Hochschule fur Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

Fakultit Technik und Informatik Faculty of Engineering and Computer Science
Studiendepartment Informatik Department of Computer Science

Alexander Schulz

Model Checking of Reconfigurable Petri Nets

Master Thesis eingereicht im Rahmen der Masterpriifung

im Studiengang Master of Science

am Department Informatik

der Fakultét Technik und Informatik

der Hochschule fiir Angewandte Wissenschaften Hamburg

Betreuender Priifer: Prof. Dr. Julia Padberg
Zweitgutachter: Prof. Dr. Michael Kéhler-Bufimeier

Eingereicht am: 30. April 2015

Alexander Schulz

Thema der Arbeit
Model Checking of Reconfigurable Petri Nets

Stichworte

Rekonfigurierbare Petri-Netze, Maude, Bisimulation, Model Checking

Kurzzusammenfassung
Ein wichtiges Ziel der theoretischen Informatik ist die Entwicklung formaler Methoden, die es
erlauben die Qualitit der zu entwickelnden Software zu verbessern. Eigenschaften wie Leben-
digkeit, Verklemmungen und Sicherheiten kénnen fiir ein gegebenes Modell nachgewiesen
werden. Hierfiir eignet sich das Modellieren mit Petri-Netzen als eine etablierte wissenschaftli-
che Technik besonders gut. Basierend auf Petri-Netzen, erweitern rekonfigurierbare Petri-Netze
die Netze um eine Menge von Regeln, die genutzt werden um das Netz dynamisch zu verdndern.
Bisher fehlt die Moglichkeit der Verifizierung von rekonfigurierbaren Petri-Netzen. Diese
Thesis beschreibt die Uberfithrung von rekonfigurierbaren Petri-Netzen zu einem Maude Netz.
Ziel dieser Master Thesis ist der Nachweis der Korrektheit des Maude Netzes.

Alexander Schulz

Title of the paper
Model Checking of Reconfigurable Petri Nets

Keywords

Reconfigurable Petri nets, Maude, bisimulation, Model checking

Abstract
One important aim of theoretical computer science is model checking to improve the software
quality. Properties such as liveness, deadlock or safety can be verified for a given model.
Modelling with Petri nets is a typical technique because it is well understood and can be used
for model checking. Reconfigurable Petri nets are extending the concept of Petri nets with a
set of rules that can be used dynamically to change the net.

The possibility to verify a reconfigurable Petri net and properties such as deadlocks or

liveness is non-existent. The aim of this thesis is the proof of correctness of a Maude net.

Contents

Introduction
1.1 AimofthisThesis e
1.2 Outline,

Background

21 TemporalLogic
2.2 Bisimulation of the Transition Systems
23 Maude
2.4 Reconfigurable PetriNet
25 Related Works L

3 Model Checker for Reconfigurable Petri Net
3.1 ReConNet Model Checker d/MC)
3.2 Reachability Graph
4 Labelled Transition Systems
41 Maudenet
4.2 Labelled Transition System for Reconfigurable PetriNet
4.3 Labelled Transition System for Maude
44 Résume of the Formalisation
5 Correctness of Model Checking for Maude
5.1 Syntax Conversion
5.2 Equivalence by Bisimulation 0 L.
5.3 Résumeé by the Correctness of Model Checking for Maude
6 Evaluation
7 Future work
8 Summary and Conclusion
Appendices

A Evaluationnets for Snoopy
B Extended Example of aMaudenet
C CDContent

iv

—_

NoRE TS TN N

16
16
22

27
27
32
33
35

36
37
43
50

51

55

58

List of Figures

[NSR

O N U W

10
11
12

13

14

15
16

17

18
19
20
21

LTL model checking of a Maude net, adjusted from [1,P.292] 5
Two trace equivalent but not bisimilar systems S

and T" due to action a (adjusted from [2]) 6
Example Petri net for the Maude introduction 8
Example Petrinet N1 L 12
Example rule r1, which changes the arc direction 12
Formal description of a Petri net (for a graphical presentation, see also Figure 4) 13
ReConNet: Graphical editor for reconfigurable Petrinets 13
Petri net example writtenin Maude! 14
rMC: ReConNet Model Checker 17
Example rule o which changes the arc direction, can result in a deadlock . . . 24
Abstract reachablility graph (ARG) for Nyandr; 25
Abstract reachablility graph (ARG) for N; and ro with deadlock states state 4

and 6 26
Two isomorphic nets by Def. 9 and the related labelled transition system . .. 32
Correctness of conversion L L. 36
Flight routes net for evaluationtests 52
Snoopy net of Figure 15 and all rules: HAM-BER, BER-MUC, MUC-HAM and
BER-HAM 53
Compare collected dataasgraph 54
Correctness of conversion L o e 58
Snoopy net of Figure 15 and rule HAM-BER 67
Snoopy net of Figure 15 and rules: HAM-BER and BER-MUC 68
Snoopy net of Figure 15 and rules: HAM-BER, BER-MUC and MUC-HAM . . . 68

Listings

N NG 0DN—

oo

10
11
12

13
14

15
16
17
18

NjconvertedintoMaude 17
Left-hand side of 1 converted intoMaude 18
Right-hand side of r; converted into Maude 18
Firing term replacement rule written with Maude 19
Transformation term replacement rule written with Maude 20
Maude search commands fora Maudenet 22
Example output for the search commands in Listing 7 23
Sorts of a reconfigurable Petri net defined in Maude [3] 29
Wrapping and grouping operators of a reconfigurable Petri net defined in

Maude [3] 30
Identity elements of a reconfigurable Petri net defined in Maude [3] 30
Operator definitions of a reconfigurable Petri net defined in Maude [3] 31
Implementation of the Maude net configuration in Maude [3] 32
Prevent Maude net sort structureissues 55
Example of an extending operator for the LTL formulae 56
rpn.maude of N and 7] generatedby rtMC 69
rules.maude of Ny and r; generated by tMC 77
prop.maude of Ny and r; generatedby tMC 86
net.maude of N; and ry generatedby tMC 89

vi

List of Tables

1 Evaluation results of reachability graph analysis between Charlie and Maude
(inmilliseconds)

2 Evaluation results of the reachability graph analysis between Charlie and
Maude

(inmilliseconds)

vii

List of definitions

O 0 NI O U A W DN

11

12
13
14
15
16

17
18

Definition (Transition system (TS)) 6
Definition (Action-based bisimulation of TS [14,15]). 7
Definition (Rewrite theory of Maude [20]) 9
Definition (Rewrite theory of Maude, including equations [20]) 9
Definition (Marked Petrinet N [22,23]). 10
Definition (Reconfigurable Petrinet RPN [6,27]) 10
Definition (Transition firing [6]) 11
Definition (A transformation stepin RPN [6]) 11
Definition (Isomorphism classes of nets) 11
Definition (Gluing condition for rules [11]) 20
Definition (Transforming with Maude netrules) 20
Definition (Maude net and its termsets) 28
Definition (Term sets forrules [3]) 29
Definition (Maude net configuration and its termsets [3]) 29
Definition (Labelled transition system for reconfigurable Petrinet) 33
Definition (Labelled transition system for a Maudenet) 34
Definition (Injective identity mapping of idp andcap) 37
Definition (Surjective mapping between states of LTSgpy and LTSyne) - - - - - 44

viii

List of lemmas and theorems

_= N VTR W N

N O 0 I

Lemma (buildPlace) 38
Lemma (buildTransition) 39
Lemma (buildPre) 40
Lemma (buildPost) 40
Lemma (buildNet) 40
Lemma (buildRule) 41
Theorem (Syntactic conversion of a reconfigurable Petri net to a Maude net

configuration) 42
Lemma (map of the initial state) 45
Lemma (map as function) L 46
Lemma (map as surjective function) 48
Theorem (Bisimulation of LTSgpy and LTSyne) « - 0 0 0 o o o o o oo oo e 49

ix

1 Introduction

The fundamentals of many daily routines are software-controlled devices used in the areas
of public transport, security systems, and banking terminals. In this context, cost efficiency
and fault resistance are the main challenges that must be solved. In order to prevent faults,
a technique is needed to combine formalization, algorithms, and tools in comparison with
other standard tests that show only the absence of faults. Model checking is a solution for
computer-based systems that colligate a formal verification technique for the behavioural
properties of a given system by inspecting all model states. Specifications given as formulae
are proven against a model that is used as the base, where the correctness of the model is

essential [1].

1.1 Aim of this Thesis

Reconfigurable Petri nets are well-established models for concurrent and non-deterministic
behaviour models [4-6]. Their concurrent behaviour are suitable for complex systems that
describe dynamic structures, including changes by rules at runtime. For users it is difficult
to determine whether some properties emerge due to the non-deterministic and concurrent
behaviour. Therefore, this thesis aims to develop an approach for the model checking of a
reconfigurable Petri net. This approach includes the proof of model correctness so that the
verification is applicable.

Maude’s well-established theory of rewriting logic is suitable for reconfigurable Petri nets
due to the unified model of concurrency, which is particularly interesting for the concurrent
model of reconfigurable Petri nets [7, 8]. Definitions of P/T nets, coloured Petri nets, and
algebraic Petri nets are defined in [9] in a manner that makes Maude a suitable basis for the
definition of a Maude net that models the net and rules of a reconfigurable Petri net. Finally,
Maude includes a implementation of model checking by its linear temporal logic of rewriting
(LTLR) module®.

! http://maude.cs.illinois.edu/tools/tlr/, 24 March 2015

http://maude.cs.illinois.edu/tools/tlr/

1 Introduction

Based on the algebraic model of the previous work presented in [3], this thesis ensures the
correctness of the conversion as well as the bisimulation between a reconfigurable Petri net and
a Maude net. The purpose is to guarantee that the given Maude net is applicable for the related
reconfigurable Petri net so that the verification process can return valid results. This is achieved
through definitions and proofs of the conversion between a reconfigurable Petri net and a
Maude net, as well as the bisimulation between the reachability graph for the reconfigurable
Petri net and the related search tree of the Maude net. Hence, the rewriting logic is formally
defined and combined with the theory of reconfigurable Petri nets (for more technical point of
views, see [3], or the Maude modules in appendix B). Those functions that convert all parts
such as places, transitions, pre- and post-domains, or markings of a reconfigurable Petri net
into a Maude net are defined. With this result, all the functions can be bundled into a main
conversion by Theorem 1. Resting on both theories, Theorem 2 introduces the bisimulation
for both transition systems derived from the related definitions in Def. 15 and Def. 3. Such
bisimulation is based on the firing and transforming steps of a reconfigurable Petri net and
the search tree of Maude, which are mapped with a function. The resulting proof of such
bisimulation implies that both theories are behaviourally equivalent.

The algebraic approach of a Maude net leads to the proof of properties, such as deadlock
freeness, by Maude’s model checking with the LTLR-module. Additionally, the model enables
the implementation of extension as, for example, the reachability graph. The Maude net
implementation is thus used as a basis for more implementations which can be used to improve

the usability of net designs and which abides by required properties.

1 Introduction

1.2 QOutline

The following chapters can be divided into the background with all relevant theories such as
linear temporal logic and bisimulation. Next, the definition of a transition system, including
bisimulation and Maude is given. This chapter ends with an introduction to reconfigurable Petri
nets and related works such as fundamental Petri net writing in Maude or more complex — for
example, coloured Petri nets. Then, the ReConNet model checker and the related reachability
graph are introduced. Next, the chapter labelled transition systems contains the definition
of related labelled transition systems for a reconfigurable Petri net and a Maude net. The
chapter on the correctness of model checking for Maude contains the central content with all
definitions and proofs for the correctness of the conversion as well as the bisimulation. Based
on this, the evaluation chapter contains an example, including the results for a reconfigurable
Petri net, that has been proven against Charlie?. Finally, this thesis provides the basis for future
works such as graphically animated counterexamples, and a summary of all collected results
and a differentiated conclusion is also given.

The appendices include detailed examples of the Maude search tree as well as the Maude

source code of the example net and rules.

2 http://www-dssz.informatik. tu-cottbus.de/DSSZ/Software/Charlie, 24

March 2015

http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Charlie

2 Background

This chapter introduces the formal definition of reconfigurable Petri nets (with respect to well-
known Petri nets). It also shows the corresponding implementation, which is called ReConNet
[10], as well as the rewrite logic and the application rMC. rMC converts a reconfigurable Petri
net into a Maude net (see [3, 11]). Finally, it includes related works, such as Petri net definition
or more complex coloured Petri nets in Maude, as well as previous publications dealing with

reconfigurable Petri nets.

2.1 Temporal Logic

Temporal logic is an extension by time for inference logic. It contains the logic for specifying and
the techniques for reasoning time-based problems in fields of philosophy and computer science.
The time-based relations between moments are used by the before-afterwards relationships so
that ,He is always happy!“can be reasoned by a single path with linear time logic or branching
paths with computation tree logic [12]. Both logics are used to verify computer-based systems
against a given specification. An application of verification is implemented by model checking
in Maude, where a state/event-based extension is used to verify the rewrite steps.

Model checking of reconfigurable Petri nets using Maude is defined in [3, 11]. Both papers
use a conversion to transmit a net and a set of rules into a Maude net that can be used for
linear temporal logic (LTL) model checking with the module LTLR!. The LTL model-checking
module contains all the usual operators, such as true, false, conjunction, disjunction and not,
and complex operators with the next-operator being written with O ¢ or the until-operator
notated with 1) U ¢. Further, it supports release-operator statements, such as ¢ R ¢ that are
internally converted into ¢ until 1. Finally, it defines the future-operator that is written with
<O ¢ that ¢ is possible in the future, whereby the global-operator that is written with O ¢ claims
that ¢ is true in all states. All the operators are summarized in the following graphic, using a

suitable path description.

Linear temporal logic for rewrite (LTLR) with extensions for rewrite rules and properties such as fairness:
http://maude.cs.illinois.edu/tools/tlr/, 4 March 2015

http://maude.cs.illinois.edu/tools/tlr/

2 Background

O ¢: o e e o e
YU ¢: V=Y —p—p—e—e
Y R ¢: p—0—0¢0 -0, e —e

p—¢—0¢—9¢—9¢—0¢
O ¢ e—e—e—e—p—e
0 ¢: ¢p—¢—9¢—¢—0¢—0¢

Figure 1 shows a subsumption of the main LTL verification process for a formula ¢ and a given
reconfigurable Petri net written in Maude. Both parts are translated into Biichi automatons

and combined, afterwards, into a product automaton that is finally proven against emptiness.

(N e N
reconﬁgurable negative formula (—¢)
Petri net
= J =
¥ ¥
(N (N
Model Generalised Biichi
(Maude net MN) automaton (G-¢)
L J L
¥ ¥
e ~ s
Buchi automaton Biichi automaton
(Amn) (A-s)
L J L J

~ e

Product automaton
Aun ® Ay

v

Emptiness test

e ~

yes ’no’, (counter-example)

Figure 1: LTL model checking of a Maude net, adjusted from [1, P. 292]

2 Background

2.2 Bisimulation of the Transition Systems

According to [2, 13, 14], bisimilar refers to the behaviour equivalence of two systems. In
contradistinction to bisimilarity, can trace equivalence systems not determine decisions in the
system. An example of two systems that demonstrate the issue of trace equivalence is shown
in Figure 2. Initially, both systems can choose an a action. System .S is now in state s; and can
choose between b or ¢ actions. System 7' is in state ¢ or |, where no action can be selected.

As a result, both systems exhibit trace equivalence but are not bisimilar due to the decision.

S
start *» start @
S]

Figure 2: Two trace equivalent but not bisimilar systems S
and 7" due to action a (adjusted from [2])

In formal terms the example in Figure 2 can be expressed as a transition system of Def. 1,
where all states are combined in a set S for states, while transition relation ¢r combines two

states and an action to a flow.

Definition 1 (Transition system (TS)). A transition system (TS) consists of a three-tuple TS =
(S, A, tr) with a set S of states, a set A of actions and transition relations tr C S X A X S.

Based on such a transition system, a bisimulation is defined by Def. 2. A relation B is used to
combine two states of two transition systems if they satisfy both conditions for all outgoing

actions.

2 Background

Definition 2 (Action-based bisimulation of TS [14, 15]). Given two TS; with i € 1,2 and
TS; = (Si, A, tr;) is an action-based bisimulation defined by a binary relation B C S1 X Sa,

which is constructed by:

V(s1,71) € B with actiona € A

Vs9 with s1 % So = drg € S9 11 % 79 A\ (82,7’2) B

Vre with %) ro = 3ds9 € 51 : 81 %) EHWAY (82,7’2) B

If B is a binary relation between TS; and TS,, then there exists a bisimulation TS; < TS,.

2.3 Maude

Developed mainly at the Stanford Research Institute International (SRI International), Maude
is a well-known implementation of equation and rewriting logic [16, 17]. As a base, it uses a
powerful algebraic language for models of a concurrent state system. An extension of Maude
is the linear temporal logic for rewrite (LTLR) module that can be used to test defined modules
with LTL properties, such as deadlocks [1, 18, 19].

Implementations in Maude are based on one or many modules, where each is an abstract data
type (ADT). Further, each module is based on types, which are declared with the keyword ,sort"
for a single sort or for more with ,sorts“. Hence, some types for a Petri net can be described
with:

sorts Places Transitions Markings

Depending on a given set of sorts, the operators can be defined. The operators describe all
functions that are needed to work with the defined types so that, for example, a multiset of
markings can be expressed with a whitespace-functor. Placeholders, denoted by a underscore,
are used for the types after the double point, and finally, the return type is given by the type

right to the arrow. The following example is based on the above type of declaration:
op - - : Markings Markings — Markings

If an operator is associative or commutative, it can be written with keywords such as ,assoc"
and ,comm®. These keywords are defined at the end of a line so that a multiset of markings

can be extended by such properties by:

op - - : Markings Markings — Markings [assoc comm]

2 Background

The axioms are expressed by the equation logic of Maude, which defines the validity for the
given operators. For example, the initial marking of a Petri net can be exemplified with the
initial operator. As the validity can be written with an equation, where, for example, a

given Petri net of Figure 3 is defined with a token on ,A®, these three lines follow:

op initial : — Markings
ops A B : — Markings
eq initial = A

In summary, types defined are defined as sort, operators as functors op, and equations eq
as the validity of the related operators. Based on such definitions, the rewrite rules can be
used to replace one multiset with another. As usual in a functional language, all the terms are

immutable so that a A-term can be replaced by a rule with a B-term:
rl [T] : A= B

Based on the above-mentioned definitions, the example in Figure 3 is a graphical representation
of the implementation. The rule implements the token game of Petri nets, where two multisets
of the rule T can be seen as the pre- and post-set for a transition so that these rules describe a

firing step.

1@—0—-Os

Figure 3: Example Petri net for the Maude introduction

The internal representation of Maude is shown in [20] as the labelled rewrite theory R. Ris a
four-tuple (X, E, L, R) with ¥ being an alphabet of functions, a set of equations E over 3, a
set of labels L and a set of relation pairs R C L x (Tx g(X)?) that consists of a label and a
pair of terms.

The rewrite rules of R can be understood as a labelled sequence with the notation r : [t|g —
[t'] . The semantics should be read as [t becomes [t'] . Further, a rule can be extended with
variables {1, ..., x,} for each term, so that r can be written with r : [t(z1,...,z,)]g —
[t'(x1,...,2n)]E (o1, in short, 7 : [t(Z™)]g — [t'(Z™)] k). The following deduction rules in Def.
3 can be applied if R is defined.

2 Background

Definition 3 (Rewrite theory of Maude [20]). Deduction rules
1. Reflexivity, for each [t] € Tx p(X)

[t] = [¢]
2. Congruence, for each f € ¥,,n € N
[t2] = [t4] . . [tn] — [t7]

[f(tla"' >tn)] - [f(t/b?t/nﬂ

3. Replacement, for each rewrite ruler : [t(x1,...,2,)] = [t'(21,...,2,)] in R

[w] = [wi]. . [wa] = [wy]
[t(w/2)] = [¢' (@' /7))

For the sake of completeness, Def. 4 introduces all the defined rules of [20]. Transitivity and

symmetry modulo equations are also part of the deduction rules defined for Maude.

Definition 4 (Rewrite theory of Maude, including equations [20]). Extended deduction rules

for equations

4. Transitivity

2.4 Reconfigurable Petri Net

One of the most important models for concurrent systems and some software engineering
parts are Petri nets, which are based on Carl Adam Petri’s dissertation [21]. Petri’s thesis
combines states and actions in one model that is exemplarily defined as a marked Petri net
in Def. 5. An extended variety of a Petri net is a reconfigurable Petri net, as in Def. 6, which

combines modification rules with a net.

2 Background

Definition 5 (Marked Petri net N [22, 23]). A marked Petri net N can be formally described
as a tuple by

N = (P, T, pre, post, cap, Pname, tname, M)
e P is a set of places
e T is a set of transitions
e pre: T — P9 is a function used for all pre-domains of each transition
e post: T — P® is a function used for all post-domains of each transition
e cap : P — INY assigns for each place a natural number as capacity
* Pname : P — Ap is a label function for places

* tname : 1T — Ar is a label function for transitions

« M is a set of tokens by M € P®

Remark 1. The set of token is also defined as M : P — N and the capacity by cap : P — P®

Reconfigurable Petri nets are based on Petri nets and are significant due to the fact that they
can modify themselves with a set of rules [24-26]. Providing a base is the following Def. 6,
which is used for the conversion process. For elaborate definitions, [6] contains definitions for

negative application conditions (NACs) and functions that change labels with rnw and tlb.

Definition 6 (Reconfigurable Petri net RPN [6, 27]). A reconfigurable Petri net can be described
as a tuple of a reconfigurable Petri net RN = (N, R) by

e N is a Petri net
* R is a set of rules

e r € R isdefined byr = (rname, L < K — R), where L is the left-hand side, which needs
a morphism to be mapped to a net N. K is an interface between L and R. R is the part
that is inserted into the original net and Ar = \U{"name} With (rname, L < K — R) € R.

10

2 Background

Remark 2. The initial state of a reconfigurable Petri net is given as (No, R) with N = (Ng, M)
and N = (Py, Ty, prey, posty, Mo) so that [(No, My)] is the initial state in LT Sgpn.

One possible action of a reconfigurable Petri net is the firing step by a transition ¢. Def. 7
defines that ¢ is enabled if there are enough tokens on all pre-domain-related places and if the
post-domain satisfies the capacity restriction for all related places. Then, the resultant marking
can be calculated by the current marking minus the pre-domain, plus the post-domain, for the

transition t.

Definition 7 (Transition firing [6]). A transitiont € T is enabled, if its pre-domain is less
or equal than M and the resulting marking is less or equal than the capacity for each place.
The resultant marking is calculated by the current marking minus the pre-domain plus the post-

domain.

pre®(t) < M
M + post®(t) < cap
M' = (M & pre®(t)) @ post®(t).

A transformation step for a reconfigurable Petri net (N, M) to (N’, M') is defined in Def. 8.
It defines different states for isomorphic nets when there are varied markings or labels. As a

result, there is no isomorphism between both nets in the example of Figure 13.

Definition 8 (A transformation step in RPN [6]). A place-respecting transformation step in the

reconfigurable Petri net is given by

(L.mp) < (K. mg) —— (R, mg)
ol (PO l (PO) l/

(N, m) =—— (D, mp) — (0, mg) ——— (N",m’)

Definition 9 (Isomorphism classes of nets). Isomorphism classes of nets: [(N, M)] = {(N, M) |
(N, M) = (N, M)}?

2 The isomorphism class is compatible to firing and transformation steps

11

2 Background

An example net N; is illustrated in Figure 4, which contains two places and transitions as
well as two tokens. The net is enabled to fire with the initial marking. Both transitions 7" are
activated and, after two fire steps, both tokens are moved to the other place P. From now on,
the net is in a state of deadlock and cannot fire unless a rule is used. Such a rule r; is shown
in the lower bar in Figure 7 and explicitly in Figure 11, where a transition is replaced with

another with an inverse arc direction. After using r1, the net is enabled and can fire again until

P@—IF'T
[}—-Or

Figure 4: Example Petri net Ny

?p ?p Or
e n

the rule ceases to be applied.

=

=

P

v

L K R

Figure 5: Example rule r1, which changes the arc direction

12

2 Background

Based on Def. 5, the net N; can be formally written as in Figure 6. Both places are in the set P
and both transitions in 7'. All transitions are described with the pre- and post-domains, and

the initial marking is defined with m and the capacity for each place with cap.

post(1Ts) = Py
P= {P,R) (T5)

post(Ty) = Py

T = {T3,T,}
My= P+ P

pre(T3) = Py
cap(Py) = w

pre(Ty) = P
cap(Py) = w

Figure 6: Formal description of a Petri net (for a graphical presentation, see also Figure 4)

ReConNet, as published in [10], is an implementation of the reconfigurable Petri net in Def. 6.
An example net N; and a rule r; are shown in Figure 7, where N; contains two places and
transitions. Both transitions convey a token from the upper place to that below. If all tokens
are consumed, the net is in a deadlock that can only be solved with the rule 71, which changes

the direction of firing with a replacement of the transition.

ReconNet - a x
Editieren Knoten-Attribute Simulieren
@ Auswahlen o - .
Einmal schalten 0= kSchri...
= bEnim EEEm q I q Geschwindigkeit
Transformieren |» start Simul...
) Stelle einfiugen .
) Transition ei... (e el i={pll=] H 12345678910
 netze N1 |
Ol |
-9 Regeln 1
R1 ‘
|
P
irL irK 1rR
¥ 2 ¥
P P P
T T T
P P P

Figure 7: ReConNet: Graphical editor for reconfigurable Petri nets

2 Background

2.5 Related Works

Part of the Maude documentation in [28] is a Petri net example that is graphically presented in
Figure 8. Maude’s term replacement system is used to model the firing steps of transitions,
such as buy-c, change or buy-a. Based on this Maude structure, it is possible that add a model-

checking possibility which can be used to verify a deadlock or safety properties.

1 {mod PETRI-NET is
sorts Place Marking
3 subsort Place < Marking
e op _- : Marking Marking —>
Marking [assoc comm]
buy-c | [change | [buy-a | 5 ops $ ¢ a ¢ : —> Place
4 7 rl [buy—c] $ => c .
@ rl [buy—a] : $§ => a q
9 rl [change] :
9 ¢ 9 q=>38
11 |endm

Figure 8: Petri net example written in Maude®

High-level nets (coloured Petri net) are introduced in [29] with a conversion of the banker
problem. The focus is on the soundness and correctness of the Maude structure. Since the aim
is a formal definition of the model and the operators as well as the firing of a transition are
given, it extends the previous approach of [28] with operators that contain details for the firing
replacement rules pertaining to colours.

[30] shows an automatic mapping for UML models to a Maude specification that is similar
to [3]. The three-step process of modelling, analysing and converting to Maude modules is
used, where the first step focuses on subject-specific modelling within the UMLSs’ class, state
or component diagrams. AtoM is used to convert the model into a Python-code representation
that solves constraints inside the UML model. The final step is for the verification of properties,
such as deadlocks, and contains the transfer to Maude.

In [31], Petri nets are also converted into several Maude modules, as seen in [3]. The base is

an Input-Output Place/Transition net that is used for the conversion process. All components

* http://maude.cs.uiuc.edu/maudel/manual/maude-manual-html/

maude-manual_13.html, 27 April 2015

14

http://maude.cs.uiuc.edu/maude1/manual/maude-manual-html/maude-manual_13.html
http://maude.cs.uiuc.edu/maude1/manual/maude-manual-html/maude-manual_13.html

2 Background

are divided into special Maude modules for the net, which basically separate semantics and
the initial marking [30].

[32] presents a graphical editor for CPNs, which uses Maude in the background to verify
LTL properties. Specified Maude modules (similar to [29]) are defined, which contain one-step
commands for the simulation.

A unifying Petri net framework is Snoopy2 published by the Brandenburg University of
Technology Cottbus. It combines families of coloured and uncoloured Petri nets in one graph-
ical user interface. The aim of Snoopy?2 is the design and execution of Petri nets [33, 34].
Additionally, Charlie is a graphical verification tool published. It can import nets which are
created by Snoopy2, and can be analysed by various static and dynamically properties such as
invariants or a reachability graph [35].

GRaph- based Object-Oriented VErification (GROOVE) differs to tools like Snoopy2 and
Charlie or ReConNet by the chosen model. The graph transformations are realized with
states as snapshots, and transitions between the states are calculated by rule applications. A
consequence of such model is that not only static models can be used but also models with
evolutions can be modelled and proven with the included model-checking implementation
(36, 37].

The public transport of Oslo as a case study is presented in [38]. The authors created a model
of public transport using a Petri net that is converted into a Maude structure. The aim is to
prove the freeness of deadlocks or liveness as well as performance tests that are presented in
[39].

15

3 Model Checker for Reconfigurable Petri
Net

This section introduces the implementation of ReConNet Model Checker (rMC). rMC is a
Java-based tool that enables a user to convert a given reconfigurable Petri net to a Maude net.
Further, such Maude nets can be executed and analysed by the tool. The analysis includes
an export to a reachability graph, which is based on the returned output by the search
command. The export includes an implementation that parses the output and generates

graphical representations with an export to Graphviz'.

3.1 ReConNet Model Checker (rMC)

The basis of this thesis is the internal model of ReConNet, which allows the user to create
and simulate a reconfigurable Petri net. Due to the non-deterministic behaviour, it is difficult
for a user to determine if some properties, such as deadlocks or liveness, are complied with.
Therefore, an approach for the model checking of a reconfigurable Petri net is a common
practice for ensuring such properties. The ReConNet Model Checker (rMC) in Figure 9 is a Java-
and Maude-based approach that solved this gap by defining Maude modules for a reconfigurable
Petri net. The modules contain the net and a set of rules as well as all mechanisms to fire a

transition or transform the net with a rule [3].

' http://www.graphviz.org/, 26 April 2015

16

http://www.graphviz.org/

3 Model Checker for Reconfigurable Petri Net

ReConNet Model Checker - x
load PN load rule convert showEG
Eenes ts/MasterRailway/ReConNet/Messure/4/BaseNet. PNML
Rule rRailway/Re ConNet/Messure/4/ChangeMUC_HAM PNML
erRailway/Re ConMet/Messure/4/ChangeHAM_BER PNML
erRailway/Re ConMet/Messure/4/ChangeBER _HAM.PNML
erRailway/Re ConMNet/Messure/4/ChangeBER _MUC.PNML
Command rew modelCheck(initial, [J<> enabled) |
SRR /home/alex/Dropbox/AW_PJ/SEM3/Maude/maude-2.7-
Maude MC | 4o me/atex/Dropbox/AW_PJ/SEM3/Maude/maude-2.7-
Graphviz

dot

Figure 9: rMC: ReConNet Model Checker

Listing 1 shows, in comparison to Figure 6, the same net, written in the Maude modules

defined in [3]. Each set is modelled similarly to a set of places and transitions. As a spe-

cial feature, the capacity is directly defined for each place, so that a place is defined as

p(<label>|<identifier>|<capacity>). Meanwhile, transitions only consist

of t (<label>|<identifiexr>. The pre- and post-domains are wrapped in a set with

the pre- or post-operator. Finally, the initial marking is modelled as a set in the last line.

1 |net(places{ p(”P” | 3 | 2147483647) , p("P” |
transitions{ t(”T” | 4) t(”T” | 5) } ,
3 pre{ (t("T" [4) —> p("P" | 3 | w)) ,
(tC’T” | 5) —> p("P" | 3 [w)) } ,
5 post{ (t("T" | 4) —> p("P" | 2 [w)) ,
(tC’T” | 5) —> p(’P" | 2 | w)) } ,
7 marking{ p("P” | 3 | w) ;
p("P” [3 | w) })

2 [w) },

Listing 1: N; converted into Maude

17

3 Model Checker for Reconfigurable Petri Net

Rule 7; is shown in Listing 2 and Listing 3. One rule consists of two nets with the same
structure, as presented in Listing 1. Only the left-hand side and right-hand side are relevant for
the replacement rules, since the left-hand side is necessary to find a match and the right-hand
side is necessary for the elements that replace the elements of the left-hand side and the gluing
conditions of Def. 10 are fulfilled [3].

rule (1(net(places{ p(”P” | 19 | w) ,
2 p("P” | 16 | w) }
transitions{ t(*T” | 23) } ,
4 pre{ (t(”T” | 23) —>
p("P” | 16 | w)) } ,
6 post{ (t(”T” | 23) —>
p("P” | 19 | w)) } ,
8 marking{ p("P” | 19 | w) ;
p("’P” | 19 | w) })) ,

Listing 2: Left-hand side of r; converted into Maude

1 r(net(places{ p(”P” | 16 | w) ,
p("P” | 19 | w) }

3 transitions{ t(*T” | 25) } ,
pre{ (t(”T” | 25) —>

> p(’P” | 19 | w)) } ,
post{ (t(”T” | 25) —>

7 p("P” | 16 | w)) } ,
marking{ p("P” | 19 | w) ;

9 p("P” [19 | w) })))

Listing 3: Right-hand side of 1 converted into Maude

The term replacement for firing of transitions is based on the Def. 7. A rule uses the pre-
domain to determine if a transition is activated and observes the capacity for each place in the
post-domain. Listing 4 contains the implementation of Definition 7, where each pre-domain
condition is implemented inside the left side of a rule and the capacity condition is implemented

as an if condition.

18

3 Model Checker for Reconfigurable Petri Net

1 |crl [fire]
net (P,
3 transitions {T : TRest},
pre {(T —> PreValue), MTupleRestl},
5 post {(T —> PostValue), MTupleRest2},
marking { PreValue ; M})
7 Rules
MaxID
9 StepSize
aid
11 =>
net (P,
13 transitions {T : TRest},
pre {(T —> PreValue), MTupleRestl},
15 post {(T —> PostValue), MTupleRest2},
calc (((PreValue ; M) minus PreValue)
17 plus PostValue))
Rules
19 MaxID
StepSize
21 aid
if calc ((PreValue ; M) plus PostValue) <=? PostValue

Listing 4: Firing term replacement rule written with Maude

Besides firing, the transformation rules of Def. 11 are a central part of a reconfigurable Petri
net. Dynamical changes effected by rules enable the net to modify its structure on its own.
An abstract implementation of such rules is illustrated in Listing 5. The rule consists of the
pattern-matching algorithm of Maude, which ensures that the left-hand side is a subset of
the current net state. Furthermore, takes the right-hand side by rule application effect, if
the conditions are successfully proven. Conditions such as free0OfMarking? or emp-
tyNeighbourForPlace?® by Def. 10 test whether parts of the current net states satisfy
requirements of the formal rule application. For example, a place can only be deleted if no

transition is related to this place.

see line 78 in Listing 16 for the definition and implementation
see line 102 in Listing 16 for the definition and implementation

19

3 Model Checker for Reconfigurable Petri Net

Definition 10 (Gluing condition for rules [11]). Each ruler application withr = (Tngme, L <+
K — R) in a reconfigurable Petri net satisfies the gluing conditions. The gluing condition is
divided into the identification and the dangling condition, so that:

e the identification condition implies that no place or transition can be deleted and obtained
at the same time. Transitions are secured by their isomorph mapping of pre- and post-
domains and freeOfMarking is used for places to ensure that each deleted place ap-
plies p £ MRest (for the implementation, see Listing 16 line 78)

e the dangling condition implies that a place can be deleted only if there are no connections
outside the rule. emptyNeighbourForPlace ensures for deleted places that p is not
used in pre{MTupleRest 1} or post{MTupleRest 2} (for the implementation, see
Listing 16 line 102)

Definition 11 (Transforming with Maude net rules). For each ruler = (Tpame, L + K — R)
with L = (P, Ty, pre;, post;, My) and R = (Pg, TR, preg, posty, MR) in a reconfigurable
Petri net, there exists a term rewriting rule that handles the quest by Maude’s pattern matching
and conditions, such as preserving markings by deletion, or, in case of a deleted transition, the

preservation of connections to places, so that

e there is a pattern match of the left-hand side to ensure that the left-hand side is a subset of

the current net state

e the match satisfies the identification condition of Def. 10 to ensure that no transition or

place is deleted and obtained at the same time

e the match satisfies the dangling condition of Def. 10 to ensure that no deleted place is

connected to a transition outside of the match

crl [<ruame>]

2 net(places{ P_.L , PRest } ,

transitions{ T_L TRest }
4 pre{ (Vte Ty :pre(t)) , MTupleRestl } ,

post{ (Vte€TyL :post(t)r) , MTupleRest2 } |,
6 marking{ ML ; MRest })

rule (1(net(places{ P.L } ,
8 transitions{ T_.L } ,
pre{ (MteTL:pre(t)L) } ,

20

3 Model Checker for Reconfigurable Petri Net

10 post{ (Vte T :post(t)) } ,
marking{ ML })) ,
12 r(net(places{ PR } ,
transitions{ TR } |,
14 pre{ (VteTgr:pre(t)r) } .
post{ (Vt € Tg:post(t)r) } .
16 marking{ MR })))
| RRest
18 MaxID
StepSize
20 aid{ AidRest }
=>
22 net(places{ P.R , PRest } ,
transitions{ T_R : TRest } ,
24 pre{ (Vte€Tgr:pre(t)r) , MTupleRestl } |,
post{ (Vt € Tg:post(t)g) , MTupleRest2 } ,
26 marking{ MR ; MRest })
rule(1(net(places{ P.L } ,
28 transitions{ T_.L } ,
pre{ (VteTL:pre(t)L) } ,
30 post{ (Vte Ty :post(t)r) } ,
marking{ ML })) ,
32 r(net(places{ PR } ,
transitions{ T_R } ,
34 pre{ (MteTgr:pre(t)r) } .
post{ (Vt € Tg:post(t)r) } ,
36 marking{ MR })))
| RRest
38 NewMaxID
StepSize
40 aid{ AidRestNew }
if «++ calculate new identifiers
42 AidRestNew := calculateAllldentifiers /\
«x+ Vp € P, which are deleted; prove if they
44 * are part of MRest (identity condition)

21

3 Model Checker for Reconfigurable Petri Net

46

43

50

52

54

freeOfMarking ((p(<label> | <identifier > |
<capacity >)) | MRest) /\
«xx VYp € P, which are deleted; prove if there
«xx [s a related transition (dangling condition)
emptyNeighbourForPlace(p(<label> | <identifier >
| <capacity >) ,
pre{ MTupleRestl } |,
post{ MTupleRest2 }) /\
«x+ set new maximal identifier counter
NewMaxID := correctMaxID (MaxID | StepSize |
|AidRestNew|)

Listing 5: Transformation term replacement rule written with Maude

3.2 Reachability Graph

Based on the search command in Listing 7, Figure 11 shows the resulting state graph. All

the states are calculated by all possible rewrite rules of Def. 3 and Def. 5. Finally, the show

search graph command returns a text-based result of such states search as in Listing 7.

initial =>! net(P:Places , T:Transitions |,

show search graph

Pre:Pre , Post:Post ,
Any:Markings)
Rules:Rule MaxID:Int StepSize:Int
aidP:IDPool

Listing 6: Maude search commands for a Maude net

22

3 Model Checker for Reconfigurable Petri Net

The search command output is exemplarily presented in Listing 7. At first, No solution.
signifies that no final state, such as deadlocks, is found. The next line gives a general overview
of the states found or the required time. Afterwards, the output is grouped by all states, such as
state 0, and followed by the related outgoing arcs, as for example arc 0 ===> state
1.

search in NET : initial =>! net(P:Places, T:Transitions ,
Pre:Pre, Post:Post, Any:Markings) Rules:Rule MaxID:Int
2 |StepSize:Int aidP:IDPool

4 |No solution.
states: 12 rewrites: 161 in 1ms cpu (Oms real) (161000
rewrites/second)
6 | state 0, Configuration: net(places{p(®P” | 2 | w),p(’P” |
3 | w)}, transitions{t(”T” | 4) : t(”T” | 5)}, pre{(t(”
T2 | 4) —> p(’P” | 3 | w),t(’T" | 5) —> p("P” | 3 |
w)}, post{(t("T" [4) —> p("P" | 2 | w)) . t("T" | 5)
—> p(”P” | 2 | w)}, marking{p("P” | 3 | w) ; p("P” | 3
| w)}) rule(l(net(places{p(”P” | 16 | w),p(’P” | 19 |
w)}, transitions{t(”T” | 23)}, pre{t(”T” | 23) —> p(”’P
116 | w)l, post{t(’T” | 23) —> p("P” | 19 | w)},
marking{ p(”P” | 19 | w) ; p("P” | 19 | w)})), r(net(
places{p(”P” | 16 | w),p(”P” | 19 | w)}, transitions{t
(’T” | 25)}, pre{t(”T” | 25) —> p(”P” | 19 | w)}, post
{(tC>T” | 25) —> p(’P” | 16 | w)}, marking{p(”P” | 19 |
w) ;5 p(’P” | 19 | w)}))) 25 10 aid
{25,(26,(27,(28,(29,(30,(31,(32,(33,(34,(35))))))))))}
arc 0 ===> state 1 (crl net(P:Places, transitions {
T:Transitions : TRest:Transitions}, pre{
MTupleRest1:MappingTuple, T:Transitions —>
PreValue:Places}, post{MTupleRest2:MappingTuple,
T:Transitions —> PostValue:Places}, marking{M:Markings
; PreValue:Places}) Rules:Rule MaxID:Int StepSize:Int

aid:IDPool => net(P:Places, transitions{T:Transitions

TRest:Transitions}, pre{MTupleRestl:MappingTuple,

23

3 Model Checker for Reconfigurable Petri Net

T:Transitions —> PreValue:Places}, post{

MTupleRest2:MappingTuple, T:Transitions —>

minus PreValue:Places) plus PostValue:Places
Rules:Rule MaxID:Int StepSize:Int aid:IDPool

<=? PostValue:Places = true [label fire] .)

PostValue:Places}, calc (((M:Markings ; PreValue:Places)

))
if calc ((

M:Markings ; PreValue:Places) plus PostValue:Places)

Listing 7: Example output for the search commands in Listing 7

Rule 73 in Figure 10 is used as an example to show a deadlock. Its differences

with 71 has other

arc directions so that it is possible that a rule application ends in a deadlock. Such deadlocks

are visible as sinks in Figure 12 as state without outgoing arcs.

@p ?p @r
SR (ET s

Or

=

i

L K R

Figure 10: Example rule 7, which changes the arc direction, can result in a deadlock

24

3 Model Checker for Reconfigurable Petri Net

([Td<-€dpLILIe < ([€°d<-TdH LILIP “TIANd- 13

€d'ed g ams

TA<EdS,

2d'Td paws

o Algd<rasilile <- {[Td<-¢'dss'LILlp TN

Figure 11: Abstract reachablility graph (ARG) for N; and r;

25

3 Model Checker for Reconfigurable Petri Net

Td<€' Ay

€dTd : 1 aws

TA<g'd: S I\ Td<€dt'L

Td'Ttd 1 6 amIs

TA<E AL

€ d<-Td: sl Td<g'dr L\ {le'd<-T'd LIl <- {[T'd<-¢'dH LILIP “TANd-2d + {le'd<-T'd:S LIL}e <- {[T'd<-¢'d:S LIL

€d'ed : ¢ s

{[e'd<-T'd:s"LIL}e <- { d.

[T'd<-€'d'S'LILIP JEZ&.NN_U. {[e'd<-T'dy LIL}e <- {[Td<-¢'d¥ LIL}P TANdCY. .. - - - -

€d'ed 1 0 IS

7d'ed : 8 s
€d<TdPL

€d'ed § s
P TTANA-CY - Td<-€'diSL | €d<-Td'L

€d'ed 1 TS

) for N7 and ro with deadlock states state 4 and 6

Abstract reachablility graph (ARG

Figure 12

26

4 Labelled Transition Systems

This chapter introduce the Maude net of [3] formally. The following labelled transition systems
are defined in combination with Maude term replacement rules so that their labels are given
for reconfigurable Petri nets (in Def. 15) as well as for a Maude net (in Def. 16). Further,
both transition systems are used as a basis for the definition and proof of bisimulation in the

following chapter 5.

4.1 Maude net

The main term of a reconfigurable Petri net is called a Maude net. It combines a net and a set
of rules as well as metadata such as the highest identifier. The following section introduces
the formal definition of the NET module that is introduced in [3]. Therefore, this section aims
to define the NET module using a definition and the implementation of required sorts and
operators.

The conversion of Theorem 1 is based on the reconfigurable Petri nets in Def. 5 and a
Maude net configuration T configuration @s @ conversion target specified in Def. 14. A Maude
net configuration in Def. 14 again includes a net of Def. 12 and a set of rules in Def. 13, and,
therefore, specifies all parts of a reconfigurable Petri net.

First, it specifies Def. 12, which is a net including places, transitions, pre- and post-domains
as well as markings through sorts for each term, identity elements and separation operators.

Therefore, a net can be written as shown in Listing 1.

27

4 Labelled Transition Systems

Definition 12 (Maude net and its term sets). A Maude net is provided by a Maude module NET
(see Listing 18) by initial = net(P, T, Pre, Post, M), hence the following

well-formed conditions hold:

e P = places{ emptyPlace }or
P = places{pi,...,pn } so that some p; and p; are pairwise disjoint: p; = p; —

1=

e T = transitions { emptyTransition }or
T = transitions { ti:..:t, | sothatsomet; andt; are pairwise disjoint:
t; = tj = 1 :j

e Pre = pre { emptyMappingTuple } or
Pre = pre { mappingTuple,,..., mappingTuple, |} with
mappingTuple; = (t;—— >emptyPlace) or
mappingTuple; = (t;—— >{pi1, ..., Pis}) so that some t; and t; are pairwise disjoint:
t;=t; = i=7andpi, € {p1,.,pn}

e Post = post { emptyMappingTuple } or
Post = post { mappingTuple,,...,mappingTuple, } with
mappingTuple; = (t;—— >emptyPlace) or
mappingTuple; = (ti—— >{piy,....Dis}) so that some t; and t; are pairwise disjoint:
ti=t; = i=jandp;, € {p1,....,Pn}

M
M

marking { emptyMarking } or
marking { pi,..,px } withp; € {p1,....,pn}

28

4 Labelled Transition Systems

Further, a Maude net rule is defined in Def. 13. It combines the left and right sides of a rule in
‘R to form a Maude net rule. As a wrapper, the operator rule is used, which contains the 1

and the 1 operators for both sides. 1 and r both contain a net of Def. 12.

Definition 13 (Term sets for rules [3]). After module NET gives a Maude net, the sorts Lef't -
HandSide, RightHandSide and Rule describe term sets of rules (see Listing 16).

Finally, the definition of the Maude net configuration in Def. 14 combines the Maude net term
in Def. 12 and a set of rule terms in Def. 13 with metadata such as the highest identifier that is
currently used, and a set of free identifiers wrapped in the IDPoo1l.

Definition 14 (Maude net configuration and its term sets [3]). A Maude net configuration is
given by a Maude module NET as in Def. 12. Thereafter, a Configuration is defined by
IDPool, Int and Configuration (see Listing 15).

With respect to membership equation logic [40, 41], the specification for reconfigurable Petri
nets is given by RPN(N) = (3, V, E). That specification is given as Maude source code in the
following pages through listings for sorts, as in Listing 8 or Listing 11 for operators.
Therefore, a membership equation logic is defined by a triple (3, V, E'), where a signature
Y = (K,S,Q)isbased on V that contains variables and axioms in E. Additionally, S contains
all sorts that are listed in Listing 8, K contains all kinds over S and (2 includes all operators
that are listed in Listing 10 and Listing 11.

As the base, the types are declared in Listing 8. Net and all included types suchas Places,
Transitions, etc. for the Def. 12 and Rule, RightHandSide and LeftHand-
Side for the rule definition in Def. 13.

sort Net . sort Places
2 |sort Transitions . sort Pre .

sort Post . sort MappingTuple
4 |sort Markings . sort Omega

sort Rule . sort RightHandSide
6 |sort LeftHandSide

Listing 8: Sorts of a reconfigurable Petri net defined in Maude [3]

29

4 Labelled Transition Systems

As defined in Def. 12, each term set has a separation operator for more than one term. For
Places and MappingTuple, the ,, “is used. ,+"is defined as a separation operator for
Places terms that describes the firing step, including the marking calculation. Transi-

tions are separated using ,,: “and Markings using ,,;“.

op places{_} : Places —> Places

2 |lop transitions{_} : Transitions —> Transitions
op pre{_-} : MappingTuple —> Pre

4 |op post{_} : MappingTuple —> Post

op marking{_} : Markings —> Markings

op _,_- : Places Places —> Places

8 |[ctor assoc comm id: emptyPlace]

op _+_ : Places Places —> Places

10 |[ctor assoc comm id: emptyPlace]

op -:- : Transitions Transitions —> Transitions

12 |[ctor assoc comm id: emptyTransition]

op _,- : MappingTuple MappingTuple —> MappingTuple
14 |[ctor assoc comm id: emptyMappingTuple]

op _;- : Markings Markings —> Markings

16 | [ctor assoc comm id: emptyMarking]

Listing 9: Wrapping and grouping operators of a reconfigurable Petri net defined in
Maude [3]

If a net does not contain nodes, such as places or transitions, their identity elements can
be used. For each sort, an element in Listing 10 is defined. Hence, it is feasible to write

places{emptyPlace} if there is no place.

op emptyPlace : —> Places

2 lop emptyTransition : —> Transitions
op emptyMappingTuple : —> MappingTuple
4 |op emptyMarking : —> Markings

op w : —> Omega

6 |op emptyRule : —> Rule

Listing 10: Identity elements of a reconfigurable Petri net defined in Maude [3]

30

4 Labelled Transition Systems

The definition of single places, transitions, pre- and post- domains, and rules are shown in
Listing 11. A place consists of the sort Places and the p(<label>|
<identifier>|<capacity>) operator, where the capacity is either a concrete inte-
ger or a ,w"for omega. Transitions are defined with their Transitions sort while the
t (<label>|

<identifier>) operator combines a label and an identifier for each transition. Map-
pingTuple is used to define the pre- and post-domains for each transition (and Tran-
sitions term). It consists of (<transition> —— > <places>), where one
<transition> is mapped to a set of <places>. Finally, Def. 13 that are based on the
left-hand and right-hand sides of a rule are given by the 1 and r operators as well as by ,|*,

which is used as a separator.

«xx p (< label > | < id > | < capacity >)

2 |op p(-]-]-) : String Int Int —> Places
op p(-|-]-) : String Int Omega —> Places
4 | «x+ t (< label > | < id >)
op t(_|-) : String Int —> Transitions
6
«xx t — PO

8 |lop (.—>_) : Transitions Places —> MappingTuple

10 | =+ rule

op _|_ : Rule Rule —> Rule

12 | [ctor assoc comm id: emptyRule]

op 1 : Net —> LeftHandSide

14 |op r : Net —> RightHandSide

op rule : LeftHandSide RightHandSide —> Rule

Listing 11: Operator definitions of a reconfigurable Petri net defined in Maude [3]

31

4 Labelled Transition Systems

Listing 12 concatenates the Def. 12 and the implementation above in Listings 8 to 11, and Def.
13 to a Maude net configuration in Def. 14. Additionally, a IDPo0O1 consists of its identity
element emptyIDSet, the ,, “as separator operator and aid{. . .} as wrapper for all free

identities.

1 |sort IDPool

op emptyIDSet : —> Int

3lop -,(-) : Int Int —> Int [comm id: emptyIDSet]
op aid{_} : Int —> IDPool

sort Configuration
7 | x++ READING: NET SET<RULE> MAXID STEP_SIZE ID
op _____ : Net Rule Int Int IDPool —> Configuration

Listing 12: Implementation of the Maude net configuration in Maude [3]

4.2 Labelled Transition System for Reconfigurable Petri Net

A labelled transition system for a reconfigurable Petri net is defined in Def. 15 with the included
isomorphism class in Def. 9. All states that are reachable by a firing step of Def. 7 or the
transforming steps of Def. 8 are consolidated by the isomorphism class if their labels are equal.
The example in Figure 13 shows two of those isomorphic nets, where the label of the places

are equal.

Pi(A°) (09— P (O— [N, 2p]
|
ﬁ‘_O P (A7) ﬁ‘—@ Py(,AY) [N,p+7]

Figure 13: Two isomorphic nets by Def. 9 and the related labelled transition system

In the context of a reconfigurable Petri net, a transition system is defined by LTSgpny =
(Sren; AreN,

trren), where Sgpy is a non-empty set that contains all states s = (N, M) € Sgrpn. Aren
contains two kinds of arc labels, such as firing and transforming, which are defined by Agpy =
A7 | Ag. Transition relations are based on trgpy C Sgrpny X Agpn X Sgpw, so that a transition

relation defines the flow by a combination of two states and one label.

32

4 Labelled Transition Systems

Definition 15 (Labelled transition system for reconfigurable Petri net). Given a reconfigurable
Petrinet ((No, Mo), R), the definition of a labelled transition system LTSgpn = (Sren, AreN, t7RPN)

is based on the isomorphism classes of nets:

1. Initial states by Def. 9:
[(N07 MO)] € Sren

2. Firing steps:
IF(N, /)] € Sgew A (N, M) € [(N, M) A MM’ in N then: [(N, M")] € Sgex,
trame(t) € Agen and [(N, M)] 22Oy (N, M7)] € trren

3. Transformation steps:
IF[(N, 31)] € Sren A (N, M) € [(N,)] A (N, M) 225 (N7, M") for some rule
7 = (Tname, L < K — R) € R and some occurrence o : L. — N then:
[(N", M")] € SreN> Tname € Arpn and [(N, M)] 222 [(N', M")] € trgen

4. Finally:

Sren, Arpn, trren are the smallest sets satisfying the above conditions.

4.3 Labelled Transition System for Maude

A transition system for a Maude net is defined by LTSyve = (Swmne, Amne, Rvne), where
Sunc is a non-empty set that contains all states of a Maude breadth-first search tree. Maude’s
deduction rules of Def. 3 and Def. 4 are used to execute all known rules, such as firing or
transformations, with rules in the RULES module. Such a state s € Sync consists of a Net
term as current state. Apnc is defined with Ayne = Ar|J AR and contains the labels of
rewrite rules, such as the firing of a transition or transforming. ¢rync is defined as a set of
transition relations that is based on trync € Syne X Ayne X Sunc. Therefore, two terms of

Sync are connected with a label of a rewrite rule in Aync.

33

4 Labelled Transition Systems

Definition 16 (Labelled transition system for a Maude net). Given the Maude module NET,
a labelled transition system LTSync = (Swmne, Amne, trvne) is defined with respect to the term

sets over the equation conditions of the Maude modules by:

1. Initial:

initial € Sync

2. Firing steps:
If s € Sunc and s — §' is a replacement for a rewrite rule [fire] of Listing 4 with the

third rule of Def. 3 so that
s = net (P,
transitions{t(labellidentifier) : TRest},
pre{t(labellidentifier) — — > PreValue, MTupleRest1},
post{t(labellidentifier) — — > PostValue, MTupleRest2},
marking{PreValue; M})
is used as left-hand side of Listing 4, then s' € Sy;nc, t(label) € Ayne andt @
s’ etryunc
3. Firing step for a transition with an empty pre:
Ifs € Sync and s — s’ are a replacement for a rewrite rule [fire-emptyPre] with

the third rule of Def. 3 in the Maude module RPN and
s = net (P,
transitions{t(labelidentifiericapacity) : TRest},
pre{t(labeljidentifierfcapacity) — — > emptyPlace , MTupleRest1},
post{t(labellidentifier{capacity) — — > PostValue, MTupleRest2},
marking{M})

— label
then s’ € Syne, t(label) € Ayne and t M s €tryunc

34

4 Labelled Transition Systems

4. Transformation steps:
Ifs € Sync and s — s is a replacement for a rewrite rule [Tpame] in the Maude

module RULE and
s=net(places { P, PRest},

transitions{T;: TRest},
pre{Pre;,,MTupleRest1},
post{Post;,MTupleRest2},
marking{M; M})

rule(1(P, T,, Prey, Post;,, M;) , r(R))
then is:

Tname

s e Syne, T € Agpy and s —" s e trpNe

5. Finally:
Smne, AmNe, tryne are the smallest sets satisfying the above conditions.

4.4 Résume of the Formalisation

The purpose of this chapter is the definition of a Maude net and the labelled transition systems
for both nets. To clarify the definition of [3], a Maude net is defined by a formal definition
in Def. 12 for nets, Def. 13 for rules and Def. 14 for a configuration itself. Selected code
snippets are based on the definition listed for sorts in Listing 10, for operators in Listing 11
and Listing 11 as well as for the configuration in Listing 12.

Def. 15 contains the definition of a labelled transition system for reconfigurable Petri nets.
It is based on an isomorphism class for net states and firing as well as transforming steps that
are used for the transition relations. A construction of a similarly labelled transition system
for a Maude net is defined in Def. 16. All reachable states and their associated actions, such as

firing and transforming rewrite rules, are used to define the labelled transition system.

35

5 Correctness of Model Checking for
Maude

The content of this chapter is graphically represented by Figure 14. Theorem 1 is defined
as a conversion between the reconfigurable Petri net (IV, R) and the Maude net NET. Fur-
ther, labelled transition systems are calculated by the related nets and inference rules. For
reconfigurable Petri nets, the transforming steps of Def. ?? and firing steps of Def. 7 are
used. Equivalent rules are defined for a Maude net so that the firing or transforming steps
are transferred into Maude rewriting rules. Formally, the deduction of such rewriting rules is
defined by Def. 3, which are extended by Def. 4. Finally, the labelled transition systems for
both nets are introduced by LTSgpyn using Def. 15 and LTSync applying Def. 16.

LTSgpy as labelled transition systems for reconfigurable Petri nets is given by all reachable
states using firing and transforming steps, whereby the states are pooled by the isomorphism
of Def. 9. Furthermore, LTSync is given for a Maude net, where all rewriting rule applications
of firing and transforming steps are summarized.

Theorem 2 defines the bisimulation between these two labelled transition systems, whereby
Def. 2 is used to prove the bisimilarity of both systems, outgoing from the initial states by
Theorem 1. Bisimilarity for each reachable state implies the compliance of equality actions for
each pair in the relation. Such a relation is defined with map by Def. 18 between LTSgpy and
LTSpync. Regarding the introduction of Section 2.2, the aim of Theorem 2 is to be able to decide

whether both systems are behaviourally equivalent.

(N, R) Conversion in Theorem 1 NET
Def. 15l Def. 16
LTSRPN Bisimulation in T"heorem 2 LTSMNC

Figure 14: Correctness of conversion

36

5 Correctness of Model Checking for Maude

The following chapter contains both theorems of Figure 14. Theorem 1 defines the conversion
of a reconfigurable Petri net to a Maude net. Therefore, several lemmas are defined, where
all parts such as places, transitions, etc. are converted separately. Theorem 2 defines the

bisimulation on the basis of the labelled transition systems.

5.1 Syntax Conversion

Towards Theorem 1, the following injective functions in Lemma 1-6 are used to convert all parts
of a reconfigurable Petri net into a NET- and a RULES-module. The theorem itself specifies
the conversion for a given reconfigurable Petri net to a Maude net that implies theses functions

so that

o buildPlace in Lemma 1 defines the conversion for places

o buildTransition in Lemma 2 defines the conversion for transitions (similar to buildPlace)

buildPre in Lemma 3 defines the conversion for each pre(t) with t € T®

buildPost in Lemma 4 defines the conversion for each post(t) with t € T® (similar to
buildPre)

buildNet in Lemma 5 defines the conversion of a net

buildRule in Lemma 6 defines the conversion of rules in R

Def. 17 contains functions for the mapping of identifiers and capacities leading to lemmas for
the conversion of places and transitions. The identifiers are used as unique keys for nodes such
as places or transitions due to the use by pre- and post-domains. Furthermore, the capacities

are used to define a limit of tokens that can be stored on a place.

Definition 17 (Injective identity mapping of idp and cap). Given a reconfigurable Petri net
(N, R) and an injective identity mapping idp : P — IN for the places, for transitions analo-
gously, and a capacity functioncap : P — INJ{w} is defined by:

_ w ifcap(q) = w
cap(q) =
cap(q) else

37

5 Correctness of Model Checking for Maude

The conversion of places is defined in Lemma 1 where P® of net N is used as the source for
the induction. The identity element emptyPlace is used in the induction basis, if PP is
empty. Each new place p,1 is inductively converted by the induction step in the definition of
a Maude net place, whereby the conversion uses the identifier and capacity function to convert

a place by the p(<label>|<identifier>|<capacity>) operator.

Lemma 1 (buildPlace). Given a set of places P together with an identity function idp (see Def.
17), a capacity function cap (see Def. 17) and a labelling function ppam. (see Def. 5), then there is
a injective function buildPlace : PO = Thuees.

Proof of Lemma 1. buildPlace is defined inductively over | P| by:
. for P = (), P® = {0} and buildPlace(0) = emptyPlace

« for P' = P4{p'} there is a buildPlace : P’ — T pjqces defined by

buildPlace(s) if s € P®

buildPlace’(s) — buildplace(sl)a p(pname(pn +1, 1)|idP(pn +1, 1)|W(pn +1, 1))7 ceey
p(pname(pn +1, k)lidP (pn +1, k)l@(pn +1, k))
ifs=5s +kpy,;,k>1ands GPEB\P’G9

buildPlace is injective, given some set of places P = {p1, ..., p,} with idp, cap and ppame,
sothat s = 31 ;< Aili # X1<i<p MiPi = §', then there is some 1 < i < n with \; # pu;,

and hence

buildPlace(s) =p(Pname(P1)s 1), - - - P(Pname(P1)s A1), - -,

(
p(pname(pi)v 1)) s ap(pname(pi)a)\1)7 R
(

p pname(pn)a 1)7 cee 7p(pname(pi),)\n)
+
1Y pname(pl)) 1)7 <. 7p(pname(p1)7 /Jf1)7 ceey

(
p(pname(pi)7 1)7 cee 7p(pname(pi)a Mi)a R
p(pname(pn); 1)7 cee 7p(pname(pn)7 Mn) = buildPlace(s’)

is id,, injective.

38

5 Correctness of Model Checking for Maude

The inverse function buildPlace™ ! is defined for well-formed terms of sort Places (see
Def. 12) by

buildPlace™*
buildPlace™*

(emptyPlace) =0 and
(p(pname(pl)v 1)) cee 7p(pname(p1)a)‘1)7 EERE)
p(pname(pi)a 1)a ce 7p(pname(pi)a)‘Z>> ceey

(

P(Prame(Pn); 1), - - - s P(Prame(Pn); An)) = Z AiDi

1<i<n
O

The proof of Lemma 2 is similar to Lemma 1. It differs in the part of the conversion, where the
definition of a transition as well as the identity element is used instead of the place definition.
Transitions are defined by the t (<label>|<identifier>) operator that contains only
the identifier derived by the identity function idr to get a unique identifier for this transition

from the source data.

Lemma 2 (buildTransition). Given a set of transitions T with tym. by Def. 5 and idr by Def.
17, then there is a injective function by buildTransition : T — Transitions

Proof of Lemma 2. Similar induction to the proof of Lemma 1, due to the ,,: “constructor in

line 44 of module NET in Listing 15. This includes differences by the definition in Def. 12:

« ,:“as separation instead of ,,"
- emptyTransition instead of emptyPlace

« t(<label>|<identifier>) operator instead of the place operator

O

Conversions of pre- and post-domains requires special definitions due to the MappingTuple.
Def. 12 introduces the concept of both domains that are based on the sort MappingTuple. It is a
mapping between a transition and a set of places so that it is suitable for buildPre in Lemma 3
as well as buildPost in Lemma 4.

The proof itself is realised with an induction over the set of transitions. Each new transition
is a mapping to a MappingTuple-defined term. Such term consists of a transition that is
mapped with an arrow, which is written in a Maude net with ,—— >, to a set of places-
terms that are returned from pre(t,,)!. The related set of places is converted by buildPlace of

Lemma 1.

! Empty pre- or post-domains are special cases that are solved by the identity element for place emptyPlace

39

5 Correctness of Model Checking for Maude

Lemma 3 (buildPre). Given a set of transitions T with buildPlace of Lemma 1 and buildTran-
sition of Lemma 2, then there is a injective function by buildPre : 70 5T MappingTuple

Proof of Lemma 3. buildPre is defined inductively over |T'| by:
o for T = 0, 7% = {0} and buildPre(0) =emptyMappingTuple

o for T" = T J{t'} there is a buildPre’ : T" — T pappingupte defined by:

buildPre(?) ift' € T®

buildPré (') = buildPre(t"), (buildTransition{t, . 1,1} — — > buildPlace{pre(ty.1,1))}, .-,
(buildTransition{t, . 1 x} — — > buildPlace{pre(t, . 1,x)})
ift' =t" +kty,;, k>1andt" € T\ 179

The proof of injection and the inverse function buildPre™! for buildPre are analogously to
Lemma 1.
O

The proof of Lemma 4 is similar to Lemma 3, which is realized inductively over the set of
transitions. It differs only in the used functions so that the same proof can be realized with

post(ty) instead of pre(t,).

Lemma 4 (buildPost). Given a set of transitions T' with buildPlace of Lemma 1 and buildTran-
sition of Lemma 2, then there is a injective function by buildPost : 70 - T MappingTuple

Proof of Lemma 4. Similar induction to proof of Lemma 3, due to the equal construction in
line 48 of module NET in Listing 15. O

In Lemma 5 is a injective function defined, which combines all parts of a Petri net to Maude
net-term. A net operator wraps the places, transitions, pre-and post-domains as well as

markings into one net. buildNet is a injection as all functions are injections.

Lemma 5 (buildNet). Given a net N with buildPlace of Lemma 1, buildTransition of Lemma 2,
buildPre of Lemma 3 and buildPost of Lemma 4, then there is a injective function by buildNet :
(N, M) — TN with N = (P, T, pre, post, M)

40

5 Correctness of Model Checking for Maude

Proof of Lemma 5. buildNet The proof is separated into all parts of a Maude net and hence

a Net is given by injective functions:

net (places{buildPlaces(P)},
transitions{buildTransition(T)},
pre{buildPre(T)},
post{buildPost(T)},
marking{buildPlaces(M)})

O

Rules are converted by Lemma 6 where a set of reconfigurable Petri net rules is used to create
rule-terms in Maude. The identity element emptyRule is returned if no rule is defined.
Each rule consists of two Petri nets with left-hand side for the left-hand side and right-hand
side for the right-hand-side so that the buildNet function can be used to convert the nets.

Lemma 6 (buildRule). Given a rule r by r = (rname, L <— K — R) and buildNet by Lemma 5,
then there is a injective function by buildRule : R — Tgy,

Proof of Lemma 6. buildRule
Basis: |R| = 0 so that Tgy, = {emptyRule} = {0}

Induction hypothesis: |R| = n then there exists a injective function
buildRule : R' — T puse

Induction step (n — n + 1): s R' = RW{rn+1} with ¥’ = (Tpame, L < K — R)
then there is by the induction hypothesis a injection with buildRule’ : R’ — Ty
which is defined by:

buildRule(”) if ' € R

buildRulé (r') = buildRule(r") | {rule(1(buildNet(L)), r(buildNet(R)))}

ifr = {r"}{rn. 1}
withr” € R\ R’/

41

5 Correctness of Model Checking for Maude

Finally, Theorem 1 introduces the conversion of one given reconfigurable Petri net into a Maude
net. The first part of the proof is based on the Def. 14 that defines all parts of a reconfigurable
Petri net in Maude’s term algebra. A Maude net consists of a net that is included in the net-
operator, a set of rules that are defined by the rule-operator as well as metadatas such the
highest identifier. The second part presented the RULES module by rewrite rules for each rule
inR.

Theorem 1 (Syntactic conversion of a reconfigurable Petri net to a Maude net configuration).

For each reconfigurable Petrinet (N, R), there is a well-formed Maude NET and RULES module.

Proof of Theorem 1. By buildPlace of Lemma 1, buildTransition of Lemma 2, buildPre of
Lemma 3, buildPost of Lemma 4 and buildRule of Lemma 6 is for each reconfigurable Petri
net (N, R), with N = (P, T, pre, post, M) and R = {("name;, Li + K; = R;)|I1 <i <n}, a
well-formed Maude NET and RULES module (as in appendix Listing 18) given so that:

eq initial = buildNet(N)
buildRule(R)

metadata

In addition, there is the Maude module RULES with the rewrite rules of Def. 11 and the
implementation of Listing 5. Thus we have for each rewrite rule r € R with 7 = (rname;, Li <

crl [Tpame] : net(places{buildPlaces(Pr;), PRest},
transitions{buildTransition(Tr;): TRest},
pre{buildPre(Tr;), MTupleRest1},
post{buildPost(Tr;), MTupleRest2},
marking{buildPlaces(M};); MRest})
buildRule(R)
metadata
=>

net (places{buildPlaces(Pr;), PRest},

transitions{buildTransition(Tg;): TRest},
pre{buildPre(Tr;), MTupleRest1},
post{buildPost(Tr;), MTupleRest2},

42

5 Correctness of Model Checking for Maude

marking{buildPlaces(Mp;); MRest})
buildRule(R)
new metadata
if *** for deleted places
freeOfMarking(Vp € Pr; | MRest) A
*** for places of deleted transitions
emptyNeighbourForPlace(Vp € Pr; \ Pr; |
pre{MTupleRest1} | post{MTupleRest2})A

calculate new metadata

5.2 Equivalence by Bisimulation

Labelled transition systems are defined for reconfigurable Petri nets by LTSgpy and a Maude
net by LTSync. Both labelled transition systems are comprised in this section by equivalence
through bisimulation. A map function is defined in Lemma 8 that linked a state s € LTSync to
a state r € LTSgpn. Hence, the function map inverses the direction of Theorem 1 and enables

the proof of Theorem 2, since bisimulation requires linked states in both directions.

Remark 3. To distinguish the states of the respective labelled transition systems, the variables

s for state in LTSync and r for state in LTSgpy are used

The Theorem 2 is the major aim of this thesis and defines the behaviour equivalence of both
transition systems. The proof implies that for each pair (s, r,) € mapwithn > 0, all outgoing
actions are equal. Furthermore, the proof ensures that the reached states s, and 7,4 are
also in map, so that (S,41,7n+1) € map is inductively required.

Preliminary to Theorem 2 defines Def. 18, a reversed conversion of Theorem 1. It maps all
parts of a Maude net back to a reconfigurable Petri net so that two states of the related labelled

transition system can be associated with each other.

43

5 Correctness of Model Checking for Maude

Definition 18 (Surjective mapping between states of LTSgpy and LTSync). Given a recon-
figurable Petri net (No, R) with Ny = (Po, To, prey, posty, Pramegs tnameo, €apy, Mo) and R as
in Def. 6 and the corresponding Maude modules NET and RULE as in Theorem 1. Further,
the label transition system is given by LTSgpy with Def. 15 and LTSync by Def. 16. So that
there is a mapping map : Sync — Sren for some states s € Sync of Def. 12 with s =
net (Places, Transitions, Pre, Post, Markings) | Rule Int Int
IDPool by

map(s) = [(N, M)] and

« P = {plp is an atomic element in buildPlace™' (Places)}
o T = {t|t is an atomic element in buildTransition ' (Transitions)}

e pre: T — PO defined by pre(t) = buildPlace*(place) ; if
Transitions =transitions{T : t(tpame | X)} and

Pre =pre{MT, (t (tpame | x) — place)}

e post: T — PP defined by post(t) = buildPlace ! (place) ; if
Transitions =transitions{T : t(tpame | X)} and

Post =post{MT, (t (tname | x) — place)}

* Dname : P — Ap defined by ppame(p) = label ; if
Places =places{P , p(label | x| x)}

¢ tname : T — Ar defined by tpame(t) = label ;if
Transitions =transitions{T : t(label | x)}

e cap : P — NN defined by cap(p) = capacity;if
Places =places{P , p(str | x | capacity)}

e cap : P — w defined by cap(p) = w; if
Places =places{P , p(str | x| w)}

« M = {m|m is an atomic element in buildMarking~*(Markings)}

44

5 Correctness of Model Checking for Maude

Based on Def. 18, the following Lemma 8 and Lemma 9 define the linked states of both transition
systems. Lemma 8 is used to link states from Syc to Sgpn, whereby the Lemma 9 link states

the inverted direction from Sgpy to Syc.

Lemma 7 (map of the initial state). (N, My) € map(initial) is given by map as defined
in Def. 18

Proof of Lemma 7. Given initial as defined by Def. 12 as initial = net(Places, Tran-
sitions, Pre, Post, Markings), then there is a [(Ng, Mp)] as defined by Def. 6 with Ny =

(Po, Tv, prey, posty, Pnameq» tnameo, €apy, Mo) so that:

« Py is defined by the inverse function of Lemma 1 with buildPlace™" so that
Py = {plp is a atomic element in buildPlace ' (Places)}

« Ty is defined by the inverse function of Lemma 2 with buildTransition—" so that

Ty = {t|t is a atomic element in buildTransition *(Transitions)}

. preg is defined by the inverse function of Lemma 3 with buildPre~! so that
preg : T — PD defined by pre(t) = buildPlace * (place) ; if
Transitions =transitions{T : t(tpame | X)}and

Pre :pre{MT7 (t(thame | X) — place)}

« posty is defined by the inverse function of Lemma 4 with buildPost ! so that
posty : T — PO defined by post(t) = buildPlace” ' (place) ; if
Transitions =transitions{T : t(tpame | X)}and

Post =post{MT, (t (tpame | x) — place)}

* Pname is defined by Def. 5 with pyame : P — Ap so that pyame(p) = label ;if
Places =places{P , p(label | x | x)}

* tnameo is defined by Def. 5 with ¢,4me : T — A7 so that tpem.(t) = label ;if
Transitions =transitions{T : t(label | x)}

45

5 Correctness of Model Checking for Maude

« capy is defined by Def. 5 with cap : P — INY so that:

- cap(p) = capacity;if
Places =places{P , p(str | x | capacity)}

- cap(p) = w;if
Places =places{P , p(str | x | w)}

« My is defined by the inverse function of Lemma 1 with buildPlace™" so that

M = {m|m is a atomic element in buildMarking™* (Tymarkings)}
O

Lemma 8 (map as function). map : Sync — Sren is a function given by map as defined in Def.
18

Proof of Lemma 8. For each s € Syc there is one r € Sgpy with map(s) = 7.
Basis: For the initial so € Sync exists by Lemma 7 an initial state g € Sgpn
Induction hypothesis: Let be given a state s, € Syne with s, = net (Places,
Transitions, Pre, Post, Markings) | Rule Int Int IDPool,
so that map(s,) = r, = [(N, M)] with N = (P, T, pre, post, Pname, tname, cap, M)
Induction step (n — n + 1): For each follower state s,,+1 € Syne with sy, LN Sn+1 €
tryne there is a 1,1 € Sgpy with 7, LN Tn+1 € trreny and map(sp4+1) = Tn+1 so that !
can be applied by:

tname tS . .
« Firing by s, # Sn+1 as in Def. 16 with s,,41 = net (Places,

Transitions, Pre, Post, Markings’) | Rule Int Int
tname t”‘
IDPooO1 and by the isomorphism class of Def. 9 there is also a 7, # Tn+1

as in Def. 15 with 7,1 = [(N, M")] so that

— Activation:
If marking{PrevValue ; M} can be rewritten by the rewrite rule
[fire] defined in Def. 7 and Listing 4, then the PrevValue for ¢
is less or equal than the marking of s,. Hence, is pre®(t,) < M, (line
one of Def. 7) and 7, trame(tr) Tn+1 € trrey due to M[t,.) M’ in N with
Tnt1 = [N, M'], trame(ts) = tname(tr) and tame(tr) € Arpn.

— Capacity limitation:

If (Prevalue ; M) plus PostValue can be rewritten by the

46

5 Correctness of Model Checking for Maude

rewrite rule [fire] defined in Def. 7 and Listing 4, then the Post -
Value for each place used by ¢; is less or equal than the capacity and
M + post®(t,) < cap for t, (line two of Def. 7)

— New marking:
If calc(((Prevalue ; M) minus PreValue) plus Post-
Value) can be rewritten by the rewrite rule [fire] defined in Def. 7
and Listing 4, then the following marking Markings'’ is given and the
marking for 7,1 is calculated by M’ = (M, © pre®(t,.)) @ post®(t,.). (line
three of Def. 7)

« Transformation by s, M Sn+1 as in Def. 16 with s,,11 = net (Places,

Transitions, Pre, Post, Markings’) | Rule Int Int
Tname(r'r)

IDPoO1 and the isomorphism class of Def. 9 there is also a r,, ——— r,,41 as
in Def. 15 with 7,41 = [(N’, M")] so that

— match:
If s,, can be rewritten by the rewrite rule [Ypame] defined in Def. 11
and Listing 5, then is the L a subset of s,,. Hence, there is an occurrence
0: L — N defined in Def. 15 by ;. and r,, (")

as Tname(rs) = Tname(rr)~

Tn+1 € IrRpN aS well

- freeOfMarking applies for each deleted place p £ MRest, as defined
in Def. 11 by the identification condition in Def. 10

- emptyNeighbourForPlace applies for each deleted place p no oc-
currence in Pre and Post, as defined in Def. 11 by the dangling condition
in Def. 10

47

5 Correctness of Model Checking for Maude

Lemma 9 (map as surjective function). map : Srpxy — Smnc is a surjective function given by
map as defined in Def. 18

Proof of Lemma 9. For each r € Sgpy there is one s € Sync with map(s) = r
Basis: For the initial rg € Sgpy exists by Theorem 1 an initial state s9 € Sync
Induction hypothesis: Let be given a state r,, € Sgpy with r,, = [N, M| so that there
is a s, € Syne with map(sy,) = rn, = [(N, M)] of Def. 18 and N = (P, T, pre, post,
Prames thame, cap, M).
Induction step (n — n + 1): For each follower state 7,41 € Sgpy with 7, LN Tnt+l €
trrpn there is a s,41 € Syne with s, LN Sn+1 € tryne and map(sp+1) = Tp41 so that

I can be applied by:

« Firing by 7, M) Tnt+1 € trren as in Def. 15 with 7,11 = [(IV, M")] there

tname tS .
is by Def. 16 also a s, # Sn+1 € trync with s,11 = net (Places,

Transitions, Pre, Post, Markings’) | Rule Int Int
IDPooOl1 so that

— Activation:
If pre®(t,) < M, (line one of Def. 7) and r,, Fnamelte),
M]t,)M" in N with r,, 11 = [N, M'], then t, is activated. Hence, mark -
ing{PrevValue ; M} can be rewritten by the rewrite rule [fire]

defined in Def. 7 and Listing 4, so that PreValue for ¢, is the less

Tn+1 € trrpy due to

or equal than the marking of s,, as well as tpame(ts) = tname(t,) and
tname(tr) € Arpn.

— Capacity limitation:
If M + post®(t,) < cap for t,, then the PostValue is less or equal
than the capacity for each place used by ¢, (line two of Def. 7). Hence,
(Prevalue ; M) plus PostValue can be rewritten by the
rewrite rule [fire] defined in Def. 7 and Listing 4,

— New marking:
If the following marking for r,,; 1 is calculated by M’ = (M, © pre®(t,.)) ®
post®(t,.) (line three of Def. 7), then calc (((Prevalue ; M) mi-
nus PrevValue) plus PostValue) can be rewritten as the fol-
lowing marking Markings' by the rewrite rule [fire] defined in Def.
7 and Listing 4.

48

5 Correctness of Model Checking for Maude

Tname(Tr)

Tn+1 € trrpyasinDef. 15withr, 1 = [(N', M')]
there is by Def. 16 also a s, M Sn+1 € tryne with s, 11 =net (Places,
Transitions, Pre, Post, Markings’) | Rule Int Int ID-

Pool so that

« Transformation by r,,

— match:
If there is an occurrence o : L — N defined in Def. 15 by r,- and r, name(r)
Tnt1 € trrpn, then s, can be rewritten by the rewrite rule [¥pame] defined

in Def. 11 and Listing 5 by L C s,,.

- freeOfMarking applies for each deleted place p £ MRest, as defined
in Def. 11 by the gluing condition

- emptyNeighbourForPlace applies for each deleted place p € PreA
p € Post as defined in Def. 11 by the gluing condition

O

Remark 4. The function map in Lemma 9 is not injective due to the isomorphism class in Def.
9.

Theorem 2 (Bisimulation of LTSgpy and LTSpync). LTSgpn and LTSyne are bisimilar as defined
in Def. 2 by map in Def. 18

Proof of Theorem 2. For each relation defined by map of Def. 18, which consists of s € Syne

and r € Sgpy with map(s) = r = [N, M], we have:

. 5 — s": For each a € Aync there is map(s) = rand r % r’ € trgpy, due to s = s’ €
trynve and the mapping of Lemma 8 and Lemma 9 there is map(s’) = r’ by Lemma 8 and

Lemma 9.

« 7 — 1': For each a € Apnc there is map(s) = rand s % s’ € tryne, duetor = ' €
trrey and the mapping of Lemma 8 and Lemma 9 there is map(s’) = v/ by Lemma 8 and

Lemma 9.

So that a bisimulation between LTSgpy and LTSy nc is defined by the map function. O

49

5 Correctness of Model Checking for Maude

5.3 Résumeé by the Correctness of Model Checking for Maude

The previous chapter introduced the formal argumentation for the implementation correctness
of the Maude net defined in [3]. The correctness is reasoned by the conversion in Theorem 1,
which converts a reconfigurable Petri net to a Maude net as well as the bisimulation in the
proof of Theorem 2.

The bisimulation of Theorem 2 proves the behaviour equivalence for both labelled transition
systems by the definition in Def. 2. As results, the proof of Theorem 1 shows that there is the
possibility of a conversion from a reconfigurable Petri net into a Maude net. Further, the proof
of Theorem 2 clarified that there exists a behaviour equivalence for both labelled transition

systems.

50

6 Evaluation

This chapter evaluates the performance of the approach written with Maude in version 2.7,
including LTLR in version 1.0! against the established tool Charlie version 2.0%.

A Petri net with equal semantics, as a reconfigurable Petri net, is used as an example in
Figure 15. This net is used to perform a comparative analysis, including a transfer into a
flat Petri net, where all transformation steps are modelled as separated nets that include the
transformation results. The nets, as shown in Figure 16, are created with Snoopy?2 in version 1.13
3 based on the reachability graph that contains all firing steps as usual arcs and transformation
steps as dotted arcs?. The Figure 15 models the flight routes between Hamburg, Berlin, and
Munich. For each fly-transition there exists a rule that handles flight route changes which are
modelled as direction alters. A route change can occur when an aircraft is expected at another
airport, where it will serve another flight. This behaviour is modelled by the replacement of a

transition, including a switching of the pre- and post-domains (cf. Figure 5).

! http://maude.cs.illinois.edu/tools/tlr/, 11 March 2015
http://www-dssz.informatik. tu-cottbus.de/DSSZ/Software/Charlie,

11 March 2015

http://www-dssz.informatik. tu-cottbus.de/DSSZ/Software/Snoopy,

11 March 2015

The nets modelled in Snoopy?2 are manual created. An automation is part of the future work, where extend
benchmarks are challenged.

51

http://maude.cs.illinois.edu/tools/tlr/
http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Charlie
http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Snoopy

6 Evaluation

i

ReconNet - o x
rEditieren Knoten-Attribute Simulieren
A ahl i . - .
il d Gl o0 5 Wert | Einmal schalten || OH k Schri... ‘
) Kante einfugen ||[r-me HAM . . Geschwindigkeit
L Markierung |1 Transformieren D start Simul...
) Stelle einfigen =1 - . !
Kapazitat unbegrenzt " P
2 Transition ei... Nur Tokenspiel |v||1234567 8910
T Netze BaseNet
D EBaselet
[Regeln
ChangeHAM_EER
HAM ER M ER

Figure 15: Flight routes net for evaluation tests

52

6 Evaluation

Figure 16: Snoopy net of Figure 15 and all rules: HAM-BER, BER-MUC, MUC-HAM and
BER-HAM

Table 1 contains all evaluation results of the reachability graph construction by Charlie and
Maude. All testcases are based on the previous test case (denoted by ™ +°) so that the reachability
graph is extended step by step with new rules. Furthermore, information about states and

edges are carried together for each testcase. For better reading, Figure 17 shows the data from
Table 1.

53

6 Evaluation

Charlie States Edges Maude States Edges

* + HAM-BER 125,2 6 11 51,5 6 11
* + BER-MUC 125,3 12 28 51,9 12 28
* + MUC-HAM 131,4 24 68 51,8 24 68
* + BER-HAM 147,1 438 428 60,8 43 208

Table 1: Evaluation results of reachability graph analysis between Charlie and Maude
(in milliseconds)

150 [>(_){/)/X |
<
=
S 100 |
é —— Charlie
g —o— Maude
= S —e— States
g 50| © 8
=
0 L | | | | |
1 2 3 4

Count of rules

Figure 17: Compare collected data as graph

Besides the reachability graph generation, metadata is calculated for both systems. Maude
reveals deadlocks with Solut ion during the tracing of the state generation, and Charlie has
a metadata overview window. The Table 2 connects all results for both systems with equal

results.

Charlie Maude

*+ HAM-BER yes (at HAM) vyes (at HAM)
*+BER-MUC yes (at HAM) yes (at HAM)
* + MUC-HAM no no
* + BER-HAM no no

Table 2: Evaluation results of the reachability graph analysis between Charlie and Maude
(in milliseconds)

54

7 Future work

An integration of rMC in ReConNet, including the workflow that converts a reconfigurable
Petri net into Maude modules, is advantageous. Executions for analysis are also important
for a helpful representation of the received information that can be used as assistance for
the net designer. Due to the complexity of a net as well as a set of rules, it is necessary to
show the reachability graph (e.g., Figure 11 or Figure 12). Information on deadlocks or circular
dependencies is simpler to understand, if presented in a graphical form.

Evolution of the reachability graph by using a coverability graph is required as well as
the general improvement of the Maude net. Reducing the size of the scope and states of the
reachability graph is an important challenge due to the performance. For example, it reduces
the loops of the coverability graph, which are created through the insertion of a transition
infinite times by a rule. Further, the implementation of the identifier pool becomes obsolete if
such rules are put in place.

The implementation of more complex sort-structures are useful to prevent Maude net
structure issues. Currently, it is possible to add two place wrappers into each other such
as places{ places{...} }. An example approach, which solves this issue, is shown
in Listing 13. It inserts a new sort beside the existing sort Places and extends it by
Place. Placeisusedasasort for single place-terms. The wrapper places usesPlace,
instead of Places so that it only takes terms such as p(<label> | <identifier>
| <capacity>).

sorts Places Place

2 |lop p(-]-]-) : String Int Int —> Place
op _,_ : Place Place —> Place
4 |lop places : Place —> Places

Listing 13: Prevent Maude net sort structure issues

55

7 Future work

Enhancements of LTL properties are useful for simplified spellings of formulae such as the
reachability of a set of nodes by name. prop.maude actually contains operators that enable users
to ask for the reachablility of places by label, identifier, and capacity with the reachable-
operator. Another example is the deadlock-freeness of a Maude net by the enabled-operator
(including only transition activation by t-enabled). Operators that use only the label of a
place make more sense since identifiers can be changed by rule applications. A sample
implementation is presented in Listing 14, where only one label is used to prove whether a

place is reachable.

op reachable : String —> Prop
2
eq net(P, T, Pre, Post,
4 marking{ p(L | I | Cap) ; MRest })
Rules MaxID StepSize aid
6 |= reachable (L) = true

Listing 14: Example of an extending operator for the LTL formulae

An implementation of special features such as negative application conditions (NACs) (see
[42]) or decorations (see [10]) is useful. NACs are used as net states for rules which should
not occur. Decoration includes the definition and implementation of t/b and rnw functions in
Maude. The tlb function maps a transition label to a specific transition. Further, those labels
can be changed with the rnw function so that it is possible to add functions into a transition.
Some example applications are executable calculations such as counting an integer.

An interactive front end, which displays the collected LTL results, is a necessary extension
for the graphical implementation in ReConNet. Traces of the printed LTL-paths can help a
user to understand problems of the net and rules. If, for example, a deadlock occurs, then an
animation can show all actions that lead to the dead state. Such an animation can present all
actions, such as firing and transformation steps, which end in a dead state where no action can
be used. Currently, the functionality of the front end supports only the generation of Maude
modules or reachability graphs in PDF- or SVG-files.

56

7 Future work

Finally, advanced benchmarks are useful to compare tools as Charlie against rMC. The
automatization of testcases, including a database of different net structures and rules, provides
differentiated results. The example in Figure 15 contains an exponential growing state space
that is magnificently handled by Maude net, but the net is minor due to the count of places and
transitions. A database of different net structures can express an abstracted result in contrast
to the specific example net. Further, the testcases can be extended to other tools like Groovel,

which uses graph grammars to express rules.

' http://groove.cs.utwente.nl/, 24 April 2015

57

http://groove.cs.utwente.nl/

8 Summary and Conclusion

The model checking for computer-based systems such as Maude’s linear temporal logic of
rewriting by term replacement algebra is a well understood technique to verify the behavioural
properties of a given system. Maude’s intuitive writing and the logical model are suitable for
the aim of this thesis, as they define a model for reconfigurable Petri nets in term algebra.

The concurrent and distributed model of reconfigurable Petri nets can be written with term
algebra by a conversion of Theorem 1. Each part of such a reconfigurable Petri net is converted
into a Maude net. Furthermore, actions such as firing or transforming are defined so that
labelled transition systems can be defined for both models and their related inference rules.

Bisimulation of labelled transition systems requires behaviour equivalence for each state
mapping in a relation defined between both systems. Theorem 2 and the related map function
define such a bisimilarity for a given reconfigurable Petri net and a Maude net.

The aim of this thesis is summarized in Figure 18, where the required conversion is introduced
by Theorem 1 and the bisimulation by Theorem 2. A given reconfigurable Petrinet ((IN, M), R)
is converted with several functions into a Maude net term. The labelled transition systems are
derived by the inference rules of both nets. Finally, the Theorem 2 defines the bisimulation

between both labelled transition systems by a behaviour equivalence.

(N, R) Conversion in Theorem 1 NET
Def. 15l Def. 16
LTSRPN Bisimulation in T"heorem 2 LTSMNC

Figure 18: Correctness of conversion

The result of the proof for Theorem 1 clarified that a Maude net of Def. 14 is a valid represen-
tation of a formally defined reconfigurable Petri net. A conversion is formally defined and
proven so that it is possible to implement a conversion that transmits all parts of such model.
The project before this thesis (see [3]) contains such a conversion, which uses a PNML-file as

well as a XSL implementation.

58

8 Summary and Conclusion

Further, the proof of bisimilarity shows that both systems are behaviourally equivalent. The
states and actions of a labelled transition system, derived from a reconfigurable Petri net, show
that a Maude net calculates behaviourally equivalent states. Therefore, is a map-function by
Def. 18 defined as relation, which maps states of both transition system.

Consequently, the proofs show that the verification of reconfigurable Petri nets and Maude
nets are correct using model checking by Maude’s LTLR. For this purpose, shows the evaluation
that properties such as deadlocks can be detected by the implementation of the model and
special operators for the LTL process. Further, Maude generates a text-based reachability graph
for a finite state space. As side effect is such state space generated by rMC as graphic (e.g.
Figure 11).

59

Bibliography

(1]
(2]

Christel Baier and Joost-Pieter Katoen. Principles of model checking, 2008.

Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer, 1980. ISBN 3-540-10235-3. doi: 10.1007/3-540-10235-3. URL
http://dx.doi.org/10.1007/3-540-10235-3.

Alexander Schulz. Converting reconfigurable Petri nets to maude. CoRR, abs/1409.8404,
2014. URL http://arxiv.org/abs/1409.8404.

Hartmut Ehrig and Julia Padberg. Graph grammars and Petri net transforma-
tions. In Lectures on Concurrency and Petri Nets, pages 496—-536. Springer Science,
2004. doi: 10.1007/978-3-540-27755-2_14. URL http://dx.doi.org/10.1007/
978-3-540-27755-2_14.

M. Llorens and J. Oliver. Structural and dynamic changes in concurrent systems: reconfig-
urable Petri nets. IEEE Trans. Comput., 53(9):1147-1158, sep 2004. doi: 10.1109/tc.2004.66.
URLhttp://dx.doi.org/10.1109/tc.2004.66.

[6] Julia Padberg. Abstract interleaving semantics for reconfigurable Petri nets. ECEASST,

51,2012. URL http://journal.ub.tu-berlin.de/eceasst/article/
view/775.

[7] José Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical

Computer Science, 96(1):73—155, apr 1992. doi: 10.1016/0304-3975(92)90182-f. URL http:
//dx.doi.org/10.1016/0304-3975(92)90182-f.

Manuel Clavel, Francisco Duran, Steven Eker, Patrick Lincoln, Narciso Marti-Oliet, José
Meseguer, and Jose F. Quesada. Maude as a metalanguage. Electr. Notes Theor. Comput.
Sci., 15:147-160, 1998. doi: 10.1016/S1571-0661(05)82557-5. URL http://dx.doi.
org/10.1016/S1571-0661(05)82557-5.

60

http://dx.doi.org/10.1007/3-540-10235-3
http://arxiv.org/abs/1409.8404
http://dx.doi.org/10.1007/978-3-540-27755-2_14
http://dx.doi.org/10.1007/978-3-540-27755-2_14
http://dx.doi.org/10.1109/tc.2004.66
http://journal.ub.tu-berlin.de/eceasst/article/view/775
http://journal.ub.tu-berlin.de/eceasst/article/view/775
http://dx.doi.org/10.1016/0304-3975(92)90182-f
http://dx.doi.org/10.1016/0304-3975(92)90182-f
http://dx.doi.org/10.1016/S1571-0661(05)82557-5
http://dx.doi.org/10.1016/S1571-0661(05)82557-5

Bibliography

(9]

Mark-Oliver Stehr, José Meseguer, and Peter Csaba Olveczky. Rewriting logic as a
unifying framework for Petri nets. In Unifying Petri Nets, pages 250—303. Springer Sci-
ence, 2001. doi: 10.1007/3-540-45541-8_9. URL http://dx.doi.org/10.1007/
3-540-45541-8.9.

[10] Julia Padberg, Marvin Ede, Gerhard Oelker, and Kathrin Hoffmann. Reconnet: A tool for

modeling and simulating with reconfigurable place/transition nets. volume 54, 2012. URL

http://journal.ub.tu-berlin.de/eceasst/article/view/774.

[11] Julia Padberg and Alexander Schulz. Towards model checking reconfigurable Petri nets

[12]

[13]

(18]

using maude. ECEASST, 68, 2014. URL http://journal.ub.tu-berlin.de/
eceasst/article/view/953.

Leslie Lamport. What good is temporal logic? In IFIP Congress, pages 657-668, 1983.

David Michael Ritchie Park. Concurrency and automata on infinite sequences. In Peter
Deussen, editor, Theoretical Computer Science, 5th GI-Conference, Karlsruhe, Germany,
March 23-25, 1981, Proceedings, volume 104 of Lecture Notes in Computer Science, pages
167-183. Springer, 1981. doi: 10.1007/BFb0017309. URL http://dx.doi.org/10.
1007 /BFb0017309.

Robin Milner. Communication and concurrency, volume 84. Prentice hall New York etc.,
1989. ISBN 0-13-115007-3.

Davide Sangiorgi and Jan Rutten, editors. Advanced Topics in Bisimulation and Coinduc-
tion. Cambridge University Press, 2011. ISBN 9780511792588. URL http://dx.doi.
org/10.1017/CB09780511792588. Cambridge Books Online.

Santiago Escobar, José Meseguer, and Ralf Sasse. Variant narrowing and equational unifi-
cation. Electr. Notes Theor. Comput. Sci., 238(3):103-119, 2009. doi: 10.1016/j.entcs.2009.05.
015. URL http://dx.doi.org/10.1016/j.entcs.2009.05.015.

Manuel Clavel, Francisco Duran, Steven Eker, Patrick Lincoln, Narciso Marti-Oliet, José
Meseguer, and Jose F. Quesada. Maude: specification and programming in rewriting
logic. Theor. Comput. Sci., 285(2):187-243, 2002. doi: 10.1016/S0304-3975(01)00359-0. URL
http://dx.doi.org/10.1016/S0304-3975(01)00359-0.

Steven Eker, José Meseguer, and Ambarish Sridharanarayanan. The maude
LTL model checker. Electr. Notes Theor. Comput. Sci, 71:162-187, 2002. doi:

61

http://dx.doi.org/10.1007/3-540-45541-8_9
http://dx.doi.org/10.1007/3-540-45541-8_9
http://journal.ub.tu-berlin.de/eceasst/article/view/774
http://journal.ub.tu-berlin.de/eceasst/article/view/953
http://journal.ub.tu-berlin.de/eceasst/article/view/953
http://dx.doi.org/10.1007/BFb0017309
http://dx.doi.org/10.1007/BFb0017309
http://dx.doi.org/10.1017/CBO9780511792588
http://dx.doi.org/10.1017/CBO9780511792588
http://dx.doi.org/10.1016/j.entcs.2009.05.015
http://dx.doi.org/10.1016/S0304-3975(01)00359-0

Bibliography

[19]

10.1016/S1571-0661(05)82534-4. URL http://dx.doi.org/10.1016/
S1571-0661(05)82534-4.

Steven Eker, José Meseguer, and Ambarish Sridharanarayanan. The maude LTL model
checker and its implementation. 2648:230-234, 2003. doi: 10.1007/3-540-44829-2_16. URL
http://dx.doi.org/10.1007/3-540-44829-2_16.

[20] José Meseguer. A Logical Theory of Concurrent Objects. ACM, 1990. doi: 10.1145/97945.

[21]

97958. URL http://doi.acm.org/10.1145/97945.97958.

Carl Adam Petri. Kommunikation mit Automaten. 1962.

[22] José Meseguer and U. Montanari. Petri nets are monoids: a new algebraic foundation for

(23]

[24]

[25]

[26]

net theory. pages 155-164, 1988. doi: 10.1109/LICS.1988.5114.

Gabriel Juhas, Fedor Lehocki, and Robert Lorenz. Semantics of Petri nets: a comparison. In
Shane G. Henderson, Bahar Biller, Ming-Hua Hsieh, John Shortle, Jeffrey D. Tew, and Rus-
sell R. Barton, editors, Proceedings of the Winter Simulation Conference, WSC 2007, Wash-
ington, DC, USA, December 9-12, 2007, pages 617-628. WSC, 2007. doi: 10.1145/1351542.
1351661. URL http://doi.acm.org/10.1145/1351542.1351661.

Hartmut Ehrig, Kathrin Hoffmann, Julia Padberg, Ulrike Prange, and Claudia Ermel.
Independence of net transformations and token firing in reconfigurable place/transition
systems. In Jetty Kleijn and Alexandre Yakovlev, editors, Petri Nets and Other Models of
Concurrency - ICATPN 2007, 28th International Conference on Applications and Theory of
Petri Nets and Other Models of Concurrency, ICATPN 2007, Siedlce, Poland, June 25-29, 2007,
Proceedings, volume 4546 of Lecture Notes in Computer Science, pages 104-123. Springer,
2007. doi: 10.1007/978-3-540-73094-19. URL http://dx.doi.org/10.1007/
978-3-540-73094-1.9.

Ulrike Prange, Hartmut Ehrig, Kathrin Hoffmann, and Julia Padberg. Transformations in
reconfigurable place/transition systems. In Pierpaolo Degano, Rocco De Nicola, and José
Meseguer, editors, Concurrency, Graphs and Models, Essays Dedicated to Ugo Montanari
on the Occasion of His 65th Birthday, volume 5065 of Lecture Notes in Computer Science,
pages 96-113. Springer, 2008. doi: 10.1007/978-3-540-68679-8_7. URL http://dx.
doi.org/10.1007/978-3-540-68679-8_7.

Laid Kahloul, Allaoua Chaoui, and Karim Djouani. Modeling and analysis of reconfigurable

systems using flexible Petri nets. In Jing Liu, Doron Peled, Bow-Yaw Wang, and Farn Wang,

62

http://dx.doi.org/10.1016/S1571-0661(05)82534-4
http://dx.doi.org/10.1016/S1571-0661(05)82534-4
http://dx.doi.org/10.1007/3-540-44829-2_16
http://doi.acm.org/10.1145/97945.97958
http://doi.acm.org/10.1145/1351542.1351661
http://dx.doi.org/10.1007/978-3-540-73094-1_9
http://dx.doi.org/10.1007/978-3-540-73094-1_9
http://dx.doi.org/10.1007/978-3-540-68679-8_7
http://dx.doi.org/10.1007/978-3-540-68679-8_7

Bibliography

[27]

(28]

[29]

[30]

[31]

[33]

editors, 4th IEEE International Symposium on Theoretical Aspects of Software Engineering,
TASE 2010, Taipei, Taiwan, 25-27 August 2010, pages 107-116. IEEE Computer Society,
2010. doi: 10.1109/TASE.2010.28. URL http://dx.doi.org/10.1109/TASE.
2010.28.

Hartmut Ehrig, Frank Hermann, and Ulrike Prange. Cospan DPO approach: An alternative
for DPO graph transformations. Bulletin of the EATCS, 98:139-149, 2009.

Manuel Clavel, Francisco Duran, Steven Eker, Patrick Lincoln, Narciso Marti-Oliet, José
Meseguer, and Carolyn Talcott. Maude manual (version 2.6). University of Illinois, Urbana-
Champaign, 1(3):4-6, 2011.

Mark-Oliver Stehr, José Meseguer, and Peter Csaba Olveczky. Rewriting logic as a unifying
framework for Petri nets. In Unifying Petri Nets, Advances in Petri Nets, pages 250—
303, 2001. doi: 10.1007/3-540-45541-8_9. URL http://dx.doi.org/10.1007/
3-540-45541-8.9.

W. Chama, R. Elmansouri, and A. Chaoui. Using graph transformation and maude to
simulate and verify UML models. In Technological Advances in Electrical, Electronics and
Computer Engineering (TAEECE), 2013 International Conference on, pages 459-464, May
2013. doi: 10.1109/TAEECE.2013.6557318.

Paulo E. S. Barbosa, Joao Paulo Barros, Franklin Ramalho, Luis Gomes, Jorge Figueiredo,
Filipe Moutinho, Anik6 Costa, and André Aranha. Sysveritas: A framework for verifying
IOPT nets and execution semantics within embedded systems design. In Technologi-
cal Innovation for Sustainability - Second IFIP WG 5.5/SOCOLNET Doctoral Conference on
Computing, Electrical and Industrial Systems, DoCEIS 2011, Costa de Caparica, Portugal,
February 21-23, 2011. Proceedings, pages 256-265, 2011. doi: 10.1007/978-3-642-19170-1_28.
URL http://dx.doi.org/10.1007/978-3-642-19170-1_28.

Noura Boudiaf and Abdelhamid Djebbar. Towards an automatic translation of colored
Petri nets to maude language. International Journal of Computer Science & Engineering, 3
(1), 2009.

Monika Heiner, Mostafa Herajy, Fei Liu, Christian Rohr, and Martin Schwarick. Snoopy
- A unifying Petri net tool. In Application and Theory of Petri Nets - 33rd International
Conference, PETRI NETS 2012, Hamburg, Germany, June 25-29, 2012. Proceedings, pages
398-407, 2012. doi: 10.1007/978-3-642-31131-4_22. URL http://dx.doi.org/10.
1007/978-3-642-31131-4_22.

63

http://dx.doi.org/10.1109/TASE.2010.28
http://dx.doi.org/10.1109/TASE.2010.28
http://dx.doi.org/10.1007/3-540-45541-8_9
http://dx.doi.org/10.1007/3-540-45541-8_9
http://dx.doi.org/10.1007/978-3-642-19170-1_28
http://dx.doi.org/10.1007/978-3-642-31131-4_22
http://dx.doi.org/10.1007/978-3-642-31131-4_22

Bibliography

[34]

[35]

[36]

[37]

Monika Heiner, Ronny Richter, and Martin Schwarick. Snoopy: a tool to design
and animate/simulate graph-based formalisms. In Proceedings of the 1st International
Conference on Simulation Tools and Techniques for Communications, Networks and Sys-
tems & Workshops, SimuTools 2008, Marseille, France, March 3-7, 2008, page 15, 2008.
doi: 10.4108/ICST.SIMUTOOLS2008.3098. URL http://dx.doi.org/10.4108/
ICST.SIMUTOOLS2008.3098.

J Wegener, M Schwarick, and M Heiner. A plugin system for charlie. In Proc. International
Workshop on Concurrency, Specification, and Programming (CS&P 2011), ISBN: 978-83-
62582-06-8, pages 531-554. Biaystok University of Technology, September 2011. URL
http://csp2011.mimuw.edu.pl/proceedings/index.html.

Arend Rensink. The GROOVE simulator: A tool for state space generation. In Appli-
cations of Graph Transformations with Industrial Relevance, Second International Work-
shop, AGTIVE 2003, Charlottesville, VA, USA, September 27 - October 1, 2003, Revised Se-
lected and Invited Papers, pages 479-485, 2003. doi: 10.1007/978-3-540-25959-6_40. URL
http://dx.doi.org/10.1007/978-3-540-25959-6_40.

Arend Rensink, Akos Schmidt, and Déniel Varro. Model checking graph transformations:
A comparison of two approaches. In Graph Transformations, Second International Confer-
ence, ICGT 2004, Rome, Italy, September 28 - October 2, 2004, Proceedings, pages 226—241,
2004. doi: 10.1007/978-3-540-30203-2_17. URL http://dx.doi.org/10.1007/
978-3-540-30203-2_17.

[38] Joakim Bjerk. Executing large scale colored Petri nets by using maude. Hovedfagsoppgave,

Department of Informatics, Universitetet i Oslo, 2006.

[39] Joakim Bjerk and Anders M Hagalisletto. Challenges in simulating railway systems using

Petri nets.

[40] José Meseguer. Membership algebra as a logical framework for equational specification. In

[41]

Francesco Parisi-Presicce, editor, Recent Trends in Algebraic Development Techniques, 12th
International Workshop, WADT’97, Tarquinia, Italy, June 1997, Selected Papers, volume
1376 of Lecture Notes in Computer Science, pages 18—61. Springer, 1997. doi: 10.1007/
3-540-64299-4 26. URL http://dx.doi.org/10.1007/3-540-64299-4_
26.

Adel Bouhoula, Jean-Pierre Jouannaud, and José Meseguer. Specification and

proof in membership equational logic. Theor. Comput. Sci., 236(1-2):35-132, 2000.

64

http://dx.doi.org/10.4108/ICST.SIMUTOOLS2008.3098
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2008.3098
http://csp2011.mimuw.edu.pl/proceedings/index.html
http://dx.doi.org/10.1007/978-3-540-25959-6_40
http://dx.doi.org/10.1007/978-3-540-30203-2_17
http://dx.doi.org/10.1007/978-3-540-30203-2_17
http://dx.doi.org/10.1007/3-540-64299-4_26
http://dx.doi.org/10.1007/3-540-64299-4_26

Bibliography

doi: 10.1016/S0304-3975(99)00206-6. URL http://dx.doi.org/10.1016/
S0304-3975(99)00206-6.

[42] Alexander Rein, Ulrike Prange, Leen Lambers, Kathrin Hoffmann, and Julia Padberg.
Negative application conditions for reconfigurable place/transition systems. ECEASST, 10,
2008. URL http://eceasst.cs.tu-berlin.de/index.php/eceasst/
article/view/140.

65

http://dx.doi.org/10.1016/S0304-3975(99)00206-6
http://dx.doi.org/10.1016/S0304-3975(99)00206-6
http://eceasst.cs.tu-berlin.de/index.php/eceasst/article/view/140
http://eceasst.cs.tu-berlin.de/index.php/eceasst/article/view/140

Appendices

66

A Evaluation nets for Snoopy

This section contains all Snoopy nets, for example, the evaluation flight route. The evaluation
is constructed in steps so that Figure 19 contains the initial example net, which results with
rule HAM-BER. Figure 20 extends the net in Figure 19 by rule BER-MUC. MUC-HAM are added
in Figure 21, and finally, the Figure 16 contains all four rules with rule BER-HAM.

BaseNet

EER

EER

Figure 19: Snoopy net of Figure 15 and rule HAM-BER

67

BaszelNet

MUC

EER

o~
&3]
M
2=
= G ll¢
M p
- - o
gl O] —I.
0 > i\ _!_
T d
i .. Ll o——=]
H ok - W TR
m .‘ .w—
= mavy
& 3 i
a Te)
i . H
3
[] o
e m 5] ED“
E o E o
[] S o () g
[]] =
&
L . L= . nnv
O (> 3
s
- g
=
o0
&8

Figure 21: Snoopy net of Figure 15 and rules: HAM-BER, BER-MUC and MUC-HAM
68

B Extended Example of a Maude net

This section contains all Maude modules for N7 and r;. At first, Listing 15 presents the
implementation of the NET module for the Maude net defined in Def. 14 and the Maude net
in Def. 12. Listing 16 contains the implementation of the RULES module defined in Def.
13, including the rewrite rule that is generated for r; to perform such a transformation step,
including Maude’s pattern matching to detect a match. Listing 17 shows the implementation
of the PROP module with all necessary LTL properties. Finally, Listing 18 defines the NET

module with the initial state.

mod RPN is
2 protecting INT
protecting STRING

sxk HHABRUABHBBRBABH BB RLABL ARV RBA LA RBRB AR HA AR LA R A RAHRBARAH
6 #++ Local VARs
kxk HABRBABHBBRBABL ARV RLA LA BB AL AL A RB R LA B A RA R B AR A RH R B ARAH

var Str Strl Str2 : String

10 var I I1 I2 I3 Cap Capl Cap2 Counter MaxID StepSize
Int

var P PRest PSet PSetL PSetR MTupleValue PreValue
PostValue P1 P2 : Places

12 var T TRest TSet TSetL TSetR : Transitions

var Pre PrelL PreR : Pre

14 var Post PostL PostR : Post

var MTupleRest MTupleRestl MTupleRest2 : MappingTuple

16 var M M1 M2 MNew MRest MRestl MRest2 MFollow : Markings

var R RRest Rules : Rule
18 var aid : IDPool

20
xxk HHUBUABHBBABABH BB RBAB ARV RBABH BB R LA B AR AR LA B A RARB A RS
22 +++ Petrinet N = (P, T, Pre, Post, M.0)

69

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

xxx HAFHAARFAAFAAAFAAAFAAARAAAFAAARAAAFAAARAAAFAAAFRRAAH

sort Net

sort Places

sort Transitions
sort Pre

sort Post

sort MappingTuple
sort Markings

sort Omega

subsort Places < Markings

op emptyPlace : —> Places

op emptyTransition : —> Transitions
op emptyMappingTuple : —> MappingTuple
op emptyMarking : —> Markings

op w : —> Omega

op _,_ : Places Places —> Places [ctor assoc comm id:
emptyPlace]

op _+_ : Places Places —> Places [ctor assoc comm id:
emptyPlace]

op _:_ : Transitions Transitions —>

Transitions [ctor assoc comm id:

emptyTransition]

op _,- : MappingTuple MappingTuple —>
MappingTuple [ctor assoc comm id:
emptyMappingTuple]
op _;_ : Markings Markings —> Markings [ctor assoc comm

id: emptyMarking]
«++ READING: Pname | ID | Cap

op p(_|_]-) : String Int Int —> Places
op p(-|-]-) : String Int Omega —> Places

70

54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

op t(-|-) : String Int —> Transitions

op (-—>_) : Transitions Places —> MappingTuple

op places{_} : Places —> Places

op transitions{_} : Transitions —> Transitions
op pre{_} : MappingTuple —> Pre

op post{_} : MappingTuple —> Post

op marking{_} : Markings —> Markings

«xx Petrinet—tuple

op net : Places Transitions Pre Post Markings —> Net

xxk HABRBAHHAHABABHABHABABHRAABABHARAABARHARAHABARARAHBARAA
«x+» Firing of N = (P, T, Pre, Post, M.JO)
xxk HARRBAHHHBUHABABHARABABHRAABABHARAABABHARAABARARAHRBARAH

op calc : Markings —> Markings
op _plus_ : Markings Markings —> Markings
op -minus_ : Markings Markings —> Markings

xxk HEURUHBABABABHARAHRARBABABHA SR AR HEHY
+++ Enable AND Calc

xxx HEFARRAAARARAAARRAAARAGAAARAAAARH

op - leeqth _ with _ : Places Places Int —> Bool
op - <=? _ : Markings Places —> Bool

«xx Impl — lowerEqualThan ##########
«xx place multiset is empty

ceq emptyMarking leeqth p(Str | I | Capl) with Counter
= true if Counter <= Capl

71

88

90

92

94

96

98

100

102

104

106

108

110

112

114

«xx Cap—counter is too big
eq (p(Str | I | Cap2) ; MRest) leeqth p(Str | I | Cap2)
with (Cap2 + 1)

= false

««x found same place

ceq (p(Str | I | Cap2) ; MRest) leeqth p(Str | I | Cap2)
with Counter
= true

if (MRest leeqth p(Str | I | Cap2) with (Counter +
1))

«x+ del another place
ceq (p(Str | I | Capl) ; MRest) leeqth p(Str2 | I2 |
Cap2) with Counter
= true
if T =/= 12 /\
(MRest leeqth p(Str2 | 12 | (Cap2)) with Counter)

ceq (p(Str | I | w) ; MRest) leeqth p(Str2 | 12 | Cap2)
with Counter
= true

if T =/= 12 /\
(MRest leeqth p(Str2 | 12 | (Cap2)) with Counter)

«xx Otherwise

eq M leeqth P with I = false [owise]

«xx Impl — smallerAsCap ############4#
eq marking{ PSet } <=? emptyPlace = true

eq marking (M} <=? (p(Str | I | w) , emptyPlace)

= true

72

116

118

120

122

124

126

128

130

132

134

136

138

140

142

144

146

148

150

ceq marking{M} <=? (P , emptyPlace)
= true
if M leeqth P with 0

ceq marking{M} <=? (p(Str | T | w) , PRest)
= true
if PRest =/= emptyPlace /\
marking {M} <=? PRest

ceq marking {M} <=? (P , PRest)
= true
if M leeqth P with 0 /\
PRest =/= emptyPlace /\
marking {M} <=? PRest

eq M <=? P = false [owise]

wxx Impl — fire #####ERAFAAEAAHAAHAAY

crl [fire —emptyPre]

net (P,
transitions {T : TRest},
pre {(T —> emptyPlace), MTupleRestl},
post {(T —> PostValue), MTupleRest2},
marking {M})

Rules

MaxID

StepSize

aid

=>

net (P,
transitions {T : TRest},
pre {(T —> emptyPlace), MTupleRestl},
post {(T —> PostValue), MTupleRest2},

73

152

154

156

158

160

162

164

166

168

170

172

174

176

178

180

182

calc (M plus PostValue))
Rules
MaxID
StepSize
aid
if calc(M plus PostValue) <=? PostValue

crl [fire]

net (P,
transitions {T : TRest},
pre {(T —> PreValue), MTupleRestl},
post {(T —> PostValue), MTupleRest2},
marking { PreValue ; M})

Rules

MaxID

StepSize

aid

=>

net (P,
transitions {T : TRest},
pre {(T —> PreValue), MTupleRestl},
post {(T —> PostValue), MTupleRest2},
calc (((PreValue ; M) minus PreValue) plus

PostValue))

Rules

MaxID

StepSize

aid

if calc ((PreValue ; M) plus PostValue) <=?
PostValue

wxx HARBBAAAHHAAABHEAAARHARAHARAAHHAHA

++x Execute Calc
xxk HABBHHABHABABAHHAHRHHAHABABAHHAHHAHHRHH

74

184

186

188

190

192

194

196

198

200

202

204

206

208

210

212

214

eq [execute—step—minusStepEmptyPlace]
calc ((M minus emptyPlace) plus PostValue) =
calc (M plus PostValue)

eq [execute—step—minusEnd—single]
cale ((p(Str | T | Cap) minus (p(Str | I | Cap)))
plus PostValue) =
marking { PostValue}
eq [execute—step—minusEnd—single]
cale ((p(Str | T | w) minus (p(Str | I | w))) plus
PostValue) =
marking { PostValue }

eq [execute—step—minusStep]
cale (((p(Str | T | Cap) ; MRestl) minus (p(Str | I
Cap) + MRest2))
plus PostValue) =
calc ((MRestl minus MRest2) plus PostValue)

eq [execute—step—minusStep]

cale (((p(Str | T | w) ; MRestl) minus (p(Str | I | w

) + MRest2))
plus PostValue) =
calc ((MRestl minus MRest2) plus PostValue)

eq [execute—step—plusEnd]
calc (M plus PostValue) =
marking {M ; PostValue}

xxx HARAAAHAAAAAAHBHHAAARAAAAAAAAHHAHAAARA AR AAAAHHHHHAA
#++ Rule R = (l_net, r_net)

xxx HAFHAARAFAFAAAFAAAFAAARAAAFAAARAAARAAARAAARAAARAAAH

sort Rule
sorts LeftHandSide RightHandSide

75

216

218

220

222

224

226

228

230

232

234

236

238

240

242

244

op emptyRule : —> Rule

op _|_- : Rule Rule —> Rule [ctor assoc comm id:

emptyRule]

op | : Net —> LeftHandSide
op r : Net —> RightHandSide

op rule : LeftHandSide RightHandSide —> Rule

xxx HAFHAARARAFAAARAAAFAAARAAAFAAARAAARAAARAAARAAARAAAH
«x« ID Pool

xxx HAFHAARAFAFAAARAAAFAAARAAAFAAARAAAFAAARAAARAAARAAAH

sort IDPool

op emptyIDSet : —> Int
op -,(-) : Int Int —> Int [comm id: emptyIDSet]

op aid{_-} : Int —> IDPool
xxk HABAAARRABAAARAABAAARAARHAARAARHAARRABHAARAABR AR

«xx» Configuration
xxx HARARAHAAAAAAHHHHAAARRAAAAAAAHHHHRAARARAAAAAAAHHHRA

sort Configuration

«+x READING: NET SET<RULE> MAXID STEP_SIZE PID TID
op _____ : Net Rule Int Int IDPool —> Configuration

endm

Listing 15: rpn.maude of N; and r; generated by rMC

76

11

13

15

17

19

21

23

25

27

29

mod RULES is
including RPN

var Str : String

vars I I1 I2 IRest IRest2 Cap Capl Cap2 StepSize : Int

vars P PRest PRestl PRest2 PNet PRule : Places

vars T TRest TSet TSetL TSetR : Transitions

vars Pre PrelL PreR : Pre

vars Post PostL PostR : Post

vars MTupleRest MTupleRestl MTupleRest2 : MappingTuple

vars M M1 M2 MRest MRestl MRest2 MNet MRule MFollow
Markings

vars R RRest : Rule

var N : Net

xxk HAEHRBAHHHHABABHBHABAHHBHABAHHFBHABAHHAHBHABAHHAHHHARAHAAH
+++ Rule—Conditions
IR X R Ry LR EEEEEEEEEEEEEEEEEEEEEEEEEEEEE

op checkContainingMarkings(_- || _) : Places Markings —>
Bool
eq checkContainingMarkings(p(Str | I1 | Cap) || (p(Str

I1 | Cap) ; MRest)) = true
eq checkContainingMarkings(P || MNet) = false [owise]

op contains(- || _) : Places Places —> Bool

eq contains(p(Str | I1 | Cap) || (p(Str | I1 | Cap),
PRest)) = true

eq contains(P || PNet) = false [owise]

«xx equalMarking returns true if:

77

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

«xx each marking of the rule is in the marking multiset
of the net

«x+ and the marking set has no more markings of each
marking

* ok k inside the rule set

##+ READING: NET-MARKING, RULE—MARKING

op equalMarking(_. =?= _) : Places Places —> Bool

eq equalMarking (
M =?= marking{ emptyMarking }

) = true

eq equalMarking (
M =?=M

) = true

ceq equalMarking (
marking{ p(Str | I1 | Cap) ; MNet } =?= marking{ p(
Str | I2 | Cap) ; MRest }

) = true
if equalMarking (marking{ MNet } =?= marking{ MRest }
) /\

(MRest =/= emptyMarking)

ceq equalMarking (
marking{ p(Str | I1 | Cap) ; MNet } =?= marking{ p(
Str | I2 | Cap) }) = true
if not(contains ((p(Str | I2 | Cap)) || MNet))

eq equalMarking (

(MNet) =?= (MRule)

) = false [owise]

* ok Kk (
eq equalMarking (

78

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

P =?= P
)

= true

ceq equalMarking (
(p(Str | I1 | Cap) , MNet) =?= (p(Str | I2 | Cap) ,
MRest)
) = true
if equalMarking (MNet =?= MRest) /\
(MRest =/= emptyMarking)

ceq equalMarking (
(p(Str | I1 | Cap) , MNet) =?= (p(Str | 12 | Cap)))
= true
if not(contains ((p(Str | I2 | Cap)) || MNet))

eq equalMarking (
(PNet) =?= (PRule)

) = false [owise]

op freeOfMarking(-|-) : Places Markings —> Bool

«xx there is no place

eq freeOfMarking (emptyPlace | M) = true

«xx there is no marking

eq freeOfMarking (P | emptyMarking) = true

«xx there is just one place left
ceq freeOfMarking (p(Str | I1 | Cap) | M) = true
if not(checkContainingMarkings ((p(Str | I1 | Cap))
I M))

«x+ normal case: test place and call rest
ceq freeOfMarking (p(Str | I1 | Cap), PRest | M) = true

79

93

95

97

99

101

103

105

107

109

111

113

115

117

119

121

if not(checkContainingMarkings(p(Str | I1 | Cap) ||
M)) /\
freeOfMarking (PRest | M)

«x+ default case — false
eq freeOfMarking (PRest | M) = false [owise]

«xx emptyNeighbourForPlace returns true if no pre/post
contains this place

«x+ READING: PLACE, PRE, POST

op emptyNeighbourForPlace(_, _, _) : Places Pre Post —>
Bool

eq emptyNeighbourForPlace (P,
pre{ (T —> P , PRest) , MTupleRest },
Post) = false

eq emptyNeighbourForPlace (P,

Pre,

post{ (T —> P , PRest) , MTupleRest }) = false
eq emptyNeighbourForPlace (P, Pre, Post) = true [owise]
xxx HARAFAAAAAAAAAFBHAAAARAAAAAAAAARAAAARAAAAAAAAAAHHAAA
««x RULE ID Pool getter

xxx HAFRARHBREAHFAAFARAFAAAAARAFAAARARAFAAARAAAFAAARAAAH

vars MaxID NewMaxID SetOfInts Count AidPRestSet
AidPRestNewSet ISet : Int

«x+ Helper, which fill the set of IDs
«+x READING: IDSET MAXID COUNTER INTERNAL—VAR

80

123

125

127

129

131

133

135

137

139

141

143

145

147

149

151

153

op fill(_|_|_-]-) : Int Int Int Int —> Int
eq fill(I | MaxID | 0 | Count) = I
ceq fill (IRest | MaxID | Count | I)
= fill ((MaxID + I, (IRest)) | MaxID | (Count — 1)
(I — 1))
if I >= Count
eq fill(I1 | MaxID | I2 | Count) = I1 [owise]

«xx» Getter for the new ID (place or transition)
##% READING: CURRENT_SET MAXID STEP_SIZE

op getAid(-|_-|-) : Int Int Int —> Int

ceq getAid(I1 , (IRest) | MaxID | StepSize) = I1 if I1
=/= emptyIDSet
eq getAid(SetOfInts | MaxID | StepSize)
= getAid(fill (SetOfInts | MaxID | StepSize |
StepSize)
| MaxID + MaxID | StepSize) [owise]

«x» Remove the first element from this multiset
##+ READING: CURRENT_SET MAXID STEP_SIZE

op removeFirstElement(_|_|_) : Int Int Int —> Int

eq removeFirstElement (emptyIDSet | MaxID | StepSize) =
fill (emptyIDSet | MaxID | StepSize | StepSize)
ceq removeFirstElement(I1 , (IRest) | MaxID | StepSize)
= IRest
if 11 =/= emptyIDSet [owise]

81

155

157

159

161

163

165

167

169

171

173

175

177

179

181

183

185

#++x Add unused ID
+++ READING: CURRENT_SET OLD_ID

op addOldID(_|_) : Int Int —> Int

eq addOldID (SetOfInts | I) = I, (SetOflnts)

«x+ Correct the MaxID if new IDs are generated
#xx READING: MAXID STEP_SIZE NEW_ID_COUNT

op correctMaxID(_|_|_) : Int Int Int —> Int

ceq correctMaxID (MaxID | StepSize | Count)
= correctMaxID (MaxID + StepSize | StepSize | Count
— StepSize)
if Count > StepSize
eq correctMaxID (MaxID | StepSize | Count) = MaxID

xxk % HABHAAAARAHAARAABHAARAABHAARAABHAAAAA RS AAAAA RS A AAAA

«+x+ RULE IMPLEMENTATION

xxk % HABAAARARAHAARAABHAARAABHAAAAARHAAAAARHAAAAARRHAAAA

vars Irule103 Irule102 Irule104 Irule105 Irule1019
Irule1016 Irule1023 Irule2019 Irule2016 Irule2023
Irule3016 Irule3019 Irule3025 : Int

vars Aid2 Aidl AidRest2 AidRestl AidRest : Int

crl [R1—PNML]

net (

82

187

189

191

193

195

197

199

201

203

205

207

places{ p(”P” | Irule1019 | w) , p(”P” | Irulel016 | w
) , PRest } ,

transitions{ t(”T” | Irule1023) : TRest } ,

pre{ (t(”T” | Irule1023) —> p(”P” | Irulel016 | w)) ,
MTupleRest1 }

post{ (t(”T” | Irule1023) —> p(”P” | Irulel1019 | w))
, MTupleRest2 } ,

marking{ p(”P” | Irule1019 | w) ; p(”P” | Irule1019 |
w) ; MRest }

)

rule (

I1(net(

places{ p(”P” | Irule2019 | w) , p(”P” | Irule2016 | w
) b

transitions{ t(*T” | Irule2023) } |,

pre{ (t(”T” | Irule2023) —> p(”P” | Irule2016 | w)) }

post{ (t(”T” | Irule2023) —> p(”P” | Irule2019 | w))
b

marking{ p(”P” | Irule2019 | w) ; p("P” | Irule2019 |
w) |}

))

r(net(

places{ p(”P” | Irule3016 | w) , p(”P” | Irule3019 | w
)+

transitions{ t(”T” | Irule3025) } ,

pre{ (t(”T” | Irule3025) —> p(”P” | Irule3019 | w)) }

post{ (t(”T” | Irule3025) —> p(”P” | Irule3016 | w))

b

marking{ p(”P” | Irule3019 | w) ; p("P”

w) |

)))
| RRest

MaxID

83

| Irule3019

209

211

213

215

217

219

221

223

225

227

229

231

StepSize

aid{ AidRest }

=>

net (

places{ p("P” |
) , PRest } ,

Irule1016 | w) , p(’P” | Irulel1019 | w

transitions{ t(”T” | Aid1) : TRest } ,
pre{ (t(”’T” | Aidl1) —> p(”P” | Irulel1019 | w)) ,

MTupleRestl }

5

post{ (t(”T” | Aidl) —> p(”P” | Irule1016 | w)) ,

MTupleRest2 }
marking{ p("P” |

w) ; MRest }
)

rule (

I(net(

places{ p(”P” |
) b

5

Irule1019 | w) ; p(”P” | Irule1019 |

Irule2019 | w) , p(’P” | Irule2016 | w

transitions{ t(*T” | Irule2023) } |,
pre{ (t(”T” | Irule2023) —> p(”P” | Irule2016 | w))

H]

post{ (t(”T” | Irule2023) —> p(”P” | Irule2019 | w))

b

marking{ p("P” |
w) |}

))

r(net(

places{ p("P” |
) b

Irule2019 | w) ; p(”P” | Irule2019 |

}

Irule3016 | w) , p(’P” | Irule3019 | w

transitions{ t(*T” | Irule3025) } |,
pre{ (t(”T” | Irule3025) —> p(”P” | Irule3019 | w))

s

post{ (t(”T” | Irule3025) —> p(”P” | Irule3016 | w))

b

84

)

233

235

237

239

241

marking{ p(”P” | Irule3019 | w) ; p("P” | Irule3019 |

w) }

)))

| RRest

NewMaxID

StepSize

aid{ AidRest2 }

if AidRestl := addOldID (AidRest | Irule1023) /\
Aidl := getAid(AidRestl | MaxID | StepSize) /\
AidRest2 := removeFirstElement (AidRestl | MaxID |

StepSize) /\ NewMaxID := correctMaxID (

MaxID | StepSize | 2)

endm

Listing 16: rules.maude of N; and r; generated by rtMC

85

10

12

14

16

18

20

22

24

26

28

30

32

mod PROP is
protecting STRING
including RULES

including SATISFACTION
subsort Configuration < State

var L : String

var I Cap MaxID StepSize : Int

var Pre : Pre

var Post : Post

vars P P1 P2 PRest PreValue : Places
vars T T1 T2 TRest : Transitions

vars MappingTuple MTupleRestl MTupleRest2

vars Any M MRest : Markings
var Rules : Rule
var aid : IDPool

op reachable : Markings —> Prop

eq net(P ,
T,
Pre ,
Post ,
marking{ M ; MRest })
Rules
MaxID
StepSize
aid
|= reachable (M) = true

eq net(P ,

86

MappingTuple

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

op

€q

€q

op

€q

T b
Pre ,

Post

marking{ p(L | T |

Rules
MaxID
StepSize
aid

|= reachable(p(L | I

t—enabled

net (P ,
T,
pre {
Post

marking {

Rules
MaxID
StepSize
aid

|= t—enabled =

C |-

enabled

net (P ,
T,
pre{
Post

marking {

Rules
MaxID
StepSize
aid

t—enabled =

5

Cap) ; MRest })

| Cap)) = true

: —> Prop

(Tt —> PreValue) , MappingTuple }

5

PreValue ; MRest })

true

false [owise]

: —> Prop

(Tt —> PreValue) , MappingTuple }

5

PreValue ; MRest })

87

s

s

70

72

74

76

78

80

82

84

86

88

|= enabled = true
vars Irule2019 Irule2016 Irule2023 : Int
eq net(places{ p(”P” | Irule2019 | w) , p("P”

Irule2016 | w) , P } ,
transitions{ t(*T” | Irule2023) : T } ,

pre{ (t(”T” | Irule2023) —> p(”P” | Irule2016

w)) , MTupleRestl } ,

post{ (t(”T” | Irule2023) —> p(”P” | Irule2019

w)) , MTupleRest2 }

marking{ p(”P” | Irule2019 | w) ; p("P”
Irule2019 | w) ; M})

Rules

MaxID

StepSize

aid

|= enabled = true

var C : Configuration
var Prop : Prop

eq C |= Prop = false [owise]

endm

Listing 17: prop.maude of N and r; generated by rMC

88

10

12

14

16

18

20

22

24

26

28

30

mod NET is
including PROP
including LTLR-MODEL-CHECKER .

ops initial : —> Configuration

eq initial =

net (
places{ p("P” | 3 | w) , p("P" | 2 | w) } ,
transitions{ t(”T” | 4) : t(”T” | 5) } ,
pre{ (t("T" | 4) —> p("P” | 3 [w)) , (t("T”

p(’P” [3 | w)) }

post{ (t(”T” | 4) —> p(C’P” | 2 | w)) , (t(T”
—>p("P" | 2 | w)) } ,

marking{ p("P” | 3 | w) ; p("P” | 3 | w) }

)

rule (
I1(net(
places{ p("P”

»

| 19 | w) , p("P” | 16 | w) } ,
transitions{ t(”T” | 23) } ,

pre{ (t(C'T" | 23)

post{ (t(”T” | 23
marking{ p("P” |
))

r(net(

places{ p(”P”

—> p("P” | 16 | w)) } ,
) —> p(CP7 | 19 [w)) } ,
19 | w) 5 p("P" | 19 | w) }

| 16 | w) , p("P” | 19 [w) } ,
transitions{ t(”T” | 25) } ,

pre{ (t("T" [25)

post{ (t(”T” | 25
marking{ p("P” |
)))

25

10

—> p("P” [19 [w)) } ,
) —> p("P" | 16 [w)) } ,
19 | w) 5 p("P” [19 | w) }

89

5) —>

5)

32 aid{ (25 , (26 , (27 , (28 , (29 , (30 , (31 , (32 ,
(33 , (34 , (35))))))))))) }

34

endm

Listing 18: net.maude of N; and r; generated by rtMC

C CD Content

The CD content is organized by:
/
| Schulz 1937371.pdf
. _implementation
eclipse project
src
1lib
PNML_Files
| _bibliography
| all PDF’s named by <citeCount>_<author>_<year>.pdf
| Documentation
| Maude modules

90

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbstindig verfasst und

nur die angegebenen Hilfsmittel benutzt habe.

Hamburg, 30. April 2015 Alexander Schulz

	1 Introduction
	1.1 Aim of this Thesis
	1.2 Outline

	2 Background
	2.1 Temporal Logic
	2.2 Bisimulation of the Transition Systems
	2.3 Maude
	2.4 Reconfigurable Petri Net
	2.5 Related Works

	3 Model Checker for Reconfigurable Petri Net
	3.1 ReConNet Model Checker (rMC)
	3.2 Reachability Graph

	4 Labelled Transition Systems
	4.1 Maude net
	4.2 Labelled Transition System for Reconfigurable Petri Net
	4.3 Labelled Transition System for Maude
	4.4 Résumé of the Formalisation

	5 Correctness of Model Checking for Maude
	5.1 Syntax Conversion
	5.2 Equivalence by Bisimulation
	5.3 Résumé by the Correctness of Model Checking for Maude

	6 Evaluation
	7 Future work
	8 Summary and Conclusion
	Appendices
	A Evaluation nets for Snoopy
	B Extended Example of a Maude net
	C CD Content

