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ABSTRACT

Affective application developers often face a challenge in in-
tegrating the output of facial expression recognition (FER)
software in interactive systems: although many algorithms
have been proposed for FER, integrating the results of these
algorithms into applications remains difficult. Due to inter-
and within-subject variations further post-processing is nee-
ded. Our work addresses this problem by introducing and
comparing three post-processing classification algorithms for
FER output applied to an event-based interaction scheme to
pinpoint the affective context within a time window. Our
comparison is based on earlier published experiments with
an interactive cycling simulation in which participants were
provoked with game elements and their facial expression re-
sponses were analysed by all three algorithms with a human
observer as reference. The three post-processing algorithms
we investigate are mean fixed-window, matched filter, and
Bayesian changepoint detection. In addition, we introduce
a novel method for detecting fast transition of facial expres-
sions, which we call emotional shift. The proposed detec-
tion pattern is suitable for affective applications especially
in smart environments, wherever users’ reactions can be tied
to events.
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1. INTRODUCTION

In recent years, affective computing has developed into a
vibrant, multi-disciplinary field of research with exciting op-
portunities for new applications. Its foundations are in emo-
tion models, sensing technologies, affective and social signal
processing, affective data sets and reference applications.
Despite much progress over two decades many challenges
to build working systems remain [28, 26, 6]. During our re-
search into affective solutions for exergames, we encountered
numerous difficulties building generalised emotion-enriched
applications due to the complex nature of emotions, ratio-
nal and contextual processing, which occupies a significant
portion of the human brain.

The common approach of mimicking human processes by
collecting vast amounts of emotion data for situational and
cultural contexts, experimental settings and subject groups,
parametrised with plausibility rules and tuning parameters,
has resulted in substantial challenges for Al research.

Over the course of our research comparing facial expres-
sion and emotion recognition systems, we identified the issue
of application-specific mapping and its automatic interpre-
tation. While facial-expression-derived emotions are a valu-
able source of information for event and reaction detection in
affective-aware applications, they are also difficult and com-
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Figure 1: Our pipeline for an event-aware smart affective system. The user’s face is recorded by a camera
and afterwards analysed with a FER algorithm to extract facial expressions. The algorithms output is
post-processed with filtering, classification and interpretation based on external or internal events. This

post-processing step is the focus of this publication.

plex to interpret and correlate with user actions, profiles and
other data. As a result, FER analysis is quite complex and
often not reliable due to response variations (see Fig. 2).

For our work we found it useful to generalise both user
actions and internal plus external signals to the application
as events. Utilizing FER with these events provided us with
additional context. The concept of this study was to extend
single frame and average signal approaches to more closely
analyse timing and response characteristics.
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Figure 2: Classification of FER algorithm output
can be considered a multi-channel signal processing
problem. Often the output of FER algorithms pro-
vides one independent channel per expression.

Our general aim is to build robust real functional interac-
tive applications with a variety of users and individual re-
sponse dynamics, where a one-to-one mapping from expres-
sion to reaction is not fixed and post-processing is needed to
provide a working system. Our goal is to determine whether
the user perceives an event - based on the reaction and emo-
tional expressions. These events may be triggered by system
internal provocations, such as audio-visual-haptic stimuli or
caused by system external triggers, such as an event from
the real world. In the latter case, the system must detect
the external event in order to determine the timeframe for
the user’s reaction as depicted in Fig. 1.

Thus far, we have relied on semi-automatic methods for
detecting user reactions [24], as automatic solutions for di-
rect emotion and expression mapping did not work for us.

In this paper we present a comparison of approaches for
automatically recognising responses from the output of FER
algorithms and provide a benchmark for this post-processing
step. We demonstrate our post-processing methods with the
state-of-the-art FER system Emotient.

Although this work is based on an emotion provoking ex-
ergame, our findings can be applied to any affective scenario
in which an application setting provides internal or external
events to fix search windows occurring in smart and assistive
Environments.

2. RELATED WORK
2.1 Previous Work

In order to understand this work in its context, we find
it beneficial to be aware of our previous work, which de-
scribes the EmotionBike system [24], presents the experi-
mental setup and showcases the provocation of human re-
actions with game events analysed post experiment by the
facial expression system CERT [17]. The EmotionBike pro-
vides an exergame scenario enabling users to cycle through
an interactive game on a stationary bike trainer with steer-
ing capabilities. It is a variant of a cockpit scenario also
suitable for research on the topic of games for physical ther-
apy and orthopaedic rehabilitation. Our follow-up study [23]
enhanced the experimental setup with the event-based anal-
ysis of galvanic skin response combined with facial expres-
sions. For practical guidance, we presented a benchmark [3]
of four automatic facial expression analysis systems with
three emotion-labelled reference databases and a systematic
method for performance analysis and improvement that al-
lows to tailor for specific application needs.

It is to note that all related work including our own: 1.
observe only single frame or short sequence input and 2.
use exclusively semi-automatic or manual emotion classi-
fication in practical applications that produce high inter-
and within-subject variations. One standing research chal-
lenge is the fully automatic classification of user reactions,
for which we present three alternative algorithms as feasible
solutions. Our classification methods can be effectively com-
bined with the application-specific clustering approach [3] to
increase its robustness for a wide spectrum of user reactions.

An interesting observation in our previous studies is the
way inter- and within subject-responses vary as positive/neg-
ative inverse reaction based on predisposition.

2.2 Applications: Smart and Assistive Envi-
ronments

Smart environments often provide a reasonable applica-
tion context for recognising emotions and expressions. In
this section we describe environments that could benefit
from our methodology. As an example, the STHENOS pro-
ject [18] already focussed on the development of a method-
ology and an affective computing system for the recognition
of physiological states and biological activities in assistive
environments. Kanjo et al. [12] provide a good introduction
to, and review of, the different approaches and modalities
for emotion recognition in pervasive environments.

Another scenario in the area of cyber physical systems [15]
that is event aware and presupposes a user’s reaction is a car-
driver assistance system: After a potential harmful external



event occurs, the choice between waiting for an appropriate
reaction from the driver or initiating an automatic response
is crucial. A shift in the driver’s facial expressions is one
indication to wait in the first case.

Cockpit-based scenarios like the NAVIEYES system pro-
vide a lightweight architecture for a driver assistance sys-
tem [22], that could benefit from facial-expression-shift de-
tection as an additional input source to improve detection
of driver’s intentions. Another example is McCall et al.’s
"Driver Behavior and Situation Aware Brake Assistance for
Intelligent Vehicles” which adapted the system’s reaction
based on situational severity and driver attentiveness and
intent by using a camera pointed at the driver’s head [19].
Doshi et al. provided an overview on systems for driver
behavior prediction and intent inference [8].

Korn et al. [14] published their work reagarding gamifica-
tion in work environments, which applies facial expression
analysis with the FER algorithm SHORE from Fraunhofer
IIS and a semi-automatic (Wizard of Oz) approach. This is
a similar method as in our previous setup.

2.3 Emotional Models and Expressions

Calvo et al. [7] list six main perspectives for understand-
ing emotions: emotions as expressions, emotions as embod-
iments, cognitive approaches to emotions, emotions as so-
cial constructs, neuroscience approaches with core affect and
psychological constructions of emotion.

In this study we focus on the theory of emotions as ex-
pressions, which is primarily based on the theory of six basic
emotions [9], although the number of expressions detected
varies between algorithms.

A common approach for detecting emotional expressions
involves generating a feature set of facial landmarks or mus-
cle activity [34]. One approach for discrete quantification
makes use of action units (AUs), which are part of the facial
action coding system (FACS) by Ekman and Friesen [9] and
describe a set of activities based on facial muscles. Coding
facial expressions of emotions based on the presence of AUs
have often been used in FER algorithms [20, 2, 34].

2.4 Facial Expressions

Facial expressions consist of three different phases: onset,
apex and offset (see Fig. 3). All three phases have different
durations: while on- and offset are typically short, apex is
typically the longest phase. Spontaneous expressions often
mix these phases resulting in multiple apexes [13]. Facial ex-
pressions can be divided in normal and micro-expressions,
the latter sometimes called leaking expressions [9, 32]. Al-
though discussion continues about duration as a criterion
of differentiation [32], micro-expressions appear to last less
than 0.5 s, while normal expressions typically last longer
(often exceeding 1 s) [32].
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Figure 3: Typical development of a facial expres-
sion with onset, apex and offset (from the survey by
Chung-Hsien [30], CC BY 3.0).

2.5 FER Algorithms

An overview on the many approaches for detecting fa-
cial expressions through image and video processing can be
found in the surveys of Zeng et al. [34] and Sariyanidi et
al. [27]. State-of-the-art FER algorithms use a pipeline be-
ginning with the crucial first step of finding the face, followed
by reducing the data size with filtering [34]. Features are
then extracted from the reduced data and machine learning
or statistical classification generates the result. Our previ-
ous work [3] contains further insights into the nature of FER
algorithms.

Algorithms may be trained to detect AUs [20] or facial
landmarks [21] as an intermediate step or they may be di-
rectly trained for facial expression detection on raw input [29].
Their output is typically an independent probability value
between 0.0 and 1.0 for every possible expression (see [3] for
details).

Some research has been conducted on the (spatio-) tempo-
ral modelling of low-level AUs to exploit their chronological
sequence [13] while others [16] have focused on the dynam-
ics of higher level expressions, namely the six basic emotions
and a neutral emotion.

While much work has been provided on converting video
data to FER-output, we found very few studies [1, 5] ex-
plaining the output’s automatic classification, although it is
a necessary step for application integration. We have found
no general solution for this post-processing step other than
semi-automatic or manual processing.

3. CLASSIFICATION ALGORITHMS

We developed three different algorithms for classifying the
FER output data, starting with a primarily mean-based al-
gorithm using a fixed window size. The second algorithm
is based on a common approach in signal processing, which
uses a matched filter with a fixed scan size and correlation to
the data points. The third approach uses Bayesian change-
point detection. As our goal was to automate the analysis
of our data for the event-based setup, all three approaches
were developed for an analysis window around the event.

3.1 Categorising of Data
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Figure 4: Emotional shift example for two opposite
expressions: (a) fast onset of ’joy’ and (b) corre-
sponding offset of ’anger’. The red line marks the
event position.

The classification of our data is binary-based and coded
with two symbols (e.g. 7017, see Table 1). The data was sub-
divided by window size (see Section 4.1) and classified using
four different methods: three algorithm-based approaches
and manual classification by a single expert (data analyst)
acting as a human observer for comparison.

The observer had the same options for classification as
those used by the algorithms. The two symbol binary re-
sult was used for detecting the emotional shift in the facial
expression channels (see Fig 4).



Table 1: Types of data classification: ”00” denotes
that no expression was found, ”01” that a rising edge
was found, 7”10” that a falling edge was found, ”11”
that a stable signal near to 1.0 was found and ”?7?7”
that the signal was inconclusive.

Category Example Data
00 -
01 I
10 T
11
27 V-

3.2 Peak Detection

All three algorithms use the same method for peak detec-
tion that was originally developed by Eli Billauer [4]. We
used his standard peak detect version with a look-ahead
value of 1 and a delta value of 0.25. After peak detec-
tion with a delta of 0.25, we used a value of 0.5 for thresh-
olds between the observed minima and maxima to verify
the detection and improve the overall detection rate com-
pared to increasing the peak detection threshold itself. In
our previous work [24] we applied the peakutils algorithm
by Bergman [25], but preliminary testing revealed that the
Billauer algorithm provided slightly better results with this
data set.

3.3 Edge-Detection-Based Algorithms

Our proposed edge-detection-based algorithms (CP, PMP)
use a common design with a multi-step approach, presented
in Figure 5. The main differences between both approaches
are the method for processing the data, the threshold for de-
tecting the peaks and edges. These differences are marked
in green in Fig. 5. Both methods are explained below.

| Smooth data |

v

| Process data |

v

| Peakdetection |

v

| Threshold peaks |

v

| Edge detection |

v

| Edge Classification |

Figure 5: Basic edge-based design: The blue steps
are identical in both edge-based algorithms while
green steps differ in their processing methods.

3.3.1 Smoothing of Data

For the smoothing of the data, we used a modified single-
pass moving average filter for each block of (n=4) data
points: If the mean is above a threshold of t=0.5, the block
value is the maximum value in the block; if the mean is be-
low or equal to the threshold, the block value is set to the
minimum instead. This maximises the spread within the
block data to improve change detection by the algorithms.

3.3.2  Processing Data with Changepoint Peak (CP)

Our changepoint-based design uses Bayesian changepoint
detection for identifying the positions of rising and falling
edges. We used the changepoint detection method described
by Xuan et al. [31], which is based on the work on Bayesian
inference for multiple changepoint problems by Fearnhead[10].
We used a constant prior of 1/len(data) and a truncate value
of -20 as it produced the best results in preliminary testing
on our data set.

3.3.3 Processing Data with Pattern Matching Peak
(PMP)

Using a simple threshold binary filter is insufficient to pro-
cess the data, as it still produces a signal requiring additional
pattern filtering. We therefore used a reversed approach
with pattern filtering and a binary threshold instead.

This algorithm utilises a matched filter [11] based on 1D
cross-correlation. We initially used a filter length of [ = 16
resulting in a complete length of ¢l = 2 %[ = 32. This
initial filter length was chosen because with a frame-rate
of 30 fps it is close to the common minimal length of nor-
mal facial expressions (1 s)[32]. We then compared it with
smaller (1=8) and bigger lengths (I=24) denominating the
algorithm’s variants: PMP8, PMP16 and PMP24.

3.3.4 Edge Detection

The peak detection process uses a delta value (threshold)
that is lower than the actual threshold as described in section
3.2. The edge detection for PMP relies on cross-correlation,
which generates separate curves for rising and falling edges.

For CP detection, falling and rising are distinguished by
a rating of the two data points before and after the actual
edge.

3.3.5 Edge Classification

For edge-based methods, edge classification is calculated
using Table 2. This table also includes the case of smaller
(double) falling or rising edges, if they meet the correspond-
ing condition.

Table 2: Edge classification for CP and PMP al-
gorithms for different number of found edges with
corresponding constrain conditions. The conditions
ensure the correct order of rising and falling edges.

# Raising | # Falling

edges edges Condition Result
1 0 01
0 1 10
2 0 rise[0] < rise[1] 01
0 2 Tall[0] < fall1] 10
2 2 rise[0] < rise[l] < fall[0] < fall[1] 10
1 2 rise[0] < fall[0] and fall0] < fall[1] 10
0 0 mean (left) > 0.5 and mean (right) > 0.5 11
0 0 mean (left) < 0.5 and mean (right) < 0.5 00

3.4 Fixed-Window Mean Bisection (FWMB)

Our binary search based algorithm halves the window
around the event position. If no results are found in this iter-
ation, three further subdivision steps are performed. In or-
der to identify possible edges at each depth level, the means
of both sides of the window are compared. If the difference
between the mean of the left and the right sections is greater
than a threshold of 0.5, a direct classification is returned. On
each subdivision window, a single peak detection is applied.



3.5 Example Output

Fig. 6 depicts output for all three algorithms as an exam-
ple. All three algorithms classify this data as "01”. Fig. 6
also depicts the main difference between the algorithms: the
dependency on window size for detecting edges. FWMB al-
ways uses the middle of the window, while PMP and CP are
more flexible, as they rely on edge detection rather than a
fixed window size.
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Figure 6: Example output for ”01” classification of
’joy’: (a) depicts the original data, (b) displays the
output from the changepoint detection with peak
and raising edge detection, (c) depicts the output
from pattern filter and peak and edge detection
(green) with smoothed signal (blue) and (d, e, f)
provides the results for all three algorithms with
mean values in green for values > 0.5 and red if
value < 0.5.

4. EVALUATION OF ALGORITHMS

In order to evaluate the three algorithms, we subdivided
the data of 2, 4 and 8 s length for a specific facial expression
at the event-position: half the window size before and after
the event. Every slice of the data was then classified using
one of the three developed algorithms and the classification
was compared to that of the human observer.

4.1 Experimental Data for Evaluation

Data was collected during experiments in different game
levels of the EmotionBike project [24]. In this work, we
focussed on two game events: the falling event (fa) from the
challenge level (see Fig. 7) and the jump-scare event (js) in
the night level (see Fig. 8) resulting in a data set of 92 events
and 3,312 subdivided sequences (see Table 3). In general,
our exergame involved three types of events:

1. Sudden events: Users are given no warning when
this event will occur, resulting in a small window for
detecting facial reactions. The jump-scare event is an
example of this type.

2. Fuzzy events: Users can estimate the occurrence of
this predictable event, making the actual window size
larger. The falling event is in this category.

3. Continuous events: As the event is constantly present
in time, no event time can be calculated. We therefore
ignored this type in this study.

Table 3: Observer-based classification detailing the
quantity of each expression for the window sizes of
2, 4 and 8 seconds resulting in a number of 3,312
sequences.

Num of Num of Windoy
Event & Category
events expressions 2s 4s 8s
81 972 0 535 444 375
1 167 251 263
fuzzy/ta.sk-fall/ 10 196 218 276
falling
1 65 17 10
ke 9 42 48
11 132 0 73 60 52
1 22 27 36
sudden/surprise/ 10 16 36 30
Jump-scare
11 21 7 4
7 1] 2 10

(b)

Figure 7: Challenge/task-fail event: The participant
has to bridge a large gap using a ski jump to com-
plete the level. (a) depicts the view before jump,
while (b) depicts the view during jump. Task-fail
means that the participant drifts to the side while
jumping or falls off beforehand and does not reach
the ski jump at all.

(b)

Figure 8: Jump-scare/surprise event: The partici-
pant rides through a dark forest (a) when suddenly
zombies appear as a surprise event without prior
warning (b).

We used the Emotient FER algorithm provided as part of
the iMotions platform® for classifying the video data recorded
at 30fps as the algorithm generated good results in our
previous benchmarking [3]. We used all 12 provided ex-
pression channels, seven basic emotions (joy, anger, sur-
prise, fear, disgust, sadness and contempt) and additionally
included: confusion, frustration, neutral emotion, positive
emotion and negative emotion.

L www.imotions.com



5. RESULTS OF EVALUATION
5.1 Classification Results Table

Table 4 presents the results of the classification for every
event, window size and algorithm. Each result is also com-
pared with the corresponding observer classification and has
an associated success rate. With the exception of inconclu-
sive data (777”) a mean is calculated over the other four clas-
sifications. An overall mean (all3) is then calculated from
the mean values for every window size indicating the best
overall success rate for the algorithm and event.

The CP-based algorithm produced the best overall results
especially in cases where the total processing frame was 4
s or less. In longer windows, the classification of "11” often
failed when there were small negative spikes often ignored
by the human observer.

Table 4: Results with window sizes of 2s, 4s, 8s and
a mean over all three window sizes for fuzzy (falling)
and sudden (jump-scare) events. This is a condensed
table: for the PMP algorithm, only the best results
(PMP16) are included. Overall, the CP-based algo-
rithm generated the best result.

Event Classification Algorithm Window, Mean (all3)
2s 4s 8s
fuzzy (fa) 00 CP 0.98 0.98 0.90 0.95
fuzzy (fa) 01 Cp 071 | 0.76 | 059 0.69
fuzzy (fa) 10 CP 0.79 0.85 0.69 0.78
fuzzy (fa) 11 CP 0.91 0.82 0.30 0.68
fuzzy (fa) mean CP 0.85 0.85 0.62 0.77
fuzzy (fa) 00 PMP16 1.00 1.00 0.99 1.00
fuzzy (fa) 01 PMP16 0.51 0.48 0.47 0.49
fuzzy (fa) 10 PMP16 057 | 061 | 051 0.56
fuzzy (fa) 11 PMP16 0.98 0.94 0.90 0.94
fuzzy (fa) mean PMP16 077 | 076 | 0.72 0.75
fuzzy (fa) 00 FWMB 0.97 0.97 0.92 0.95
fuzzy (fa) 01 FWMB 055 | 059 | 0.59 0.58
fuzzy (fa) 10 FWMB 0.54 0.58 0.57 0.56
fuzzy (fa) 11 FWMB 0.86 0.94 1.00 0.93
fuzzy (fa) mean FWMB 0.73 0.77 0.77 0.76
sudden (js) 00 CP 0.99 1.00 0.88 0.96
sudden (js) 01 CP 0.64 0.81 0.64 0.70
sudden (js) 10 CP 0.88 0.97 0.83 0.89
sudden (js) 11 CP 0.86 1.00 0.75 0.87
sudden (js) mean CP 0.84 0.95 0.78 0.85
sudden (js) 00 PMP16 1.00 1.00 1.00 1.00
sudden (js) 01 PMP16 0.45 0.67 0.61 0.58
sudden (js) 10 PMP16 0.25 0.36 0.60 0.40
sudden (js) 11 PMP16 0.90 1.00 1.00 0.97
sudden (js) mean PMP16 0.65 0.76 0.80 0.74
sudden (js) 00 FWMB 0.90 0.88 0.81 0.86
sudden (js) 01 FWMB 0.73 0.70 0.61 0.68
sudden (js) 10 FWMB 0.44 0.47 0.53 0.48
sudden (js) 11 FWMB 0.90 1.00 1.00 0.97
sudden (js) mean FWMB 0.74 0.76 0.74 0.75

5.2 Reliability

Krippendorff’s alpha is a common method for testing the
inter-rater reliability [33]. Normally, Krippendorff’s alpha
is used to estimate the reliability of a complete group of
observers, but it can also be used to compare subgroups [33].
For our purpose, we compared the output of each algorithm
with the observer’s result as depicted in Fig. 9.

In all cases, the CP-based algorithms had the highest val-
ues. We used Krippendorff’s alpha as an additional criterion
for assessing the agreement with the human observer.

= pmp8 BN pmp24
B pmpl6
[T T T

fa-4s  fa4-8s

Figure 9: Figure depicting results of Krippendorff’s
alpha for all algorithms compared with the observer
rating. Results for participant videos were calcu-
lated separately for each event (jump-scare=js and
falling=fa) and window (2s, 4s, 8s) resulting in an
overall mean and standard deviation (SD). The CP-
based algorithm produced the best results in case of
appropriate windows sizes (2, 4s). Too large window
sizes (8 s) degraded the performance.

5.3 Example Confusion Matrices of Classifi-
cation

Table 5 displays examples of confusion matrices for good
(blue), best (green) and worse(red) case classification results
of the CP-based algorithm.

Table 5: Confusion matrices for the CP-based algo-
rithm for a 4s sudden event (a) as the best result
(overall mean of 0.95 without ”7?7”-classifications)
and (b) a 8s fuzzy event as lowest result (with a
mean of 0.55 and with the presence of inconclusive
”??7” classifications). Increased results in the 777”
category indicate the analysis window was too large.

CP sudden (js) 00 01 10 11 ??

00 1.00 0.00 0.00 0.00 0.00

(@ 01 0.07 0.81 0.11 0.00 0.00
10 0.00 0.03 0.97 0.00 0.00

11 0.00 0.00 0.00 1.00 0.00

?? 0.00 0.50 0.50 0.00 0.00

CP fuzzy (fa) 00 01 10 1 ”?

00 0.90 0.03 0.06 0.00 0.00

(b) 01 0.06 0.59 0.21 0.00 0.15
10 0.01 0.11 0.69 0.00 0.19

11 0.00 0.10 0.50 0.30 0.10

?? 0.06 0.21 0.46 0.00 0.27

5.4 Shift Detection Results

Table 6: Results of shift detection. The best match
with the observer-based classification is marked in
green. The last column contains the success rate
of the maximum result compared to the observer’s
classification.

Event type | Window | Observer | CP | PMP8 ( PMP16 | PMP24 | FWMB
fuzzy (fa) 2s 58 52 54 37 36 35
fuzzy (fa) 4s 68 62 47 50 51 50
fuzzy (fa) 8s 72 59 52 48 51 62

sudden (js) 2s 5 5 3 2 2 3

sudden (js) 4s 8 8 6 5 4 6

sudden (js) 8s 9 8 6 8 8 7

The overall outcome of the shift detection is contained in
Table 6. In nearly 92% of cases, the CP-based algorithms
matched with the observer classification, although the CP-
based algorithm results were lower than PMP-results in one
scenario.



We also calculated the Krippendorff’s alpha values for
comparison between the observer and the different algo-
rithms (see Fig. 10) which further supported the conclusion,
that the CP-based algorithms generated the best overall re-
sults.

0
js-2s js-4s js-8s fa-2s fa-4s fa-8s

Figure 10: Results of Krippendorff’s alpha for all
shift detection by algorithms compared to a human
observer. No SD was calculated due to the limited
number of data points (11 for jump-scare events).

5.5 Performance and Limitations

All three algorithms were capable of processing event win-
dows in soft real time (processing time < 1s), although the
CP-based method is normally used for offline detection and
had the longest processing time of all three algorithms. For
maximum performance, the complete window of data needs
to be present.

All three approaches are based on the assumption that
changes in facial expressions occur rapidly; and were there-
fore unable to detect gentle transitions. This was no problem
in our case, since our externally provoked events generally
occur rapidly.

The integrated CP algorithm has a complexity of O(n?),
which must be considered when increasing the window size
or frame-rate of data.

6. CONCLUSION

In this paper, we provide automatic solutions for the clas-
sification of facial expression recognition outputs for prac-
tical applications. We developed post-processing methods
that observe both single-channel and multi-channel shifts as
candidate indicators, which can be utilized as a more robust
event-response detection. This work addresses one standing
research challenge for a fully automatic and unsupervised
classification of facial expression reactions tailored for spe-
cific applications. While our automatic classification is an
important step, we still find it challenging to handle inter-
and within-subject variations of responses in a generic way.

Of our three approaches, the changepoint-based classifica-
tion performed best and it was closest to our human observer
results and to human perception of the curves, as demon-
strated by the best overall classification performance and
the highest values for Krippendorft’s alpha. Hereby it is im-
portant to avoid too wide analysis windows by pretesting,
as these degrade performance.

The window size effect is illustrated in Table 4. The large
windows-size effect may be intuitively explained with our
study, where the classification of windows with an overall
length of 8 s was challenging to score, even for the human
observer. In this case, the number of inconclusive catego-
rizations increased significantly (especially for the sudden
event; see Table 5), suggesting that this window is too wide.

Table 7 summarizes our overall findings for the three dif-
ferent algorithms in terms of complexity, real-time capability
and accuracy.

Table 7: Automatic classification algorithm compar-
ison.

Algorithm | Window Complexity | Runtime | Accuracy
CP fixed minimal size | High High Good
PMP fixed patter size Medium Medium Medium
FWMB fixed window Low Low Medium

Our results further suggest that an automatic process-
ing of shift events shows considerable promise as an addi-
tional tool to cope with subject variations. Especially the
changepoint-based algorithm produced the best results for
the detection of emotional shift with a 92% compliance com-
pared to the human observer-based classification.

Our application of CP and PMP classification provides
a starting point for further investigations in short micro-
expressions and event-based segmentation techniques with-
out fixed window sizes.
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