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ABSTRACT 
Stress is considered to have a bidirectional relationship with exer-
cise injuries. This PhD project addresses the lack of research on 
methodological and measurement standards for determining acute 
physiological stress in the challenging context of repetitive training 
exercises such as squats, push-ups, and crunches. It explores how 
stress levels can be determined in real-time with both inertial and 
heart rate sensors, and how stress levels correlate with movement 
quality and exhaustion. To this end, a systematic method is elabo-
rated to build a model capable of classifying stress levels with only 
wearable sensors in real-time. 

CCS CONCEPTS 
• Human-centered computing → Ubiquitous and mobile com-
puting systems and tools; • Applied computing → Health in-
formatics. 
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1 INTRODUCTION 
Training exercises at home are often poorly or inefectively per-
formed due to the absence of a trainer [38]. A real-time monitoring 
system could serve as an early warning and feedback system [17]. 
Stress is considered to have a bidirectional relationship with exer-
cise injuries: it is hypothesized that stress increases muscle tension 
that can lead to a motor coordination disturbance as well as a reduc-
tion in fexibility and an increase in fatigue [40]. This PhD research 
addresses the lack of research on methodological and measurement 
standards for determining acute physiological stress (APS) in the 
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challenging context of repetitive training exercises (e. g., squats, 
push-ups, and crunches) [26, 39]. The context is challenging be-
cause there are multiple stimuli that efect a stress response and 
a multivariable approach is suggested [39]. For this reason, this 
project investigates how APS levels can be derived from inertial 
measurement units (IMUs) and heart rate variability (HRV) during 
repetitive training exercises in real-time to allow prompt user feed-
back. For this purpose, a model is trained based on the multi-sensor 
data as well as labels from movement quality assessed by sports 
experts and the exhaustion values perceived by subjects. 

This document is organized as follows: The relevant related lit-
erature is presented in Section 2. The research question, aim, and 
objectives are introduced in Section 3. The novelty and contribution 
of this research are described in Section 4. Subsequently, Section 5 
highlights the chosen philosophy and methodology for this re-
search project. Section 6 elaborates the research method including 
the research setting as well as the procedure for data collection 
and analysis. Section 7 provides the limitations for this research. 
Section 8 concludes with a description of the status quo and the 
next steps. 

2 RELATED WORK 
The literature review builds on the fact that the use of data from 
IMUs to detect physical activity can enrich the detection of APS [41]. 
Therefore, the related work is approached from three perspectives: 
Firstly, the concept of APS is discussed; secondly, the challenge 
of determining APS in real-time is addressed; thirdly, APS during 
repetitive training exercises is covered. 

2.1 Acute Physiological Stress 
There is a long debate about the concept of stress in various disci-
plines [12]. Since each discipline has its own concepts of stress, a 
common defnition is unlikely. Stress can be classifed as acute or 
chronic [12, 19]. While chronic stress is pathological and psycho-
logical in nature, acute stress is the immediate response of the body 
to a stimulus (stressor) [11, 15, 19]. The acute response triggers 
alertness, energy release, physiological regulation, and immuno-
logical activation to compensate for the efects of the stressor [19]. 
During training exercises, the body experiences an acute stress 
response in which more oxygen and energy are required. The heart 
rate increases so that more blood is pumped through the body and 
thus oxygen is transported to improve cardiorespiratory function 
[4]. Untrained people sufer from more APS due to higher demand 
for oxygen and energy. Trained people become accustomed to use 
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less oxygen; their body will eventually feel the stress over a longer 
period of time [4]. 

2.2 Determining Stress in Real-Time 
As described, stress causes diferent physiological responses. For 
this reason, a single stress marker, such as cortisol or heart rate, 
cannot provide a global assessment of a person’s stress level [39]. 
A multivariable approach is therefore suggested [39]. Nonetheless, 
determining APS algorithmically remains a challenging task: Firstly, 
the start, the duration, and the intensity of a stress event is often 
not clearly identifable [14]; secondly, the relationship between the 
body’s activation of biochemical stress markers and the intensity of 
the stress perceived is both complex and understudied [39]; thirdly, 
stress is highly subjective and individual —a stimulus may trigger 
stress in one person but not in another [14]. Nevertheless, it has 
been shown that sensors can be used to approximate stress in real-
time, but there are no commonly accepted sensors [13, 24, 39]. 

Due to the multifaceted characteristics of stress, defning a ground 
truth for stress is another challenging task [13]. Some studies use 
subjective measures of perceived stress as ground truth (e. g., ques-
tionnaires or surveys) [10, 17]. Other studies rely on blood samples 
(e. g., cortisol or lactate) [26]. In further studies, ground truth is 
established by placing a subject in a neutral and in a stressful sit-
uation to label the data accordingly[10]. Similarly, some studies 
use the amount of workload and cognitive demand that is being 
applied as the stressor [39]. However, all these approaches are not 
suitable for monitoring APS in real-time, because they are either 
too time-consuming or require an artifcial context [13, 39]. Recent 
eforts have been made to develop wearable sensors that can moni-
tor the biomarker cortisol in real-time [30, 33], which could become 
an important addition to monitoring stress in real-time, but such 
sensors are not yet widely available. 

2.3 Determining Stress during Exercises 
Thus far, only a few studies have attempted to investigate moni-
toring stress in real-time during training exercises. Magiera et al. 
focused on the efect of physical and mental stress on the heart 
rate as well as cortisol and lactate concentrations [26]. They found 
that the heart rate is most sensitive to physical and mental stress. 
Hong et al. have outlined a two-stage classifcation for physiologi-
cal analysis and recognizing stress during physical activities [20]. 
Wong et al. used IMUs in combination with physiological data [41]. 
They concluded that physiological signals alone cannot distinguish 
well between activities and stress. Alamudun et al. proposed two 
multivariate signal processing techniques to reduce the efect of 
interference caused by physical activities [1]. Maier et al. described 
a smartphone app that considers physical activity based on contex-
tual data and uses mood maps to continuously determine individual 
stress levels [27]. Many studies focus on binary stress detection 
(stress or no stress) [14, 28]. However, stress is a natural response 
of the body during training exercises, it is therefore necessary to 
diferentiate between multiple levels of stress, which has been in-
vestigated in a few studies [18, 28, 36]. 

3 RESEARCH QUESTION 
The hypothesis for this research project is that a combination of 
multiple variables derived from IMUs and HRV can be used to de-
termine APS levels during repetitive training exercises. The APS 
levels are derived from subjective data consisting of perceived ex-
haustion values and assessed movement quality. To simplify the 
assessment of movement quality, only repetitive training exercises 
are examined, since a beginning and an end are easier to identify. 
IMUs were chosen because they are directly related to physical ac-
tivity and thus to movement quality [38]. HRV was chosen because 
it correlates with the autonomic nervous system and the intensity 
of physical activity [4, 19]. This project attempts to answer the 
following research questions: 
RQ1: How signifcant is the correlation between movement quality, 
exhaustion, and sensor data? 
RQ2: What variables based on wearable sensors are most represen-
tative of APS during repetitive training exercises? 

The aim is to determine APS levels with wearable sensors in 
real-time. To achieve this, the following objectives are pursued: 
OBJ1: To develop a systematic method that results in a model for 
determining APS levels during repetitive training exercises. 
OBJ2: To create a model capable of monitoring APS levels with only 
wearable sensors in real-time. 
OBJ3: To elaborate a set of variables needed to determine APS levels 
with wearable sensors. 

4 NOVELTY AND CONTRIBUTION 
An objective, reliable correlation between physiological variables 
and perceived stress has not yet been found [24]. Moreover, there 
is no commonly accepted method for determining stress levels 
[12, 28, 39]. Blood samples, such as cortisol, are considered reliable 
and are used as a baseline in stress-related studies [2, 39], however, 
such obtrusive stress variables are not applicable for monitoring 
stress in real-time [28, 39]. Unobtrusive stress markers based on 
wearable sensors can be used to measure stress in real-time but 
they are less reliable [24, 39]. The author is not aware of any stud-
ies that have linked movement quality, exhaustion, and real-time 
stress monitoring. This project will therefore contribute a system-
atic method and a set of variables to determine APS levels during 
repetitive training exercises in real-time with wearable sensors. 

5 RESEARCH DESIGN 
This project follows a positivism research philosophy and a deduc-
tive approach [34]. The potential correlation between sensor data, 
exhaustion, and movement quality is investigated with an experi-
ment research strategy [34] based on a multi-method quantitative 
research design to collect and analyze data [34]. The methods are: 
multi-sensor data collection, survey scales, data labeling, data min-
ing, and hypothesis testing. Data sets are collected in a study with 
several sessions. One participant per session. The main variables 
are features, a numeric representation of raw data [42], derived 
from IMUs and HRV data as well as ratings of perceived exertion 
and assessed movement quality. Ethical considerations are neces-
sary in relation to volunteers whose movement and physiological 
data is collected and analyzed; cardiac data in particular is sensitive 
information as it can be used to identify diseases. 
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6 METHOD 
This section is organized as follows: Firstly, the research setting 
is presented; secondly, the sample selection is described; thirdly a 
systematic method for data collection is elaborated; and fourthly, 
the process of data analysis is explained. 

Raw Data Pre-
processing Segmentation Feature 

Extraction Classification

Trained Model

Activity Recognition Chain

Perform Exercise
(IMUs and HRV)

Determine:
� Stress Levels
� Exercise Quality

Training Process

Initiate Trials Sufficient Data

n=1

n++

Figure 1: Overview of the training process. 

6.1 RESEARCH SETTING 
The study takes place in the Creative Space for Technical Innova-
tions (CSTI) laboratory, where the author is employed as research 
assistant and where an experimental setup has been established 
as part of an interdisciplinary European-funded project called Mo-
GaSens. The aim of MoGaSens was to develop a real-time feedback 
application based on a wearable body sensor system for ftness-
oriented training at home. This PhD project originated from the 
MoGaSens project, but with a sole focus on APS. Moreover, the 
MoGaSens project has resulted in a long-term collaboration with 
sports experts available for this PhD research. The experimental 
setup consists of wearable sensors (MetaMotionS 9-DOF IMUs by 
MbientLab Inc and H10 chest strap by Polar Electro Oy), infrared 
cameras by ART GmbH & Co. KG to track body movement with 
body-worn markers for verifcation purposes, and c920 webcams 
by Logitech International S.A. to record participants during the 
training exercises. 

6.2 Sample Selection 
Related studies recruited a varying number of (healthy) participants 
to reach sufcient results: for example, while Seifert et al. recruited 
two participants [35], Morris et al. gathered data from 114 people 
[29]. Mishra et al. observed that most studies recruited a relatively 
small number of participants belonging to a narrow demographic 
group [28] —often no more than 20 participants (e. g., [5, 16, 21, 25, 
31]). A similar cohort is targeted for this research. In addition, a 
balanced set of training data is targeted to avoid class imbalances 
that would afect classifcation performance [37]. For this reason, 
healthy students of similar age and ftness level are recruited to 
avoid an unequal distribution. For example, the ratio of athletic to 
non-athletic participants would profoundly afect classifcation in 
such small study groups. However, Morris et al. [29] point out that 
variations inevitably afect recognition accuracy and encourage 
large-scale training. The author is unaware of any general rule 

of thumb regarding a minimal required number of participants to 
reach satisfactory classifcation performance at scale. 

The repetitive training exercises are selected in advance to ap-
proximate the ftness level of the invited group of participants: the 
aim is to avoid under- or overexertion of the participants. In the 
case of underexertion, the data collected does not allow diferen-
tiation of the perceived APS levels. In the case of overexertion, a 
session may have to be aborted prematurely. 

6.3 Data Collection 
Data is collected while conducting training exercises with volun-
teer participants at the CSTI. Figure 1 outlines the overall training 
process. Technically, the data collection is based on the fve steps 
of the Activity Recognition Chain which is described in Section 6.4. 

In each session, only one participant and the author are present 
(hereinafter also referred to as instructor). Each session begins 
with the instructor informing the participant about the general 
process and goal of the study. A description of the collected data 
and its purpose is provided; data sets are collected from four IMUs, 
a heart rate sensor, labels for movement quality, and the ratings for 
perceived exertion (Borg RPE Scale) [7]. The participant confrms 
consensus by signing a consent form. The participant is then asked 
for a self-assessment of the general and current ftness level as well 
as the currently perceived level of exhaustion. 

Polar H10

ART-Tracker

IMUs

Figure 2: Sensor placement (front view). 

The training process for data collection begins by wiring the 
participant with the wearable sensors (see Figure 2). The participant 
receives a short demonstration of each individual training exercise. 
The participant then performs a set of training exercises according 
to verbal instructions. A general laboratory protocol was adapted 
from Mishra et al. [28]: Figure 3 illustrates the timeline of the 
laboratory protocol with a set of seven repetitive training exercises 
selected by sports experts and adopted from the MoGaSens project. 
The sensor data is collected throughout all exercises including 
rest phases. After completing each exercise, the instructor asks 
the participant to state a rating of perceived exertion on the Borg 
RPE Scale. The set is repeated a total of three times with the same 
participant, with a rest period of three minutes between sets. The 
whole session takes about 75 minutes per participant. After all 
three sets have been completed, the process is repeated with a new 
participant until sufcient data has been collected (see Section 6.2). 
The movement quality of each repetition is assessed (labeled) by 
sports experts based on the recorded videos, as the experts can 
watch each repetition at a slower speed. 

6.4 Data Analysis 
A commonly used general-purpose framework to design and evalu-
ate activity recognition systems is the Activity Recognition Chain 
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Squats
Roll-out 
Push-up

Single Leg 
Bridge

Crossover 
Crunch

Shoulder 
Taps

Single Leg 
Deadlift Side Plank

Stressor

Rest

20 20 20 202020

Sensors

Borg

Duration in Seconds
60 60 60 2x30 60 60 2x30

(Exhaustion)

180

Figure 3: Laboratory protocol for a set of seven exercises. 

(ARC) [35]. The ARC was introduced by Bulling et al. [9] and con-
sists of the following fve steps: raw data, pre-processing, segmen-
tation, feature extraction, and classifcation. In principle, the ARC 
provides a schematic illustration for converting multimodal sensor 
data into classifed information, but the actual implementation is 
left to the developer. The following describes how the fve steps 
are implemented to create a model that determines APS levels with 
wearable sensor data and Figure 4 shows how the data is mapped 
for an exemplary sequence of fve squat exercises. 

Squat

Segment #1

Stressor

Sensors IMU + HRV

Borg

Squat Squat Squat Squat

Segment #2 Segment #3 Segment #4 Segment #5

„16“ RPE

Quality „Good“ „Good“ „Neutral“ „Neutral“ „Bad“

Labels

(Exhaustion)

Time

RQ
1

Figure 4: Sensor data mapped to movement quality and ex-
haustion based on individual segments (repetitions). 

The frst step is collecting the raw data from multiple sensors as 
described in the previous Section 6.3. 

In the second step, the collected data is pre-processed. Based on 
related studies (e. g., [16]), the Euclidean norm is used to combine 
the x-, y-, and z-axes for each IMU sensor into one signal. In doing so, 
it is no longer necessary to determine which of the three axes is most 
meaningful for distinguishing a particular exercise. Additionally, an 
exact orientation of the body-worn IMUs is no longer required. This 
is because the gravity measured by the IMUs is distributed over the 
three axes and the Euclidean norm combines the magnitudes in one 
signal. Subsequently, noise and outliers are removed by fltering the 
data with the Butterworth flter [6]. In initial tests, the Butterworth 
flter has proven to be efcient for real-time applications, producing 
smooth signals that are benefcial for the following segmentation 
approach. 

In the third step, the pre-processed data is segmented into in-
dividual repetitions based on the data of the IMUs. The literature 
indicates diferent means to accomplish repetition detection such 
as minima and maxima searches [25], also known as Zero-Velocity 
Crossing [8]. Due to its simplicity, Zero-Velocity Crossing is prone 
to oversegmentation (too many detected segments), but it is ef-
cient for real-time applications [8] and has shown to be sufcient 
for repetitive training exercises in initial tests. Additionally, all 
data pass through a sliding window to reduce the amount of data 
processed simultaneously; this also allows quick user feedback for 
potential applications such as a digital personal trainer app. 

In the fourth step, features are calculated for each segment (i. e. 
repetition). Diferent types of features exist for this task, such as 
dynamic [6], statistical [16], or frequency-based features [3]. The 
selection of appropriate features is critical in infuencing the accu-
racy of a trained model to successfully detect repetitions [22] and 
is a part of this research (RQ2). A feature vector is calculated and 
consists of a summary of calculated values (e. g., mean, median, and 
variance) that are passed to the fnal classifcation step. The sub-
jective data (labels for movement quality and ratings of perceived 
exertion) are added to each corresponding feature set (repetition). 

In the ffth step, a model is either created or used for real-time 
classifcation. The model incorporates trained classifer(s) that can 
determine movement quality, exhaustion, and APC levels for each 
repetition. Supervised machine learning is planned, but other statis-
tical techniques are being investigated as well. Examples for suitable 
machine learning classifers are support vector machine (SVM) [31], 
decision trees [22], random forests [6], and Naive Bayes classifers 
[5], whereas most of the mentioned studies leveraged and compared 
a set of diferent classifers. While there is no clear consensus as to 
which classifer performs best, several studies have found SVM and 
random forest perform better than other models which also tend to 
limit over-ftting, reduce bias, and variance [28, 32]. 

7 LIMITATIONS 
The scope of this research is limited to APS caused by repetitive 
training exercises in an laboratory setting. Other sources of stress 
exists such as fatigue, discomfort, or illness, but these efects cannot 
be completely avoided. A further limitation is the assessment of 
movement quality, which is a controversial topic in sports science. 

Figure 5: Preliminary study with crunches. 

8 NEXT STEPS 
A method for data collection and analysis has been developed and 
tested in initial trials based on a custom implementation of the ARC 
(see Figure 5). A preliminary set of statistical features from [16] 
was used to classify activities [23]. Since the data collected so far is 
small, new data will be collected in an upcoming study. The next 
step is to investigate diferent feature sets and classifers. 
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