.60
newstype string 3 70.12
genre string 8 59.66

Table A.2: Schickler News Recommendation dataset: Statistics about articles.
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A.3 News Article Example

Header: Droht Regensburg eine Rattenplage?

Teaser: Restaurants dürfen derzeit nur Essen zum Mitnehmen anbieten. In manchen
bayerischen Orten führte das zu höherem Rattenbefall.

Full Text: Die Restaurants sind zu, die Menschen kaufen in der Corona-Zeit de-
shalb mehr Essen zum Mitnehmen. Dadurch entsteht mehr Müll, der Ratten anlockt.
Städte und Gemeinden berichten vereinzelt davon, dass die Zahl der Tiere an Müll-
containern und der Kanalisation zugenommen habe. Wie sieht die Lage in Regens-
burg aus?Stadtsprecherin Katrin Butz gibt hier Entwarnung: „In Regensburg kann kein
höherer Rattenbefall als in den früheren Jahren festgestellt werden.“ Andernorts in Bay-
ern sieht das hingegen anders aus. So zum Beispiel in Volkach im Landkreis Kitzingen, wo
die Verwaltung von einem „hausgemachten Problem“ mit Ratten spricht. Die wichtigsten
Maßnahmen zur VorbeugungWeil in der Kanalisation mehr Ratten festgestellt wurden
und die Tiere Infektionskrankheiten übertragen, gehen in der unterfränkischen Stadt
Mitarbeiter der Kläranlage mit Giftköder gegen die Tiere vor. Die Verwaltung hatte
die Bürger gebeten, keine Speisereste in der Toilette zu entsorgen oder in Parks und
auf Spielplätzen wegzuwerfen.Speisereste und To-Go-Verpackungen in die dafür vorge-
sehenen Tonnen und Abfallbehälter zu entsorgen sei die wichtigste Maßnahme zur Vor-
beugung, heißt es seitens der Stadt Regensburg. Auch sollten Wertstoffsäcke immer erst
am Tag der Abholung vor dem Haus abgestellt und keine Essensreste auf dem Kompost
entsorgt werden.Die bayerischen Kommunen sind gewappnetDie bayerischen Kommunen
sind gewappnet, stellen aber keine flächendeckende Zunahme der Ratten-Population fest.
Aus Nürnberg heißt es etwa, dass zwar mehr To-Go-Essen verkauft werde, aber grund-
sätzlich weniger Menschen in der Stadt unterwegs seien. „In der Regel wird das Essen da-
heim eingenommen“, teilt ein Sprecher mit. Insofern lägen nicht mehr Essensreste herum.
Zudem gehe die Stadt mit regelmäßigen Kontrollen gegen die Nager vor.München, Augs-
burg, Rosenheim, Landshut, Bamberg und Hof meldeten bei der Zunahme von Ratten
ebenfalls: „Fehlanzeige“. Die Stadt München teilt etwa mit, dass gelegentlich Spielplätze
wegen Maßnahmen zur Rattenbekämpfung innerhalb des Stadtgebiets gesperrt werden
müssten. Das sei aber seit jeher zum Schutz von Kleinkindern notwendig. Einen Zusam-
menhang mit der Pandemie gebe es nicht. (mit Material der dpa)
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