
Classification of Physiological Data in Affective
Exergames

Andreas Kamenz, Victoria Bibaeva
HAW Hamburg, Informatik

Hamburg, Germany
andreas.kamenz@haw-hamburg.de

Arne Bernin
HAW Hamburg, Informatik

University of the West of Scotland (UWS)
Hamburg, Germany

Sobin Ghose
HAW Hamburg, Informatik

Hamburg, Germany
sobin.ghose@haw-hamburg.de

Kai von Luck
HAW Hamburg, Informatik

Hamburg, Germany
luck@informatik.haw-hamburg.de

Florian Vogt
Innovations Kontakt Stelle (IKS)

HAW Hamburg, Informatik
Hamburg, Germany

Larissa Müller
HAW Hamburg, Informatik

PricewaterhouseCoopers GmbH WPG
Hamburg, Germany

larissa.k.mueller@googlemail.com

Abstract—In this work, we present our approach to analyze
physiological data in affective exergames with deep learning
algorithms. In previous works, a cycling exercise machine has
been enhanced to act as a game controller. During a case
study, we collected vision-based and physiological data of 25
participants who rode through the designed emotion provoking
game environment. Using the collected physiological data, we
propose to use ensemble learning based on three distinct deep
learning models: Multilayer Perceptron, Fully Convolutional
Networks and Residual Networks. The proposed algorithms were
able to enhance our previously introduced event-based emotion
analysis method.

Index Terms—Affective Computing, Exergames, Physiological
Data, Deep Learning, Time Series Classification

I. INTRODUCTION

The influence of affective computing on various industries
has grown during the last decades. Nowadays, marketing
strategies often include an evaluation of customers’ emotions,
and the automotive industry analyzes users’ attention. Modern
games aspire to integrate user emotions in their game play [9].
Since emotions are able to increase motivation [1], the sports
industry can also highly benefit from affective computing
technologies. Moreover, it has been shown that entertaining
content can provide motivation for physical exercise [2].

Designing entertainment systems is very challenging, since
the perception of entertaining values and the emotional re-
action to similar game elements is highly individual. One
consequence is that a different personal experience is created
for each user. Therefore, the presented system is designed to
analyse these individual reactions by modern deep learning
approaches.

Nowadays, many affective algorithms are well tested and
approved in desktop scenarios. Less research is devoted to
interactive exercising context, since such a scenario requires
movement and physical effort. The analysis is more complex,
and therefore movement is seldom included in the acquisition
[7]. We find it interesting since it goes beyond classical
desktop approaches and it has been shown that emotions are

linked with physical activity [11], related to happiness [10]
and that they are able to enhance exercise experiences [12].

In previous works, a physical cycling exergame was pre-
sented and facial expressions were analyzed in an exergaming
context [3]. In another work, facial expressions were combined
with physiological data to enhance emotion recognition rates
[4]. In further works, we enhanced the system by a dynamic
game play based on the emotional reactions in order to steer
participants on a predefined path of emotions [6]. Thereby
a database was created which contains of video and thermal
camera data as well as physiological time series data consisting
of EDA, respiration and temperature sensors. EDA is a part
of the autonomous nervous system and thereby known to be
closely associated with the arousal of participants [15] and
allows to recognize basic emotion as well [16]. In this work,
we focus on improving the emotion recognition system by a
deeper analysis of the physiological data.

II. RELATED WORK

As opposed to other classification problems, Time Series
Classification (TSC) deals with data which is ordered by
time. This contraint imposes that the discriminative features
extracted from this kind of data also depends on ordering [22].

The solutions to TSC problems can be grouped into shape-
based, feature-based and direct approaches [23].

Shape-based approaches attempt to measure the similarty of
each pair of time series samples based on their shape, which
allows them to use the similarity to classify new time series
samples. The most prominent and commonly used algorithm
of this group is Dynamic Time Warping (DTW) combined
with a classifier such as k-Nearest-Neighbours [22].

Feature-based approaches extract a set of statistical features
from the time series data like maximum, minimum, skewness,
curtosis, peaks etc. Many of these features are designed specif-
ically for certain kinds of data, e.g. logarithmic periodogram
for contact strips in trains [23]. The researchers then have to
define a wide range of generic features to be calculated, before
the actual classification takes place.
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As an alternative to hand-crafted features, feature learning is
the basis of direct approaches to TSC problem. This group of
approaches must take the above mentioned locality of features
into account. Direct algorithms are especially suitable for
problem instances where manual feature-engineering is very
hard [23]. Recently proposed instances of direct algorithms
are recurrent and convolutional neural networks as well as
stacked restricted Boltzmann-machines (for references see [23]
and [19]). They belong to the deep learning domain.

Deep learning is becoming more and more popular as it
achieves strongly competitive results in many signal process-
ing tasks such as image and audio classification, video analysis
etc. Due to their increasing prevalence, deep learning models
are successfully transferred to other research areas, including
TSC. Thus, we investigate the use of deep learning models in
an ensemble for the practical TSC task at hand.

Our problem setting is complicated by the fact that the
given data is spread across different channels, each of which
is produced by one bio-sensor. It implies using some kind of
data fusion. The authors of [18] faced similar problem with
different data channels (namely video, audio and text) for the
deception detection task. The solution was to test two different
fusion mechanisms. The first mechanism, feature-level fusion,
concatenates the extracted features before feeding them to a
classifier. The second, decision-level fusion, employs several
so-called ”weak learners” that learn features from each data
channel separately. Afterwards, the class predictions are calcu-
lated out of all weak learners’ outputs, which corresponds to
the general ensemble learning procedure. Similar comparison
of data fusion mechanisms was done in [17], where the goal
was to classify physiological time series data for emotion
recognition. The results have shown the superiority of the
decision-level fusion, which we have therefore chosen for our
experiments.

Our work differs from the mentioned references in that we
explore the emotion recognition task in context of exergames,
which implies collecting and analyzing physiological data. Our
assumption is that emotion recognition based in physiological
data can be achieved through creating an exergame environ-
ment where the participants are actively influence the virtual
bicycle, at the same time facing different objectives and being
emotionally involved.

Whereas the authors of [17] utilize the already available
MAHNOB-HCI database, where 27 participants are sitting
while being shown a set of emotion provoking videos, our trial
setting involves the participants’ movement. Also, the study
[17] uses other kinds of weak learners, namely AdaBoosted
Trees Classifiers, whose outputs are combined in order to
derive the final results. In contrast, we propose ensemble
learning for sensor fusion, where the weak learners are deep
neural networks. These networks have already shown excellent
results on other TSC datasets [19], hovewer being used as
single models for time series containing a single channel.

III. SYSTEM SETUP

The system setup is designed as a testbed that supports the
evaluation of emotion recognition and emotion provocation
technologies in an exercising context. Furthermore it enables
to conduct experiments easily to test miscellaneous methods.
It contains a physical exergame controller, a data acquisition
system, different emotion sensors and an emotion provoking
game. Furthermore the participants was asked to fullfil a
couple of experimental trials and a database was created, that
contains all the sensor data, a screen dump of the virtual game
as well as the data logs of the physical cycling exergame
controller.

A. Physical Exergame Controller

The exergame system setup includes a cycling exercise
machine, modified by a rotatable handlebar, a gear shift and
a brake to act as a physical game controller for a specially
designed emotion provoking cycling game [5]. The user’s
revolutions per minute (rpm) while exercising was transmitted
to the system to calculate the speed of the virtual bicycle.
Thereby, the game is controlled by the player, who has to
physically accelerate and steer through the designed virtual
environment, that was presented to the user on a display in
front of the bike. The designed virtual bicycle had soft real
time requirements since insufficient controls may influence the
user perception and provoke frustration.

B. Data Acquisition System

A data acquisition system was designed to collect data from
different emotion sensors [6]. It is designed as a distributed
system with loosely coupled client computers, connected with
a message broker (Apache ActiveMQ1) and a JSON-based
protocol.

A Microsoft Kinect v2 camera2 was placed in front of the
exercise machine to collect video data of the participant’s
face. It provides HD(1080P) resolution and RGB-D(512x424)
images at up to 30Hz. The physiological data was applied by
the wearable sensing platform biosignalsplux3. The platform
provides EDA, blood volume pulse (BVP), ECG, piezoelectric
respiration, and temperature sensors and operates at a sampling
rate of 256Hz. All the sensors are connected to the Plux hub,
sending the data via Bluetooth to our server.

C. Exergame Design

The presented exergame was designed in accordance to the
requirements for affective games described in related research
[8]: they should be engaging, intuitive, easy to learn, highly
dynamic and enable multiple forms of adaptation. Different
game scenes enables multiple forms of adaptation and each
scene was tailored to steer the participant in a controlled
emotional state. The provocation of the different game scenes
was evaluated in a previous work [5]. In this work we focus on
a subset of the emotion provoking game events that have been

1http://activemq.apache.org/
2https://developer.microsoft.com/en-us/windows/kinect
3http://biosignalsplux.com/



shown to provoke strong physiological responses and thereby
are particularly suitable for deep learning approaches. In this
work we focus on the analysis of the scenes and events as
presented in Table I. A detailed scene description can be found
in [5] an [6]. In this work we present a short introduction to
the relevant scenes.

1) Challenging Scenes: In the Challenge Scene the partici-
pants have to fulfill a very challenging task. They need to steer
through a booster gate to achieve the right speed and land on
the other side of a mountain gap, as shown in Figure 1.

Fig. 1. Booster in the Challenge Scene

In the Downhill Scene the participants ride down a hill on
a wooden path. The speed of the virtual bike is increased due
to the negative slope. In front of the finish line a sharp curve
needs to crossed in spite of the high speed, which makes this
task very challenging.

Fig. 2. Challenging Task in the Downhill Scene

2) Scary Scenes: In this work we focus on the Forest Scene
and the Explosion Scene. In both scenes an uncomfortable
environment needs to be crossed. In the Forest Scene the player
has to take a ride through a dark forest and on its way a Jump
Scare Event with shocking Zombies. In the Explosion Scene a
war zone is presented to the participants, as shown in Figure 3.
While riding through the scene surprisingly explosions occurs
with a loud sound.

D. Exergame Trials

Each trial started with a training scene to allow the user
to become familiar with the controls. After that, a dynamic
sequence of game scenes was started as described in [5] and

Fig. 3. War Zone in the Explosion Scene

TABLE I
OVERVIEW OF EMOTIONAL PROVOCATION IN GAME SCENES

Scene Event Objective Target Target
Emotion Reaction

Make it EDA
Challenge Falling across the Joy, Frustration response

finish line
Make it EDA

Downhill Falling across the Joy, Frustration response
finish line

Forest Jump Scare Cross a Surprise, Fear EDA
dark forest response

Explosion Explosion Cross a Surprise, Fear EDA
war zone response

took the user on an Emotional Journey [6]. The trials were
designed to provide a moderate strain to the participants. The
personal perception of the physical strain was evaluated by the
Borg scale ranging from 1 to 7 [13].

The sensor data acquisition should be minimally inversive to
the participants and to avoid feelings of discomfort the sensor
mounting was supported by an experimenter of the same
gender as the participant. Otherwise they might influenced by
undesired emotions. One of our aims was to collect a database
that was created during a case study with 25 participants, ten
males and fifteen females. Since the annotation of emotions
is still an ongoing challenge and it is not certain whether a
self-assessment is sufficient or if an observer-assessment is
preferable [14] we decided to validate our results by a self-
assessment and an observer-assessment.

E. Dataset

In order to achieve our goal to classify physiological data
with respect to human emotions we manually created the
time series dataset. This was done after the trials with the
participants by manually selecting the representative time
series and the corresponding emotion labels.

Since all the scenes and emotion provoking events were
stored in a database with a timestamp, the challenge was
to assign an emotion label to a certain time window that
surrounded the event timestamp and contained the relevant
sensor data. We could build up on the previously introduced
event-based analysis method [4], defining a window of 1
second before each event occurs and 10 seconds after the



event. Our findings show that the selected time window is
sufficient to analyze the physiological reactions on every event.

Additionally, we chose the game scenes with the strongest
physiological reactions – see Table I. Thus, the resulting
dataset includes 382 time series that belong to 2 separate
emotional classes. Each time series contains of 5 separate
channels, one channel per sensor, downsampled to 128 Hz.
One time series includes 1408 sensor values per channel.

Due to the noticeable variations in psycho-physiological
qualities of the participants, we normalized each time series
channel-wise, subtracting the minimal value and dividing by
the value range, as in [17].

IV. OUR APPROACH

We propose to use three deep learning models trained in
ensemble to classify the physiological time series data. These
are popular models from the deep learning domain, which have
already been used for time series classification with many
benchmark datasets as described in [19]. The first model is
multilayer perceptron (MLP), the second is fully convolutional
network (FCN), the third is residual network (ResNet).

The advantages of the proposed models are not only their
ability to utilize the input data without much preprocessing,
but also feature learning instead of manual feature extraction.
Also, according to study [19], these models were able to
beat many of shape- and feature-based methods on a large
collection of time series benchmark datasets. Finally, due to
their depth the proposed models are capable of coping with
the high input data complexity [21] that can be expected of
physiological data.

The novelty of our approach is to use an ensemble in order
to eliminate the uncertainty of choosing, which channel/sensor
is the most reliable source to predict emotions. Furthermore,
ensemble learning allows us to use all the available sensor
information under the assumption that the latter produces
higher recognition rates than any of the sensors alone.

A. Multilayer Perceptron

MLP is the most common type of machine learning models
that consists of multiple layers of artificial neurons [20]. In our
experiments, we chose to use an MLP with 3 fully-connected
hidden layers, each having 500 neurons, followed by a softmax
layer. Typical techniques such as rectifying non-linearity and
dropout were used as well, the former speeding up the training,
the latter preventing MLP from overfitting (for definitions
see [21]). The probability of dropout before the input layer
was set to 0.1, before each hidden layer – to 0.2, and before
the softmax layer – to 0.3 [19].

B. Fully Convolutional Network

Our next model, FCN, is a special type of convolutional
neural networks (CNNs). In turn, CNN is a variant of MLP
with some distinctive types of neuron layers, such as convo-
lution layer, pooling layer and full-connection layer (cf. [20]).
These layer types are stacked together to form a linear network
architecture that efficiently learns feature hierarchies with help

of much less neuron weights than MLP. CNN is typically used
for data which exhibits some form of local dependencies [21].

In contrast to CNN, FCN does not use any pooling and
full-connected layers, instead making advantage of batch nor-
malization after each convolution layer as well as of global
pooling at the last layer. Main benefits of these choices are
the reduced network size and faster convergence (see [19]).

Thus, our FCN model is composed out of 3 stacked mod-
ules, which in turn contain convolution layer, batch normaliza-
tion layer and rectifying non-linearity. The convolution filters
are initialized with the Glorot Scheme [24], filter sizes being 8,
5 and 3, respectively. Filter count of the first and last modules
was fixed to 128, as a factor of the time series length, the
second module having 256 filters. Again, the last layers of
the FCN are global pooling layer and softmax layer, which is
responsilble for class prediction.

C. Residual Network

The last model, ResNet, was designed by [25] to over-
come the problems of training very deep neuronal networks,
e.g. with 152 layers. The solution was to introduce shortcut
connections that perform identity mapping without added
complexity, resulting in deeper models with better accuracy.
Our ResNet is built out of 3 identical residual blocks. Every
block has 3 convolution layers with filter sizes 8, 5 and 3, all
of which are followed by batch normalization and rectifying
non-linearity. The shortcut connection is stretched from the
block input to its output. Beside this fact, the only difference
between a residual block and FCN described above is the filter
count, in the current case being 64, 128 and 128, respectively,
to allow stacking of blocks with enough complexity. Finally,
the last layers of ResNet are the same as in FCN.

D. Network Ensembles

As stated above, the proposed deep learning models can
be used to classify one data channel at a time. In order to
combine the class predictions coming from each data channel,
an ensemble approach is now introduced.

We designed and compared 3 different ensembles in this
paper. Each ensemble contains of 5 equal models working with
its own data channel. The first ensemble contains of MLPs, the
second – of FCNs, the third – of ResNets. The entire ensemble
architecture is illustrated in Figure 4 The single models are
represented with FSi blocks, their outputs hi being averaged
to produce an ensemble output.

V. EXPERIMENTAL RESULTS

We implemented our models in Python using Keras4 as a
training framework. The dataset was split into training and
test set with a ratio of 70% to 30%. All models were trained
with AdaDelta algorithm. The initial training parameters like
learning rate are described in [19]. Additionally, we used
random seeds to achieve deterministic results for each run.
We conducted 10 runs in total with different random seeds.

4https://keras.io/



Fig. 4. Deep model ensemble used in this paper (derived from [26]).

The overall results including mean accuracy and standard
deviation over 10 runs, are illustrated in Figure 5. The average
accuracy of the MLP ensemble is 0.6273, meaning that 62.73%
of time series are correctly classified. The average accuracy of
FCN ensemble is 0.6559, and of ResNet ensemble – 0.6534.
Furthermore, Figure 5 contains the accuracies of each model.
In most cases, the highest accuracy was achieved by FCN,
including the case of ensemble model. Unsurprisingly, MLP
showed the worst accuracy as it is prone to overfitting.

Consequently, we are able to compare the accuracy of each
weak learner with the overall ensemble accuracy. This results
prove our assumption that the accuracy of an ensemble is
higher than the accuracy of each single model.

The analysis of BVP shows the highest rates. This is an
interesting finding, since the previous analysis method was
based on EDA data. The evaluation of BVP data is promising
to enhance the successful recognition rates and thereby should
be integrated into the exergame system. Figure 6 shows a
typical time series of BVP sensor data in the Downhill Scene.

VI. CONCLUSION

This paper deals with the problem of emotion recogni-
tion based on physiological data in context of exergames.
In previous research, we collected sensor data under the
assumption that they can be used to classify emotional states.
We approached the emotion classification as a time series
classification problem and proposed three solutions based
on well-known deep learning models: Multilayer Perceptron,
Fully Convolutional Network and Residual Network. These
models were used in an ensemble, which allowed us to use
all sensor data separately and later combine them to improve
the prediction rate.

Our experiments illustrate the successful use of deep learn-
ing models for such non-trivial tasks as emotion recognition in
exergames. The proposed models were able to achieve a decent
accuracy level despite high data complexity and turned our at-
tention to certain sensors that produce machine distinguishable
data. Moreover, we compared the proposed ensembles against
each other as well as against single channel models. The most
promising results were obtained with FCN ensemble, leading
to the necessity of further research to increase its performance.
The lowest accuracy and a tendency for overfitting was seen
in MLP ensemble. Finally, each ensemble was capable to beat
the single channel models, stressing the necessity to employ
ensemble learning for such tasks.

Our future research focus will be to investigate the influence
of preprocessing techniques, which may lead to an increasing
accuracy. Also, better results may be achieved through the use
of similar benchmark datasets containing physiological data
such as MAHNOB-HCI. These datasets can be used to train
the proposed ensembles, after which the models can be fine-
tuned with our own collected dataset. Concluding our paper,
we improved our previous results on emotion recognition and
will continue to research this topic even further.
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