
  
 

UWS Assessment Student Declaration 

This Declaration must be completed and submitted along with your assessment. Please ensure sections 

1 and 2 are completed before submission. 

• For written assessments, insert the Declaration as the first page of your document. 

• For assessments not in the written format (e.g. video, audio, presentation, or practical work), 

submit the Declaration as a separate file. 

• For group assessments, unless otherwise directed by your lecturer, the group may submit a 

single shared declaration. 

1. Declaration that this is your OWN work 

All UWS students are expected to uphold the values of academic integrity: UWS Student Academic 
Integrity Procedure. 

Academic Integrity means a commitment to, and upholding of, the values of honesty, trust, fairness, 
respect, responsibility and courage in learning, teaching, research and engagement with the 
University community.  

You are responsible for ensuring that the work you submit is your own, and that any use of Generative 
AI follows the guidance provided for the assessment. 

I confirm this assessment is my own work and 
complies with the guidance provided.  

YES  

2. Declaration of appropriate use of Generative AI  

You must check the assessment guidance to understand what uses, if any, of Generative AI are 
permitted for this assessment. 

I used Generative AI for this assessment. YES  

(This part is copied from the extensive explanation an the beginning of my thesis):  

 

Statement on the Use of Generative AI 

This thesis used Generative AI (GAI) tools—specifically ChatGPT (https://chat.openai.com/), Claude 

(https://claude.ai/), and DeepSeek (https://www.deepseek.com/)—between 2023 and 2025 as 

assistive systems for writing refinement and software scaffolding. The author is solely responsible for 

the scientific ideas, the experimental design, the data processing, the analysis and interpretation of 

results, and all conclusions. Model outputs were treated as drafts subject to verification; no 

confidential or proprietary data were uploaded to these systems. 

All text and code generated with the assistance of GAI tools was critically reviewed, revised where 

necessary, and fully validated by the author. The author takes complete responsibility for the 

correctness, originality, and academic integrity of the final manuscript and experimental 

implementations. As GAI outputs may contain inaccuracies or unverifiable statements, they were used 

only as provisional drafts subject to systematic checking. 

Writing. The role of GAI in the writing process was strictly limited to style improvements, shortening 

overly long passages, suggesting clearer structures, and maintaining consistent English grammar and 

https://www.uws.ac.uk/media/c4rbdcko/student-academic-integrity-procedure-aug24-v2.pdf
https://www.uws.ac.uk/media/c4rbdcko/student-academic-integrity-procedure-aug24-v2.pdf
https://chat.openai.com/
https://claude.ai/


   
 

 

   
 

technical terminology. No scientific thoughts, hypotheses, experimental setups, or references were 

generated by GAI. Literature research was carried out through web search and deep research 

functions of the GAIs; all references were read by the author and the author did not rely on the GAI’s 

outputs. Text passages were always provided beforehand by the author, at times in the form of bullet 

points or rough drafts, and GAI suggestions served only as language refinements. 

Programming support. The main use of GAI concerned programming support, primarily for debugging, 

generating helper or auxiliary functions, and suggesting more elegant implementations of existing 

code blocks using established libraries or idioms. Drafts produced by GAI were always tested against 

the author’s own implementations to ensure correctness and consistency with the intended design. 

Tasks included writing small utilities (e.g., data loaders, preprocessing helpers, or reusable plotting 

functions), improving readability by modularizing repetitive code, and pointing out potential 

optimizations with standard PyTorch or NumPy functionalities. 

Visualization. GAI was also consulted for visualization code, such as preparing figures in matplotlib, 

creating canvases for embedding projections (e.g., PCA plots), or formatting result tables for clarity. 

These outputs were treated as scaffolding, with final plots and statistical analyses based entirely on 

the author’s experimental data and manual interpretation. At no point did GAI design new models, 

invent training paradigms, define loss functions, or set hyperparameters. The conception of 

architectures (e.g., Stock2Vec, QMSE, recurrent and transformer-based variants, and pretraining 

objectives), the design of experimental protocols, and all methodological choices remain original 

contributions of the author. 

In short, GAI was employed to accelerate routine programming tasks, to assist in debugging and 

visualization, and to polish the presentation of results, while the intellectual contributions—including 

the research framing, model design, training strategies, and empirical evaluation—are entirely the 

author’s own. 

 

Extenuating Circumstances  

The University recognises that, from time to time, you may encounter circumstances that affect your 

ability to complete or submit an assessment. If this happens you can submit an Extenuating 

Circumstances Submission (ECS).  In submitting each piece of coursework or completing an examination 

or class test, you are confirming that you are ‘fit to sit’ the assessment and wish that any mark achieved 

for that assessment should stand.  You can submit an ECS up to 48 hours after the assessment deadline, 

including where you have submitted the assessment but believe your academic performance has been 

affected by extenuating circumstances. The School Assessment Board will know that an ECS has been 

submitted when recording your module marks. See the UWS Extenuating Circumstances Submission 

Procedure for further guidance.

 

https://www.uws.ac.uk/current-students/supporting-your-studies/exams-assessment-appeals/academic-appeals-extenuating-circumstances/
https://www.uws.ac.uk/current-students/supporting-your-studies/exams-assessment-appeals/academic-appeals-extenuating-circumstances/


Generalizing Natural Language
Processing Strategies for
Multivariate Time Series

Processing on the Example of
Quantitative Stock Data

by

Frederic Voigt

Thesis submitted in partial fulfilment of the requirements
of the University of the West of Scotland

for the award of Doctor of Philosophy

18th October 2025





It is well enough that people of the nation do not understand our banking and mon-
etary system, for if they did, I believe there would be a revolution before tomorrow
morning.

Henry Ford



Abstract
In recent years, Natural Language Processing (NLP) has evolved into one of the
most dynamic and well-resourced fields in artificial intelligence, yielding powerful
modeling strategies such as word embeddings, hierarchical representations, and
large-scale pre-training. While these innovations have transformed language un-
derstanding, their application to other domains remains limited. This thesis is
motivated by the ambition to transfer NLP methodologies to a new, structurally
analogous domain: multivariate time series forecasting in financial markets.

A compelling testbed for this endeavor is offered by financial markets. Many
of the structural properties observed in language—such as temporal order, local
and global dependencies, and hierarchical patterns across multiple time resolu-
tions—are exhibited by stock price data. By mapping tokens to price observations,
sentences to time windows, and contextual embeddings to multivariate stock rep-
resentations, key NLP techniques—including Word2Vec, Doc2Vec, Masked Lan-
guage Modeling, Next Sentence Prediction, hierarchical encoders, and (recurrent)
transformers—are systematically adapted to the domain of quantitative finance.

It is hypothesized that these adapted techniques are well-suited to addressing per-
sistent challenges in financial forecasting, most notably distribution shifts, non-
stationarity, and data scarcity. By leveraging pre-training on large-scale histor-
ical price data and by enabling the learning of context-sensitive representations,
improved generalization across changing market regimes and enhanced robust-
ness—even in settings with limited or noisy training signals—can be achieved by
the models.

The adapted NLP methods consistently outperform classical baselines in standard
forecasting tasks. Pre-trained foundation models tailored to financial data show
strong potential—particularly in pre-training performance, cross-market adaptab-
ility, and faster fine-tuning. While they are not the most accurate forecasters per
se, their strengths as general-purpose representations are better leveraged in tasks
like market summarization, cross-market transfer learning, risk modeling, portfo-
lio optimization, and synthetic simulations. Finally, an approach for a generalized
transfer of NLP strategies for (all) other multivariate time series is proposed.
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Introduction

This chapter introduces the topic, outlines the motivation, states the research

questions, and situates the work within the literature.

This section is mainly based on the authors publications [220] and [224].

1.1 Motivation

Among all fields within ML, few have been as impressive in recent years as NLP.

NLP is a subfield of artificial intelligence concerned with enabling computers to

process, interpret, and generate human language. At its core, NLP focuses on

sequential data, where meaning is derived not only from individual tokens (such

as words) but also from their order and context. Advances in NLP have produced

a variety of model architectures (e.g., recurrent neural networks, attention-based

transformers) and training paradigms (e.g., self-supervised learning, pretraining-

finetuning) that are now widely regarded as central to modern ML. Prominent

examples of such transformer-based language models include BERT [40], GPT-2

[187], Transformer-XL [31], T5 [188], and LLaMA [216]. BERT is an encoder-only

model designed with MLM and NSP, capturing bidirectional context. GPT-2, in

contrast, is a decoder-only model optimized for autoregressive text generation.

1
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Transformer-XL extends the standard transformer architecture by introducing a

recurrence mechanism that enables the processing of longer sequences. T5 adopts

a unified sequence-to-sequence framework, formulating every NLP task as a text-

to-text problem. Finally, LLaMA denotes a recent family of efficient foundation

models that achieve competitive performance at moderate scale.

Ongoing research has made NLP a key focus in AI research and applications. NLP

has developed many innovative approaches and concepts that could potentially be-

nefit other domains. However, the cross-domain application of these advancements

remains limited, which is particularly concerning given the substantial resources

and manpower invested in NLP, as well as the wealth of knowledge generated in

the field. In most instances, only isolated components or models have been ad-

apted for use in other domains, rather than leveraging the full potential of the

techniques developed. The application of NLP techniques across diverse fields is

not an unexplored topic. Models originally developed in the NLP domain, such

as transformer models [219], have become standard in various ML areas, ranging

from time series analysis [261] to computer vision [52]. Additionally, pretraining

methods, widely employed in NLP, have been adopted across broader domains, in-

cluding vision [52], multimodal language-vision tasks [118], and audio processing,

where the attention mechanism has gained significant popularity [172]. Moreover,

GNNs, inspired by word-token embeddings like W2V, have further demonstrated

the cross-domain applicability of NLP innovations [182].

Transferring NLP techniques to time-series data remains relatively underexplored.

Given the temporal structure inherent in both language and time series, such a

transfer seems promising. Yet, there is little research aimed at leveraging NLP

methodologies for analyzing multivariate time series data. A multivariate time

series is a collection of time-dependent variables observed simultaneously at each

time step. In contrast to univariate time series, where only a single variable

evolves over time, multivariate time series involve multiple interdependent dimen-

sions. Stock markets produce multivariate time series, since a company’s stock

price depends not only on its own past performance but also on trends in other

companies, sectors, and global indices. This interconnected and high-dimensional
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nature makes multivariate time series analysis particularly challenging, yet also

conceptually similar to NLP, where the meaning of a sentence emerges from the

interplay of multiple tokens in sequence. The application of these concepts to

stock prices is focused on in this thesis, as they present a particularly challenging

problem due to their volatile and non-stationary nature. While SF lags behind in

academic research, this is not only due to the inherent complexity of the problem

but also a result of the relative lack of attention it has received in (publicly avail-

able) research as for example pointed out in [74]. Exploring the use of advanced

NLP techniques in this domain may help bridge the gap and provide new insights

for tackling such difficult forecasting tasks.

Financial profitability is a central incentive for applying ML to SF. However,

the use of ML extends beyond the aim of gaining a financial profit; it can also

contribute to economic modeling and empirical analysis. This is exemplified by

the methodologies discussed in [204]. Additionally, SF may hold practical value for

governmental and regulatory bodies, as noted in [271], suggesting that its strategic

application could support regulatory initiatives. This is particularly evident for

the proposed options presented in Section 9.1 to use the developed models in

market regulation and risk modeling. Moreover, as indicated in [265], targeted

interventions enabled by SF could support early-warning and risk-monitoring tools

for regulators.

Beyond purely academic considerations, the potential real-world applications of

transferring NLP strategies to financial forecasting are substantial. Comparable

approaches connect DL methods to use-cases in trading, risk, and market monit-

oring [285]. Improved SF models may not only support institutional investors in

portfolio optimization but also provide value for regulatory bodies in maintaining

market stability, for central banks in assessing systemic risk, and for individual

investors navigating increasingly digitalized trading platforms. More broadly, ac-

curate forecasting tools can support macroeconomic planning, corporate financial

management, and risk mitigation strategies.
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Stock Forecasting in Machine Learning There are numerous challenges as-

sociated with SF, which will be addressed in detail later. SF refers to the use

of computational models to predict the future behavior of financial assets, typic-

ally expressed as time-indexed price series. Depending on the methodological ap-

proach, SF may focus on predicting discrete movements (e.g., upward, downward,

or neutral trends - SMP), exact future price levels (SPP), or volatility patterns.

Broadly, two main strategies for analyzing stock market data exist: quantitative

[36] and fundamental analysis [225]. Quantitative analysis (or technical analysis

[286]) aims to predict future stock prices based on historic ones [36] and is usually

guided by mathematical, statistical, or ML models and often relies on algorithmic

execution at machine speed [82]. Fundamental analysis incorporates broader eco-

nomic indicators, company performance, and market sentiment as well as other

information sources like annual reports, news articles or earning call transcripts

to name a few. As explained further in Section 2.3, the distinction between these

two categories can be difficult in practice. If stock time series data is considered

as an auxiliary problem that could benefit from techniques in NLP, it makes sense

to first focus on time series analysis. Time series data is well suited to models that

have proven effective in NLP because of their sequential structure. Meanwhile,

the additional information used in fundamental analysis can be treated as another

modality, similar to how multimodal models integrate different types of data in

NLP.

While fundamental analysis is widely used in practice, this thesis focuses on quant-

itative methods, as SF is treated as an auxiliary problem that can benefit from

NLP-inspired techniques. Quantitative analysis, which relies on historical price

data, is supported by extensive research. Researchers argue that historical prices

are either highly significant [197] [214] or the single most crucial factor in forecast-

ing future trends [25].

Are Stocks Predictable? In the discipline of economics, various theoretical

frameworks debate the extent to which future stock prices can be predicted, and
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a brief examination will be given of how recent research in ML approaches this

issue.

The RWT, proposed by Kendall and Hill [107], suggests that because stock prices

are inherently random, accurate prediction is impossible. The EMH asserts that

all information available to investors is fully reflected in stock prices [60], with

some scholars seeing a causal link between the EMH and the principles underlying

the RWT [76]. Notably, certain researchers view the EMH as a concept within

which stock prices may be forecasted, but within the bounds of market efficiency

[138].

The EMH can be categorized into distinct gradations, ranging from the weak form,

which posits that all historical price information is fully reflected in current asset

prices, thereby rendering technical analysis ineffective, to the strong form, which

asserts that all information, both public and private (including insider knowledge),

is entirely incorporated into market prices, thus making it impossible for any

investor, regardless of access to non-public information, to consistently achieve

exceptional returns. This classification is addressed in the ML models constructed

in [25], where the authors argue that certain investors frequently possess access to

more information than the general public.

Many scholars critique the EMH, arguing that markets are not fully efficient, as

highlighted in works such as [230] [134] or by promising results achieved through

ML methods as in [204]. Xu et al. [247], for instance, contest the EMH referring to

[148] by asserting that new information requires time to be fully incorporated into

stock prices. Liu et al. [139] further support this stance by pointing to anomalies

like the Post Earnings Announcement Drift and the effect of overlapping topics

in earnings calls, which reveal intricate stock relationships and improve predict-

ive models. The foundation of the ML-based quantitative approach is succinctly

captured by Wang et al., who state that ‘Historical stock prices have proven to

be strong indicators of future stock trends and are widely referenced in financial

literature’ [234].
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Mapping of NLP and Stock Forecasting In the following sections, the mo-

tivation behind the authors approach of testing the applicability of NLP techniques

for multivariate time series prediction is presented, using SF as a representative

example. The conceptual alignment and mutual benefits between NLP and SF

methodologies are intended to be explored.

To highlight the suitability of the proposed approach, the symbol ⇔ is used to

represent the two-way relationship between NLP and SF.

Specifically, the validity of

NLP⇔ SF ≡ (NLP⇐ SF) ∧ (NLP⇒ SF) (1.1)

is aimed to be demonstrated by showing that stock data shares conceptual and

structural similarities with NLP data and by showing that SF challenges can be

tackled by NLP strategies.

NLP Shares Conceptual and Data Characteristics with Stock Forecast-

ing and Multivariate Time Series Prediction

NLP conceptual similarities⇐============= SF

NLP and quantitative SF exhibit notable conceptual and data-driven similarities,

highlighting their analytical convergence [220]. Both disciplines rely on sequen-

tial data patterns, where future values are inferred based on prior observations.

As outlined in [234] and [220], the forecasting approach primarily leverages the

capabilities of NLP models in general, and LLMs in particular, to predict the

next token in a sequence — whereby tokens are interpreted as (historical) stock

prices. In quantitative SF, historical price data is employed to project future stock

movements, analogous to ULM in NLP, where predictions about forthcoming word

tokens are made using only the initial part of a sentence [220].
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While less commonly explored in SF, generative approaches that aim to predict

entire price trends find a parallel in NLP tasks that autoregressively generate text

from a given starting point [220]. These methods, though less prevalent, offer a

broader view of potential future market movements akin to text generation in NLP.

When contextual information, such as in fundamental analysis, is incorporated into

stock price models, the process parallels CLM, which uses additional context for

predictions [75].

Moreover, the structural similarities extend to data representation. In NLP,

high-dimensional, concatenated word embeddings are used in language models to

capture semantic and syntactic relationships and sequential dependencies within

sentences. Similarly, stock price time series can be represented as temporally

ordered market snapshots [220], with each snapshot containing multivariate data.

These embeddings and time-ordered representations capture intricate dependen-

cies within the data.

Furthermore, NLP offers an intriguing framework through the sequential arrange-

ment of word tokens, which express their internal relationships via vector space

representations and are ordered by sentence positions.

NLP Strategies can Tackle Stock Forecasting Challenges

NLP tackles challenges==========⇒ SF

The use of NLP-based strategies for time series analysis is motivated at various

points throughout the literature. For instance, [103] emphasize that ‘we encourage

researchers and practitioners to recognize the potential of LLMs in advancing time

series analysis and emphasize the need for trust in these related efforts’ [103] and

further assert that ‘our standpoint is that LLMs can act as the central hub for

understanding and advancing the analysis of time series data’ [103]. Similarly,

[164] identify the application of LLMs for time series forecasting as a promising

direction for future research.
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Predicting stock prices is generally acknowledged as a challenging problem [286]

[230] [231] [12] [168] [179] [124] and exact prices are often considered unpredictable

[85]. [286] as a more introductory publication illustrates these challenges with

simple time series techniques. A comprehensive synthesis of these challenges—non-

stationarity, low signal-to-noise ratios, and evaluation pitfalls—can be found in

[285]. Nevertheless SF has garnered the interest of researchers across various

fields, particularly in ML.

As pointed out in [19] and [260] SF went from econometric time series techniques

over ML to DL [285] [286]. Intuitively, DL is well-suited for stock price predic-

tion, primarily because a fundamental capability of ML involves uncovering latent

patterns within raw data, in this instance, time series stock data [14] and learning

representations from the data. One of the key reasons for this focus is the poten-

tial of ML and DL technologies to address these challenges without the need for

costly domain-specific expertise [12] [124] [231] [82].

Furthermore, these models offer the advantage of operating without the predefined

assumptions [272] [124] [204] that typically bias (wrong) human analyses, which

are notably prevalent in the financial sector. In addition, it was argued in [179]

that the possibility of adapting the ML models to automated trading algorithms

can lead to significantly faster response times. This also includes the challenge of

unfavorable interactions between correctly predicted technical indicators and the

need to balance them against each other, as discussed in [82].

Additionally, while traditional statistical models such as ARIMA and GARCH

have been utilized in the past, they are often limited by inherent assumptions about

linearity and stationarity [245] [272] [207], that may not be valid for stock market

data [259] [286]. These models also lack the expressive power required to effectively

model the complexities of the stock markets. Predicting stock prices remains a

highly challenging task, largely due to the inherent complexity and dynamic nature

of financial markets. A comprehensive review of the existing literature, as detailed

in Chapter 2, reveals the manifold key reasons for the difficulty in stock price

prediction which are summarized in the following:
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One of the foremost challenges is the non-stationary nature of stock data [12] [242]

[230] [25] [209] [246] [264] [168] [231]. Financial markets are characterized by con-

stant distribution shifts [97] [230] [242] [264] [168], making traditional prediction

methods less effective. This data also exhibits a low signal-to-noise ratio [12] [33]

[71] [179] [214], making it hard to extract meaningful trends from the stochastic

behavior of stock prices [214] [259] [180]. Furthermore, stock data is not inde-

pendently and identically distributed (i.i.d.) [230] [245] [134], an assumption upon

which many ML strategies are based. Homogeneity within the dataset represents

a significant challenge, as discussed by Gao et al. [71]. As explained by Gao et al.,

this phenomenon occurs when related stocks (for example, from similar industries)

show similar behavior. This homogeneity reduces the number of stocks with dis-

tinct informational characteristics, limiting the discriminative features available

for analysis.

To mitigate these challenges, researchers have adopted a variety of approaches

to gain some predictive power over stock price movements. As Fan and Shen

highlight in their work [62], SF models frequently seek to exploit three key sources

of predictive insight: 1) temporal correlations, 2) indicator correlations, and 3)

(delayed) inter-stock correlations. These approaches are typically complemented

by analyzing seasonal trends [214] [28] [201] [20] and aligning predictions with

global market movements and overall market correlations / trends [62] [124] [204]

[240]. The latter approach, of course, represents a specific form of inter-stock

correlation identification. It is argued that the domain of NLP offers innovative

solutions to the challenges faced by current approaches in stock market analysis

and predictive modeling.

One key aspect is the use of indicator correlations, where weighting different fea-

tures and constructing higher-level representations is a fundamental ability of ML

and DL approaches. This technique is prevalent in most proposed models, and its

importance in capturing complex feature interactions is well-established.

Another critical area are the inter-stock correlations. One of the most popular

techniques in NLP, word embeddings, encodes word-tokens as high-dimensional



Chapter 1. Introduction 10

vectors to represent their semantic relationships. This approach offers a prac-

tical way to model stock correlations, going beyond simple point-wise adjacency

matrices and capturing more complex relationships between stocks.

Temporal correlations represent another intrinsic characteristic of NLP models.

The ability to set word-tokens or speech concepts in their correct temporal or-

der—whether word, sentence, or phrase order—is essential for deriving a high-level

understanding of textual data. Similarly, temporal relationships in stock market

data are crucial for understanding market dynamics over time.

Furthermore, spatio-temporal processing is a key feature of many modern SF mod-

els. This approach connects the multivariate and intercorrelated nature of stock

data with the ability to integrate temporal dimensions. This mirrors the func-

tionality of advanced NLP models, such as LLMs, which process word-token em-

beddings that reflect their interrelationships trough vector space positions and

temporal context by arranging them in the order they appear in a sentence. This

temporal arrangement can also be adapted to stock models. Adapting LLMs dir-

ectly for SF is therefore considered a worthwhile research direction.

Seasonal trends in financial data can be understood as recurring patterns that

manifest with varying granularity’s. Notable examples include phenomena from

‘calendar anomalies’ [99] like the ‘January effect or the turn-of-the-year’ [240]

down to weekly ones such as stocks having higher movements on Friday [240],

weekday-effects or the seasonal profitability of certain industries [73]. Multiple

timeframe analysis (Multiscale Analysis) for stocks is a trading technique where

analysts or traders evaluate the same stock across different time intervals (e.g.,

daily, weekly, monthly) to identify trends and align long-term and short-term

market movements for more informed decision-making1 [273]. The challenge of

processing time series data across different frequencies bears similarities to the

general hierarchical structure observed in language. Language, in its essence,

is hierarchically organized, from the smallest units such as letters, to syllables,

words, parts of speech, sentences, paragraphs, chapters, and ultimately entire texts
1https://www.tradingview.com/education/mtfa/

https://www.tradingview.com/education/mtfa/
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[220]. This hierarchical structure offers a compelling analogy for the processing

of financial time series data. Specifically, a hierarchical and frequency-sensitive

approach to language processing could be suitably adapted to the analysis of stock

market data.

Global correlations and market sentiments are another important consideration

[204] [124] [240]. These can be attributed to general stock correlation expressions,

but they also require placing currently processed data within an appropriate con-

text. In NLP, document-level analysis, such as that employed in Doc2Vec models,

incorporates additional contextual information (e.g. document type, author, or

title) to enhance the model’s understanding. Similarly, integrating contextual

data into stock market analysis will provide models with a deeper understanding

of market dynamics. The use of contextual information is a key component of

CLM [75], a widely used strategy in NLP. This approach will be particularly use-

ful for modeling stock market data, where context—such as sector performance,

geopolitical events, or economic indicators—plays a significant role. Moreover,

adapting the NSP task from BERT [40] offers a promising avenue for training

models to develop a comprehensive semantic understanding (in contrast to MLM

used to train the syntactic understanding). In the context of stock market ana-

lysis, this adaptation might help the model grasp overall market dynamics and

processes, creating a more robust and nuanced understanding of temporal trends

and correlations within the financial landscape.

In addition to approaches aimed at predicting stock prices, it is crucial to address

the common challenges associated with stock time series data. It is argued that

NLP techniques can be leveraged to overcome these issues as well.

Surprisingly, given that the stock market is a human-created system, there is a

notable lack of publicly available stock data [264] [184] [71] [85] [84] [163]. For

interday data or coarser granularities, the scarcity of time steps can be attributed

to the relatively short history of stock market records. Furthermore, the lim-

ited availability of long-term stock price records is particularly evident for smaller

companies. This shortage of data presents a significant challenge, especially when
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attempting to model specific companies or markets with finetuned predictive mod-

els. While NLP tasks generally benefit from abundant datasets, certain specialized

tasks—such as finetuning or human-annotated tasks—can also face data limita-

tions. Modern NLP techniques, however, provide two key strategies to mitigate

these challenges. First, models can be pretrained on large datasets for generalized

language understanding and subsequently finetuned on smaller, task-specific data-

sets. This same approach could be applied to stock data, where models could be

pretrained on long-term stock data of well-established companies with the same

temporal granularities. Alternatively, pretraining on finer granularity data can

serve as a first step for learning broader stock market dynamics. Finetuning can

than be used for predicting stock trends for newly emerged or publicly listed com-

panies, which may only have limited historical stock data, as well as for companies

operating in niche markets where data scarcity is a common issue. Secondly, in

NLP, self-supervised tasks such as MLM and NSP (explained later in this section)

are designed to allow the same sentence to be processed multiple times, each in-

stance representing a distinct data point. Adapting this technique for stock data

will similarly generate additional training instances from the same stock record,

enhancing model robustness even with limited data availability.

Distribution shifts pose a significant challenge in stock market analysis due to the

ever-changing, non-stationary nature of stock data [242]. Market sentiments can

shift rapidly, rendering previously learned patterns and rules obsolete. Address-

ing these shifts requires models that can adapt quickly to new information and

changing conditions.

NLP offers a promising conceptual solution to this problem through the increas-

ingly popular approaches of few-shot and zero-shot learning [264]. Few-shot learn-

ing allows models to perform tasks with only a small number of training examples

[9], while zero-shot learning enables models to handle tasks without any task-

specific examples by leveraging prior knowledge from related tasks [243].

Applied to the stock market, these techniques suggest that models can be trained

to quickly adapt to new and rapidly changing market conditions. Few-shot learning
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could help a model adjust its predictions after being exposed to just a few examples

from a new distribution. Similarly, zero-shot learning could enable the model to

apply pre-existing knowledge from related financial patterns or markets to navigate

novel situations. Given the fast-paced nature of distribution shifts in financial

markets, the ability of a model to adapt swiftly and effectively after minimal

exposure to new data is highly advantageous.

While non-stationarity, stochasticity, and low signal-to-noise ratios are present

challenges in stock market analysis, these issues typically arise only under excep-

tional circumstances or niche research areas within the NLP domain. For example,

spelling mistakes or low-quality textual inputs can pose difficulties for NLP mod-

els, but these represent a relatively specialized subset of the broader NLP field.

The author aims to explore the use of models capable of processing longer se-

quences, addressing a gap in the current literature where many SF models primar-

ily focus on short sequences (see Section 2.3). Handling long sequences in NLP

presents significant challenges. This is primarily due to the limitations of most

modern NLP models, particularly LLMs based on transformers, which suffer from

quadratic time and space complexity. Longer input windows may help models

contextualize non-stationary behavior. By processing longer sequences, the model

is expected to develop a deeper understanding of the underlying temporal dy-

namics and achieve a meta-awareness of non-stationary patterns. A conceptually

similar approach is explored in [65], where artificial noise is introduced into the

model’s latent representations. This method aims to familiarize the model with

stochastic variations, thereby enhancing its robustness to uncertainty. Such an

approach may also be viewed as fostering a form of meta-understanding within

the model. Short sequences may be insufficient for capturing such complexities,

as they only provide inputs with changing statistical characteristics without of-

fering insight into how the time series evolved to these points / these changing

characteristics. Furthermore, longer sequences may enhance the model’s ability to

contextualize data, allowing for the identification of long-term trends and dynam-

ics that would otherwise be obscured as noise in shorter inputs. In the realm of

technical analysis for stock charts, specifically within the indicator-based manual
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chart analysis, numerous indicators are employed to discern coarse trends despite

limited lookback periods. Among these, moving average indicators are prevalent.

Additionally, as outlined in [133], the RSI [286] serves as a mechanism to identify

coarse-grained trends. This ability is key to reducing the risk of poor decisions

caused by overly narrow analytical perspectives — something that models hand-

ling longer sequences are also better equipped to address.

The pretraining approaches offer a promising avenue for addressing several chal-

lenges in SF. In particular, MLM plays a crucial role in this framework. MLM

is a technique in NLP where certain words in a sentence are hidden or ‘masked’,

and the model’s task is to predict these masked words based on the surrounding

context [40]. MLM is a form of CLM where the model is tasked with predicting

missing words in a sequence based on the surrounding words as context. When this

concept is adapted to financial markets, the model is similarly challenged to pre-

dict the next stock price based on historical price sequences, while incorporating

future price data during pretraining.

Although future prices are unavailable in practical applications, providing them

as conditional context during pretraining enables the model to capture underlying

price dynamics that would otherwise be interpreted as noise. By utilizing addi-

tional contextual information, the model can better explain underlying dynamics

that would remain undiscovered in a traditional predictive task.

Additionally, the NSP adaptation addresses the inherent stochasticity in financial

data. By training the model to distinguish between stock trends that are con-

nected and those that are not, an NSP adaptation is hoped to help the model

focus on trends it can reliably predict, while acknowledging that certain develop-

ments—driven by unforeseen events—will manifest as stochastic and unpredict-

able.

Moreover, the application of CLM and the incorporation of techniques like Doc2Vec

further enhance the model’s ability to handle non-stationarity in market data. By

providing additional information on the current state of the market, these methods
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are expected to improve the model’s adaptability to changing market conditions,

hopefully enabling it to respond more effectively to shifts in market dynamics.

Although not a typical issue in the domain of SF, having pretrained, general stock

models proves advantageous, as it eliminates the need for training models from

scratch with every downstream task.

1.2 Research Aims and Questions

This thesis aims to explore whether and how techniques from NLP can be sys-

tematically adapted to the domain of quantitative multivariate stock price pro-

cessing/SF, with the long-term objective of developing domain-specific foundation

models for financial time series. During this research, and in light of recent devel-

opments in the wider research community, the following reserach questions have

emerged.

Research Questions

• Q1: Which Strategies from the NLP Area can be Adapted for Quant-

itative Multivariate Stock Price Data and How Can We Use Them?

• Q2: To What Extent can Adapted Strategies Contribute to Improving

Prediction?

• Q3: How Can Effective Foundation Models for Quantitative Stock

Data be Built?

Figure 1.1: Research Questions.

The initial proposal of the research questions was made in [220].

1.3 Thesis Outline

The remainder of the thesis is organized as follows. First, a comprehensive review

of the relevant literature is conducted with three primary objectives: i) to briefly

survey existing NLP models and ii) approaches relevant to financial forecasting
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and iii) to identify and position this thesis within gaps in the current literature

(thereby justifying the novelty of the research and clarifying which established

aspects no longer require extensive examination).

Having established the background and gaps in existing knowledge, the discus-

sion turns to (transformer based) baseline approaches. Transformers serve as the

primary baseline, reflecting their central role in modern NLP. In addition, recur-

rent architectures such as RNNs and LSTMs are included as comparative baselines,

reflecting their established role as quasi-standard models in sequence forecasting,

as documented in prior work (e.g., [280] [5]). This convention is further supported

by studies such as [286], which mentions these models as standard reference points.

A detailed rationale for their inclusion in the experimental design is provided in

Section 6.5.

These serve as crucial reference points, allowing for objective assessment of newly

proposed methods, especially in view of the lack of standardized datasets. The

baselines provide a clear framework for comparison, ensuring that improvements

introduced by novel adaptations can be measured against well-understood metrics

and models.

Next, the focus shifts to the specific strategies devised for adapting NLP techniques

to financial time series data. Following the general framework of classical NLP,

the first step involves adapting W2V models (S2V) to learn meaningful latent

representations from financial data. Additionally, although Doc2Vec algorithms do

not typically occupy a central role in standard NLP pipelines, they are examined

(as QMSEs) for a potential utility in certain specialized scenarios, particularly

those calling for richer contextual embeddings that may provide an advantage in

some edge cases of SF.

Subsequent sections explore three major avenues of adaptation in more detail.

First, the integration of pretraining procedures, including MLM and NSP adap-

tions, is investigated, Second, the possibility of incorporating hierarchical pro-

cessing is evaluated to capture multi-level patterns in the data, an idea reflecting

the multi-scale nature of both financial time series and the hierarchical structures
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seen in language. Third, the potential impact of extending sequence length is ex-

amined, building on current NLP research trends that focus on harnessing longer

input sequences for enhanced predictive power.

On this foundation, the thesis examines the role of LLMs in unifying these

strategies. Thanks to their extensive pretraining, hierarchical understanding,

and compatibility with diverse embedding methods, adapted LLMs (ASMs) show

strong potential for financial forecasting tasks. In support of this view, Wang

provides an empirical evaluation of LLMs for asset return prediction, offering an

early benchmark for the emerging LLM-for-returns literature [288]. Their built-in

capacity for few-shot learning, integration of additional contextual information,

and generalizability shows their relevance as potential SF model. The schematic

structure of this procedure is shown in Figure 1.2.

The discussion then reviews the experimental results in relation to the original

goals and hypotheses, highlighting where the outcomes matched expectations and

examining any differences. This assessment includes a critical reflection on how

effectively the adapted NLP strategies perform relative to the established baselines,

as well as a broader commentary on the prospects and constraints of transferring

linguistic models to the financial domain.

Finally, the conclusion brings together the main insights gained from applying

NLP techniques to stock price data. In acknowledging both the strengths and

limitations of the examined methods, it points toward the most promising direc-

tions for further exploration. Given the research results that some of the models

may prove less suitable for SF than initially expected, future work will consider al-

ternative applications of foundation models and articulate how the lessons learned

from this research could guide subsequent developments in the interdisciplinary

space between NLP and financial modeling specifically or time series modeling in

general.
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Figure 1.2: Thematic structure of the thesis from NLP concepts to the found-
ation model for quantitative stock time series.



Chapter 2

Literature Review

This review is split into three sections that match the thesis’ two themes - NLP,

quantitative SF and NLP inspired techniques for SF. The initial section provides

a concise overview of the adapted NLP techniques. Given that the NLP method-

ologies are not significantly investigated by the proposed models discussed in this

thesis, the exposition in this section is intentionally brief to maintain a focused

scope of discussion.

The second section gives a review of typical quantitative SF approaches.

The third section surveys ML-based approaches with NLP relation/relation to the

proposed approaches to SF in recent work. The systematic review encompasses

a comprehensive categorization of relevant literature with a focus on proposed

approaches related to NLP. The goal is to clarify which SF setups and methods

exist and which patterns are relevant to the models in this thesis. The thesis

engages with current research to highlight the specific gaps it aims to fill.

In reviewing related work, an extensive discussion of models based on common

backbone architectures such as transformers, RNNs, and LSTMs is omitted. Since

these models are widely used across many ML applications, covering them in detail

would not highlight the unique contributions of this thesis. Instead, the focus is

narrowed to models that exhibit conceptual parallels or adapt methodologies akin

to those proposed in the present research, namely from the NLP domain, thus

emphasizing the novelty.

19
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2.1 Overview of Suitable NLP Approaches

In the subsequent discussion, concepts from the field of NLP that have been adap-

ted for the present study will be explored. The relevance of these approaches has

been established in Chapter 1. First, a more in-depth overview of modern NLP

models is provided in the following.

A Guided Introduction to NLP The following section provides a more in-

depth look at NLP techniques. This paragraph complements the concepts intro-

duced in the rest of the section and aims to avoid repetition.

Classical (rather more distant) NLP represents texts with sparse vectors such as

Bag-of-Words (BoW) and TF–IDF, while word n-gram language models estimate

next-word probabilities under a Markov assumption and are evaluated via per-

plexity [313]. Smoothing (e.g., Kneser–Ney) is essential to handle data sparsity

and improves generalization in practical settings [314].

HMMs provide probabilistic sequence models that were widely used for Part-of-

Speech tagging - pairing simple first-order dependencies with efficient decoding

[315]. Conditional Random Fields (CRFs) later became standard for labeling tasks

such as Named Entity Recognition and chunking, directly modeling P(X = y | x)

with rich features and global sequence consistency [316].

Syntactic parsing distinguishes constituency (phrase-structure) and dependency

formalisms; both yield explicit structure beyond tokens and are useful for down-

stream extraction and reasoning [318]. Modern pipelines historically used fast

transition-based dependency parsers, while chart-based algorithms remained the

basis for exact inference in grammar-based systems [317].

Before neural models, strong baselines combined BoW/TF–IDF with linear clas-

sifiers (Naive Bayes, Logistic Regression) and margin-based Support Vector Ma-

chines, which remain competitive for small data and high interpretability [318]

[319].

Modern NLP systems can be understood as a pipeline in which raw text is con-

verted into numeric representations, enriched with context, and adapted to down-

stream tasks. To enter this pipeline, text is segmented into tokens by subword
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methods such as byte-pair encoding, which reduces out-of-vocabulary issues and

stabilizes training across domains [290]. A widely used alternative is Senten-

cePiece, which implements an independent unigram model and treats text as a

stream of bytes, facilitating multilingual and domain-agnostic processing [291].

This also aligns with observations from neural arithmetic research that simple

inductive biases can improve extrapolation on numbers [306].

After tokenization, tokens are mapped to vectors and contextualized by trans-

former layers. In older approaches, these embeddings were pre-trained using

Word2Vec techniques (cf. Section 2.1). Transformers compute contextualized rep-

resentations via self-attention, allowing each token to integrate information from

all other tokens in the sequence (cf. Section 2.1). In encoder–decoder configura-

tions the encoder forms bidirectional context while the decoder generates autore-

gressively, whereas large language models in practice are often implemented as

decoder-only stacks. Compared to static embeddings such as those obtained with

Word2Vec, transformer layers yield dynamic token representations that are condi-

tioned on the entire input, which is central to the transfer discussed in Section 2.1.

During pretraining, different objectives shape the emergent capabilities; span cor-

ruption in a text-to-text setup has been shown to strengthen multi-token reasoning

and transfer [188]. Denoising with deletion, infilling, and sentence permutation

supports both comprehension and generation in encoder–decoder models [297].

Permutation-based autoregressive training retains causal generation while expos-

ing the model to bidirectional signal at training time [298]. Scaling recipes further

improve effectiveness through larger batches, longer training, and dynamic mask-

ing without changing the core architecture [299]. Fine-tuning (see Section 2.1)

attaches a task-specific head and adapts parameters end-to-end when sufficient

data and compute are available, while parameter-efficient strategies reduce the

trainable footprint by design. Adapter layers introduce small bottlenecks inside

a frozen backbone to enable efficient task adaptation and multi-task reuse [300].

Low-rank adaptation factorizes weight updates to approximate full fine-tuning

quality with orders of magnitude fewer trainable parameters [301]. Prefix tuning

optimizes short continuous prefixes that steer the transformer without modifying
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the backbone weights [302]. Prompt tuning learns compact soft prompts that are

especially effective when label budgets are small and model scales are large [303].

Positional information is essential because self-attention is permutation-invariant.

Relative position representations are frequently employed to improve locality and

compositionality and to avoid the fixed-length limitations of absolute encodings

[205]. Rotary position embeddings introduce a complex rotation in embedding

space and have been shown to improve length extrapolation without architectural

changes [292]. Attention with linear biases enables models trained on short inputs

to generalize to longer ones by incorporating a distance-dependent bias at inference

time [293]. These aspects are relevant for the F ⟨T⟩ and ASMs models introduced

in Section 2.1.

Scaling to long contexts is both a modeling and a systems problem as already

mentioned in Chapter 1. Linearized attention approximates softmax attention to

bring memory use closer to linear in sequence length while maintaining competitive

accuracy [294]. In parallel, fused kernels such as FlashAttention compute exact

attention with IO-aware tiling, yielding substantial training and inference speedups

without approximation error [295]. In practice, long-context robustness emerges

from combining length-friendly positional encodings with either linear attention or

fused kernels, while recurrent formulations from Section 2.1 are reserved for very

long sequences.

Keeping knowledge current requires external grounding. Retrieval-augmented gen-

eration augments a generator with a non-parametric memory that can be refreshed

without retraining, mitigating concept drift in fast-moving domains [303]. Dense

passage retrieval provides the retrieval side through dual encoders and a vector

index, enabling efficient look-up of relevant passages at inference time [304]. For

financial text, this design supplies provenance and timeliness that are difficult to

obtain from parametric memory alone. In the context of this thesis, S2V embed-

dings are considered as a basis for comparing and retrieving similar stocks (see

Section 3.0.2).

Domain specialization illustrates the trade-off between breadth and depth. Large

mixed-domain models with a strong financial slice have demonstrated improved
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performance on finance-focused tasks while maintaining general capabilities [306].

Earlier domain-adaptive work on financial sentiment showed that moderate, tar-

geted adaptation already yields notable gains on classification benchmarks [307].

Throughout this thesis, the models are treated as modular components; their com-

bination with textual data is primarily outlined as future work in Section 9.2, and

the demonstrated Doc2Vec integration illustrates additional numerical modularit-

ies.

Word2Vec Most NLP models, including LLMs, rely on word vector embed-

dings. These embeddings encode individual word tokens by their position within

a vector space, thereby capturing the relational semantics inherent to language.

Such embeddings are typically pretrained to encapsulate general language features,

which can then be employed directly in downstream NLP tasks or further refined

during task-specific training. Noteworthy among the algorithms that facilitate

this are the SG and CBOW models [156]. The SG algorithm aims to predict the

contextual words surrounding a target word, whereas the CBOW model predicts

a target word based on its context [156].

In the domain of NLP, textual data is generally deconstructed into discrete word

tokens, represented as ṽ(t) ∈ Ṽ ⊆ N. Each ṽ(t) is associated with a corresponding

embedding vector ẽ(t) ∈ Rξ̃. These embeddings are trainable and play a crucial

role in the computational efficacy of various models.

In Word2Vec and some LLM pretraining phases, the embedding ẽ is trained to

capture the semantics of its token. As a result, embeddings of semantically related

words tend to be close in the embedding space. Furthermore, it typically enables

the geometric relationship between embedding pairs to reflect the semantic rela-

tionships between their respective words. For example, the relationship between

the embeddings ẽking and ẽqueen for the words ‘king’ and ‘queen’ mirrors the rela-

tionship between ẽwomen and ẽwomen for the words ‘man’ and ‘woman’ respectively,

in terms of both angular and distance metrics within the embedding space.

Pretraining / Large Language Models As described in [222] and Section 2.1,

LLMs follow three stages. In the initial phase, input text undergoes tokenization,
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during which each different word-token from a sequence length l̃ is assigned an

index from a predefined vocabulary Ṽ ⊂ N. Following this, the subsequent phase

involves the generation of contextualized embedding tensors for each index. This

embedding, potentially utilizing pretrained models, leverages techniques such as

the W2V methodology, as discussed in the preceding section. The final phase

involves the concatenation of the individual embeddings into a bi-axial tensor,

which then serves as the input for further processing by the model.

LLMs are typically pretrained. Pretraining provides a general language model

before any task-specific fine-tuning [220]. This training enables the models to pick

up on subtle word meanings, syntactic patterns, and broader language structures,

making them more effective across a range of language tasks. Pretraining involves

exposing a model to a voluminous corpus of textual data, often sourced from mul-

tiple heterogeneous sources. The process predominantly employs self-supervised

learning mechanisms, one of which is MLM [40]. In MLM, certain tokens in the

text are replaced with a special [MLM] token, prompting the model to predict

the hidden word using the unmasked context words. NSP trains the model to

determine whether one sentence logically follows another, enhancing its ability to

understand coherent text [40].

Fine-tuning adapts the pretrained model to a specific task or domain. This stage

uses supervised learning with labeled data to adapt the model’s general language

understanding to specific tasks, improving its performance in applications such as

translation, summarization, or question answering.

LLMs exhibit substantial domain generalization capabilities. This attribute en-

ables them to transfer and apply their acquired knowledge across a wide spectrum

of subjects and sectors without necessitating explicit training for each specific do-

main. Furthermore, approaches such as zero-shot [243] and few-shot learning [9]

underscore the LLMs’ remarkable ability to generalize effectively. In [67], it has

already been mentioned that zero and few shot abilities of LLMs can be of interest

for time series models.
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Hierarchical models As discussed in Chapter 1, language exhibits a hierarch-

ical structure to a certain extent [220]. Similarly, financial markets are character-

ized by various cyclical patterns, including trading behaviors [82], cash flow timings

[82], and interest rate fluctuations, which manifest across multiple temporal scales

and are inherently hierarchical in nature.

This hierarchical characteristic has motivated the development of financial models

that process inputs across different frequencies, as outlined in Section 3.0.3.

Notably, such ideas have been explored beyond quantitative stock market data to

domains such as audio processing and, most relevant to this thesis, NLP. Among

these hierarchical models, transformer architectures have gained prominence due

to their ability to effectively capture structured dependencies in sequential data,

including audio signals [250]. Moreover, the framework presented in [279] under-

scores the advantages of token-level processing over sentence-level approaches. In

addition, the FAST model [201] integrates time-aware LSTM networks to address

the non-uniform temporal distribution of textual data throughout the trading day.

The study by Koutník et al. [112] focused on spoken word classification, where

the proposed Clockwork RNN architecture proved effective in modeling temporal

dependencies by partitioning the hidden layer into modules operating at different

clock rates. This design enables the network to integrate both fine-grained and

long-range temporal information. In the context of this thesis, these properties

are particularly valuable, as financial time series data—similar to language and

speech—exhibit hierarchical and multi-scale temporal structures. Consequently,

Clockwork RNNs provide a principled approach for capturing such dynamics in

market-related prediction tasks.

Recurrent Transformer Transformers encounter intrinsic constraints related

to the time complexity of O(n2 · ξ) and space complexity of O(n2 + n · ξ) [219].

Such limitations are notably acute within the domain of NLP, where processing

extensive texts remains a challenge. As a result, handling multi-page or multi-

document text has become a key topic.

Recent methodologies extend beyond traditional attention mechanisms, such as

global or local attention [7]. A practical direction is to process long texts in



Chapter 2. Literature Review 26

segments with recurrent state.

Recurrent transformers integrate a recurrent architecture within the transformer,

thereby enabling the model to incrementally process segments of the sequence. At

each iteration, the model refines its hidden states by incorporating information

from the current segment alongside previously accumulated states, thereby effect-

ively capturing long-term dependencies while optimizing computational efficiency.

This hybrid combines local parallel attention with recurrent state for long-range

dependencies or vice versa. Representative examples of recurrent transformer ar-

chitectures include the ones mentioned in [224]; TransformerXL [31], Recurrent

Memory Transformer (RMT) [10], and Block Recurrent Transformer [94].

Doc2Vec In Chapter 1, it was hypothesized that the generation of summar-

ies from market data could potentially augment the informational input to the

model. However, the task of generating summaries in NLP presents a challenge.

These difficulties primarily arise from the need for extensive and costly datasets.

Moreover, the inherent difficulty of evaluating the quality of generated summaries

adds further complexity to the assessment process [39].

Doc2Vec provides document-level embeddings for downstream analysis. Unlike

conventional (W2V) models that merely embed individual word tokens, Doc2Vec

extends this capability to encompass more extensive textual units, including full

sentences and entire documents [114] [109]. It produces embeddings for sentences

and documents that can be seen as an abstract summary of the text.

These resultant vectorized representations encapsulate texts, capturing not only

surface-level elements but also the deeper semantic content inherent within them.

Such embeddings facilitate numerous applications, including document retrieval,

by enabling the analysis and comparison of extended textual similarities.

Furthermore, Doc2Vec has been applied within the financial sector. For instance,

[2] illustrates how embedding news paragraphs with Doc2Vec captures the evolving

narratives within financial markets. Another research [55] investigates the applic-

ation of Doc2Vec for event embeddings at both sentence and document levels.
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2.2 Non-NLP baselines for financial forecasting

Beyond language-centric approaches, a broad spectrum of ‘price–only’ and market-

structure methods establish essential baselines and complementary perspectives

for equity forecasting. At one end stand classical econometric views that treat

prices (or returns) as close to a martingale difference sequence, implying that na-

ive or low-dimensional linear predictors provide strong yardsticks. Early empirical

work documented price changes that are, to a first approximation, serially uncor-

related, foreshadowing the random-walk benchmark [107]. The weak-form EMH

sharpened that idea: conditional on the information set embedded in past prices,

risk-adjusted excess returns should be unpredictable [60]. In practice, these per-

spectives justify simple—but informative—baselines such as random-walk, histor-

ical mean of returns, and rolling linear autoregressions on (stationarized) returns.

Even when more sophisticated models are deployed, such baselines remain crit-

ical to detect overfitting and to quantify economically meaningful gains. Portfolio

textbooks codify this attitude by emphasizing that model performance ultimately

must be judged in a risk–return framework rather than by point-forecast accuracy

alone [36].

Price-only deep learning starts from recurrent architectures and their refinements.

LSTM networks address vanishing gradients and capture medium-horizon depend-

encies [86]. Early applications to equities demonstrate feasibility on daily data [21]

[41], with later work exploring encoder–decoder variants and GRUs across stocks

and even crypto [46]. Convolutional front-ends feeding bidirectional LSTMs offer a

lightweight alternative that aggregates local patterns before temporal integration

[56]. Attention mechanisms then generalize these ideas: LSTM-associated network

models leverage learned relevance over input timesteps [42], while hierarchical

or multi-scale transformers aim to reconcile multiple temporal granularities [43].

More recently, domain-tailored transformers and MLP mixers have shown that

leaner sequence mixers can match or exceed heavier attention stacks when appro-

priately regularized and windowed [74], [62]. Crucially, empirical performance is

sensitive to the lookback window and forecast horizon; ensemble strategies across

multiple windows mitigate this sensitivity and stabilize realized returns [203].
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Forecasts become economically actionable only after mapping to risk. In the

classical mean–variance paradigm, signals are evaluated by their contribution to

portfolio-level moments—expected return and variance—and by risk-adjusted met-

rics (e.g., Sharpe), not solely by directional accuracy or RMSE [153] [36]. From a

market-dynamics angle, volatility itself is a forecasting target with direct portfo-

lio implications. High-frequency estimators of integrated volatility must explicitly

correct for market microstructure noise; failure to do so can contaminate daily

risk forecasts and backtests [266]. Recent ML studies explore the continuum from

GARCH-type baselines to neural volatility forecasters, reporting tangible gains

in realized-volatility prediction when architectures incorporate temporal weight-

ing or nonlinear feature interactions [270]. On the allocation side, representation

learning has been used to compress cross-sections into low-dimensional factors that

improve pricing and risk control [81]. RL reframes portfolio choice as sequential

decision-making: policies are trained to trade off expected return and risk, with re-

cent work emphasizing data efficiency and transaction-cost awareness [100]. These

strands are complementary: better volatility forecasts stabilize risk budgets, while

learned portfolio policies translate predictive structure into implementable weight

trajectories.

At intraday horizons, microstructure effects dominate, reshaping both inputs and

targets. Observed transaction prices and quotes are contaminated by discrete tick

sizes, bid–ask bounce, and asynchronous trading, so microstructure-robust estim-

ators are required even to recover integrated volatility from high-frequency data

[266]. Beyond noise correction, predictive content often resides in multi-frequency

patterns—e.g., the interaction of short-cycle order-flow bursts with longer-cycle

trends—which motivates models that explicitly decompose or attend across tem-

poral scales [267]. In LOB-based settings, signals include queue imbalances, depth

dynamics, and cancellation/arrival intensities; while many equity DL studies cen-

ter on daily bars, pre-trained financial models increasingly leverage fine-grained

price–volume structure for price-movement forecasting, blurring the line between

‘price-only’ and microstructure-aware inputs [61]. In all such setups, proper eval-

uation must account for latency, fill probabilities, and transaction costs, since
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edge at the quote level can evaporate after execution frictions. Methodologic-

ally, this strand connects naturally to the DL architectures above: attention over

multi-scale features or hierarchical temporal encoders is a practical way to fuse

LOB-state dynamics with lower-frequency context.

2.3 Review of the Current Stock Forecasting Re-

search

In the subsequent section, methodologies within the SF domain that can be linked

to the adapted NLP strategies are explored. In doing so, the relevance of the

proposed methodologies is justified, and the original contribution of this work to

the field is highlighted.

Review System SF in ML is a large and fast-growing area. Given the sheer

volume of publications, it is impossible to address each one comprehensively within

the confines of this thesis. A focused review is therefore needed to select relevant

publications. For a publication to be considered relevant, it must not only utilize

methodologies stemming from recent breakthroughs in NLP but also offer solutions

and motivations that address the issues outlined in Chapter 1.

The development of this review system is inspired by methodologies employed in

contemporary literature reviews. Specifically, the framework proposed in [282] has

significantly influenced this thesis review system’s design, providing an approach

for filtering and evaluating relevant literature efficiently and effectively.

In this study, the search methodology delineated in [282] is adopted to bridge

the research publication gap from the issuance of [282] until the conclusion of

this thesis. The keyword search mechanism outlined therein is endeavored to be

replicated to the fullest extent practicable (see Appendix A.7).

The scope of the research is expanded to include works published subsequent to

December 2022, thus extending beyond the last reference date mentioned in [282],

which cited [281] as the most recent publication.



Chapter 2. Literature Review 30

Given the primary focus on the adaptation of NLP strategies, a set of keywords has

been empirically derived from pertinent publications. The augmented keywords

are as follows:

• Pre-trained / Pretrained (in combination with the other keywords)

• Finetuned / Fine-tuned (in combination with the other keywords)

as well as

• Stock Embeddings

• Finance Embeddings

• Financial Embeddings

• Foundation Models

• Recurrent Transformer

Details of the review system are given in [282]. Details regarding the modifications

implemented are elaborated in Section Appendix A.7.

Additionally, the literature review encompasses publications that are relevant to

the thesis for various reasons. These include papers explicitly mentioned within

the context of this thesis, those cited in other scholarly works published by the

author of this thesis during the course of this study, and those identified through

other critical reviews conducted as part of the authors research efforts, such as

those found in the SLRs; [211] [176] [282] [158] [34] [102].

As outlined in the introductory section, the subsequent analysis of the SF models

is structured into two distinct segments. Initially, these models are categorized and

scrutinized through a multifaceted lens, assessing them within various established

categories pertinent to the SF domain. Subsequently, the discussion reconnects

with the introductory elements by linking the reviewed models to the proposed

adapted NLP strategies employed therein.

The statistics, figures, and diagrams shown here are not representative of all SF

research. They reflect only the sample at hand and shouldn’t be interpreted as a

ranking or preference across the entire field.
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This section summarizes features and methods that have worked in prior studies

to provide context. The analysis also reviews how alternative models are designed.

This enables a comparative evaluation on consistent criteria.

It also catalogs aspects identified as relevant elsewhere in the thesis. This clear

identification makes it easier to refer back to these factors in later discussion.

General Approach Following the established notation and definitions of ‘fun-

damental’ and ‘quantitative’ analyses, the ML models under consideration have

been classified into four broad categories. In both ML research and economics,

it’s often difficult to categorize methods consistently using clear, objective criteria.

For instance, certain technical indicators such as the RSI ostensibly extend beyond

the basic data available in straightforward stock price analyses, e.g. OHCLV data.

Despite this, considering that these indicators are grounded in stock price time

series (denoted as X), they may yet be classified within a quantitative framework.

Conversely, numerous numerical metrics, including currency conversion rates and

interest rates, might initially be perceived as external contextual elements denoted

as Π. Nevertheless, the need to keep these metrics up to date turns them into ele-

ments of a dynamic time series, making them more compatible with quantitative

methods.

Furthermore, non-euclidean data, such as that represented in graphical formats, is

often categorized as fundamental. However, the practical application of such data

outside the scope of quantitative analyses is difficult to envisage.

To avoid getting caught up in a complex debate that’s largely irrelevant to this

thesis—and more appropriate for economic theorists—the following categories are

used:

• Time Series (TS): P(.|X)

• Time Series with Graph / Relation Information (TSG): P(.|Π, X)

• Time Series with Texts/Audio (TST): P(.|Π, X)

• Texts/Audio (T): P(.|Π)

which are intended to enhance the clarity and utility of this thesis.
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The categorization of the literature pertaining to the respective approach is de-

lineated in Table 2.1. Additionally, the approaches are illustrated in Figure 2.1.

In the literature, several publications such as [168] [113] have reported that T-

approaches generally exhibit superior performance. For instance, the studies by

[143] [53] [27] advocate for the integration of textual data to navigate the intricate

characteristics of stock time series data. An ablation study, detailed in [146], eval-

uates the predictive capabilities of TST-models by excluding textual data. The

findings reveal a significant decrease in accuracy for the TST approach, drop-

ping from 62.69% (ACL-18 ) and 53.43% (CMIN ) to 52.88% and 50.69%

respectively when solely TS data is employed. Notably, the performance remains

relatively more stable at 57.83% and 52.55% when adopting a purely T-approach.

Additional instances of ablation studies are documented in [166]. The experiments

in [268] reveal that excluding TS data from the model typically results in a mar-

ginal performance degradation of only 0.5–0.75%, reducing accuracy to approxim-

ately 65%. On occasions, this exclusion may inadvertently enhance performance.

Conversely, relying solely on TS data yields robust performance, with accuracy

levels fluctuating between 58.9% and 59.9%, consistently trailing approximately

5% behind the optimal results.

In [123], an accuracy of 58.10% is still achieved on the ACL18 dataset even

without the textual data, while on the CMIN-CN dataset, a performance of

54.16% is maintained. Conversely, the research presented in [204] posits that the

OHLCA1 prices encapsulate multifaceted dimensions and diverse aspects of the

information inherent in stock prices, similarly as argued in [82].

Nevertheless in [82], the authors advocate for TS approaches, arguing that numer-

ous trading patterns encapsulate traders’ intentions and behaviors, rendering them

applicable across various financial instruments. Furthermore, models designed to

capture common market dynamics are expected to incorporate external factors

such as T+1 trading2 or the timing of cash flows, both of which reflect underlying

trader strategies.
1A = Adjusted Closing Price
2Referring to the delay in selling an asset on the same day it was purchased [256].
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Table 2.1: Overview for literature by general approach.

T TST TSG TS

[68] [251] [149] [44] [92] [90] [279]
[151] [230] [111]

[232] [2] [138] [250] [120] [202] [271]
[54] [129] [18] [2] [121] [51] [247] [47]
[210] [93] [241] [64] [97] [30] [268]
[19] [269] [55] [4] [201] [32] [146]
[29] [260] [122] [126] [139] [166] [199]
[125] [38] [14] [215] [179] [168] [113]
[193] [26] [53] [167] [170] [234]

[238] [96] [240] [255] [231]
[249] [229] [244] [108] [24]
[200] [66] [169]

[88] [267] [196] [258] [65]
[163] [233] [5] [43] [41] [50]
[115] [116] [186] [189] [49]
[21] [61] [237] [119] [71] [46]
[245] [246] [214] [213] [259]
[142] [174] [180] [74] [101]
[264] [62] [257] [37] [81] [91]
[159] [162] [274] [228] [192]
[143] [256] [144] [239] [190]
[110] [20] [253] [42] [206]
[147] [242] [84] [85] [203]
[33] [28] [204] [272] [207]
[124] [48] [79] [67] [280]

Figure 2.1: Visualization of the different models in their respective category.

In contrast to many researchers, such as [202], who assert that profitability is the

primary objective of their models, the stock market is viewed more as an auxiliary

problem in this thesis as explained in Chapter 1. Referring to the stronger results

of T-approaches serves only to set realistic expectations for performance metrics.
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Table 2.2: Overview for publications by task.

SPP / Regression SMP / Classification Embeddings Other

[267] [66] [129] [5] [121] [51] [115]
[116] [186] [189] [250] [91] [210] [30]
[228] [154] [192] [143] [4] [256] [144]
[57] [190] [260] [110] [126] [166] [42]
[61] [241] [119] [28] [246] [46] [245]
[207] [98] [272] [184] [113] [193] [37]
[81] [79] [270]

[258] [229] [232] [251] [129] [18] [163]
[233] [149] [44] [43] [41] [92] [51]
[138] [131] [247] [21] [159] [90] [279]
[162] [274] [268] [88] [238] [19] [269]
[55] [256] [239] [151] [32] [260] [146]
[29] [20] [122] [126] [139] [253] [199]
[108] [125] [200] [24] [122] [61] [93]
[85] [84] [203] [237] [33] [25] [168]
[111] [204] [14] [64] [215] [259] [179]
[174] [74] [101] [264] [257] [177]

[68] [196] [49] [50] [48] [97]
[255]

[54] [279] [202] [244] [61]
[230] [134] [96] [209] [214]
[124] [213] [240] [12] [231]
[62]

Selected Task As explained in [175] there are typically regression, movement

classification and recommendation (ranking) tasks. Predictive analyses of future

price developments are typically performed using tasks such as SMP/SPP. Al-

though risk minimization and portfolio optimization are recognized as mature

areas for future development, as delineated in [176], they do not constitute the

primary focus of this thesis. The tasks addressed by the model under study are

listed in Table 2.2.

In the majority of instances, the forecast horizon, denoted as ω, is set to ω = 1.

A predominant line of argumentation, particularly in critiques against generative

models, posits that the performance at ω = 1 is sufficiently poor, potentially com-

plicating the prediction accuracy for ω > 1 or ω = {i ∈ N|i < θ}. Interestingly, in

the study presented in [166], which explores multi-step SMP, it is demonstrated

that the model encounters the greatest difficulty in predicting the 3-day trend,

whereas it achieves the highest accuracy for the 30-day trend. Similarly, the

research detailed in [139] indicates that for ω = 30, trend predictions are signi-

ficantly more accurate than those for shorter intervals. For volatility prediction,

the forecast horizons generally exceed ω = 1 because volatility is by definition

contextualized within a temporal context. Additional examples of longer forecast

horizons are documented in Table 2.2, as expounded in the accompanying caption.

Markets Numerous studies examine equities across different markets, covering

a wide range of countries. Given the huge body of literature in the SF domain, it

is important to note that academic studies exist for nearly every national equity

market.
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Figure 2.2: Visualization of the national markets investigated in the respective
publications cited in this thesis. The indices which represent whole continents

were not visualized. This figure was created by the author.

As shown in Figure 2.2, there’s a clear focus on certain national markets. Outside

the well-covered universe of major U.S.-american stocks, where data is abundant,

research tends to concentrate on the home country’s national index—likely due to

easier access and familiarity. Surprisingly, studies that look at multiple national

markets are relatively rare. Even fewer attempt to bring different markets together

in a single model to explore cross-market relationships. This highlights a major

gap, especially when it comes to building a general-purpose, pretrained foundation

model for quantitative stock analysis. Much like LLMs in NLP, such a model

should be trained on a broad and diverse range of markets to reflect the variety of

market behaviors and interconnections.

Interval Granularity In the domain of financial data representation, stock data

is predominantly encoded using OHCL or, less frequently, OHLCV sequences, as

detailed in [204]. The granularity of these intervals varies, commonly set at 1, 5,
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Figure 2.3: Visualization of the used interval granularities of the respective
publications.

15, 30, 60 minutes, or spanning interday periods. Less frequently used are LOB

data, which can represent at much shorter intervals like in [61].

Acquiring intraday data for non-U.S. stocks presents notable challenges. While

databases like Yahoo! Finance offer data at 1min intervals, their historical depth

pales in comparison to that provided by the AV database, often resulting in insuf-

ficient data for training robust models. The frequent use of interday data appears

driven by these data constraints.

Furthermore, research referenced in [256] and detailed in [266] asserts that intervals

of no less than five minutes are requisite for conducting stable analyses.

In Figure 2.3, an overview illustrates the granularity of intraday intervals utilized

in the study.

Data and Datasets In the stock sector, the availability of pre-compiled datasets

is markedly less prevalent than in other domains. This scarcity leads to diverse

data and processing choices, which in turn produces substantial heterogeneity in

comparability. These effects are examined in detail in the following sections.
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Dataset Partitioning For the analysis of conventional time series data, diverse

strategies exist for dataset organization. A significant number of publications in

the SF area adopt a methodology where the initial portion of the time series data

is allocated as the training set, followed by an intermediate interval serving as the

validation set, and the concluding segment designated as the test set.

This split is widely used, for example (but not limited to) by [43] [92] [199].

Dataset Sources Most studies rely on a small set of homogeneous providers.

To keep the overview in Table 2.3 concise, each source below is annotated with a

one–line description, and references are trimmed to at most three representative

papers per source.

Standardized datasets are notably scarce within the domain of TS analysis, a

phenomenon that may be attributed to the readily available nature of stock data

which facilitates the creation of customized datasets aligned with specific research

interests. Among the more prevalent datasets, the ACL18 dataset—also re-

cognized as the Stocknet dataset—and the KDD17 dataset stand out. These

datasets have been employed in various studies, including [268] [199] [29], while

the CMIN dataset is referenced in [146] [84] [85].

A more recent iteration of the ACL18 dataset , covering data from 2020 to 2022,

is created and explored in [111]. Additionally, a dataset derived from NASDAQ

and NYSE sources is developed for use in [66] and is also employed in studies

such as [62]. For the analysis of LOB features, the SSE STAR MARKET

dataset is utilized in [61]. Furthermore, the CIKM18 dataset finds application

in [215] [53].

The utilization of standardized datasets, particularly those encompassing T data

as seen in ACL18 and KDD17 , is more frequent for T-approaches. This

might be linked to the complexity and challenge inherent in generating large and

robust textual datasets, as opposed to the more readily compiled TS data.

Handling Stock Data Several challenges in analyzing stock data have been

outlined earlier. These challenges are complex and involve both internal and ex-

ternal factors. Internally, the stochastic behavior and non-stationarity of stock
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prices present major challenges for analysis. Externally, the frequent absence of

values complicates data processing and analysis.

Missing values are common in intraday data, which is surprising given that trad-

ing/stock exchanges are mostly electronic. In some instances, these missing values

can be attributed to periods of zero trading; however, such an explanation remains

questionable for large corporations in the United States or China, where such gaps

also occur. The literature rarely discusses this, raising the concern that intraday

performance may be inflated when models rely on padding values that are easier

to predict.

In the study [256], one of the rare discussions in the literature addressing intervals

characterized by zero or no trading—hence exhibiting no or minimal price move-

ment—is observed. This work excludes days where specific time blocks record no

trades and acknowledges the potential for misleading SMP accuracy due to prices

with little or no movement. Furthermore, the research in [125] considers price

movements significant only if they surpass a predefined threshold in the hourly

standard deviation. Similarly, the analysis in [19] recognizes minor price fluctu-

ations as a contributing factor to poor intraday trading performance.

An additional factor contributing to the prevalence of incomplete data arises from

the temporal dynamics of stock existence, notably IPOs and deslistings. Stocks

enter and leave the sample over time, so padding is often applied outside their

active periods.

A notable exception is [204], which states that each stock is fully represented;

many other studies include incomplete series or omit this detail. For instance,

[12] highlights the occurrence of missing data within the S&P-500 index,

particularly prior to 2010. In this context, linear interpolation was found to work

best in the authors experiments and is adopted in this thesis. In [91], missing values

are addressed by substituting them with the preceding day’s data, whereas [237]

opts for zero padding. In contrast, [213] filters out three stocks from the ACL18

dataset due to data omissions in 2016. A similar selection criterion is employed in

[20], where stocks that were publicly listed after 2010 are excluded from analysis,

with missing data points being padded using the previous day’s values. Moreover,
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[240] reports the exclusion of certain stocks from the Taiwan stock market dataset,

attributed to substantial data deficiencies. [142] adopts a methodology closely

aligned with the one used in this thesis, focusing on S&P-500 companies

and retaining only those with complete data for the year 2010. Finally, [119]

implements a selective approach towards stock inclusion to mitigate the impact of

missing values on the analysis.

Addressing stochastic data represents a formidable challenge in SF, particularly for

TS methodologies. The existing literature proposes several strategies to manage

these complexities, which will be examined in detail herein. One effective approach

to mitigate stochasticity involves the utilization of synthetic data. For instance,

as highlighted in [84], training models on such data can equip them with a form

of ‘meta-knowledge’. This parallels the idea of extending time series lengths to

help models develop a deeper understanding of shifting patterns, improving their

ability to handle and predict stochastic changes. A similar approach is adopted in

[110]. Both [241] and [84] contend that relying solely on historical data may induce

overfitting and fail to embed an understanding of stochasticity within the model.

Consequently, [84] advocates for the incorporation of artificially generated noisy

data samples, supplementing the original dataset. This intervention is applied

to the latent representations rather than directly to the initial data, as empirical

evidence suggests that introducing noise at the data level does not facilitate model

training.

Diverse methodologies have been explored for generating data within the context

of missing information, employing models that are distinctly motivated by the

absence of complete datasets or size of the datasets. Notable among these are the

techniques outlined in [237] [71] [85], which utilize models explicitly designed to ad-

dress data gaps rather than stochastic variations. In contrast, the study presented

in [33] advocates for the preferential use of probabilistic models such as those de-

scribed in the SDM (see Section 9.1) approaches or in [157]. This recommendation

is based on their ability to effectively manage the inherent stochasticity.

A significant challenge in ensuring model stability pertains to the non-stationarity
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of stocks. A widely recognized strategy to mitigate this issue involves the utiliz-

ation of returns, or more better, relative returns, as suggested in [275]. This ap-

proach is predicated on the expectation that such measures will exhibit consistent

characteristics over time. Furthermore, [96] and [125] say that price fluctuations

within stock time series behave stationary. However, empirical research within

this thesis has identified the use of RLR as one of the most effective methods in

this context.

In [119], the utilization of log returns is advocated for time series comparability due

to their capacity to encapsulate the compounding effects characteristic of return

growth, commonly modeled as geometric Brownian motion within the domain of

quantitative finance. Notably, several models incorporate log returns, including

but not limited to, the models presented in [119] [245] [272](in conjunction with

GARCH models, as is customary in practice) and [162] [30] [98] [245] [98]. Con-

trastingly, alternative methodologies such as those detailed in [88] employ max-min

normalization, leveraging statistical measures like standard deviation and mean for

regularization purposes.

Time Periods The temporal spans delineated by the referenced studies are il-

lustrated in Figure 2.4. Access to the AV database enables comprehensive coverage

of all intervals from the year 2000 through 2023.

Lookback Window Size The quantitative prediction of future stock prices

incorporates historical price data, with the length denoted by ∆t, which varies

across different models. Figure 2.5 illustrates the range of ∆t values employed

by various models. When determining the appropriate ∆t , two primary lines

of argumentation are considered. Utilizing longer ∆t values may enable models

to better capture and comprehend broader contextual information and identify

coarse-grained dynamics or trends. Conversely, if ∆t is too long, it may blur im-

portant signals, making short-term forecasting easier—but not necessarily more

meaningful—which can affect profitability in different ways depending on the con-

text. For instance, the study by [174] contends that for accurate predictions of

the subsequent day’s price movements, the lookback window should not be overly
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Figure 2.4: Illustration of the time periods shown in the datasets of the pub-
lication. To simplify matters, the earliest start year used in the publication is
taken as the start and the last point in time as the end, even if there may have

been interruptions due to the use of multiple datasets.
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Figure 2.5: Visualization of different ∆t values from the publications. Note
that the underlying granularities vary between interday and intraday, meaning

the same ∆t can cover very different total periods.
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extensive, as this may impair the accuracy of predictions. Similarly, the findings of

[62] suggest that an optimal length of the lookback window is crucial; a duration

that is too brief may lack adequate information, whereas an excessively long win-

dow can escalate computational costs and diminish the model’s ability to detect

early, informative patterns. In their investigation, [203] underscore the importance

of employing multiple time windows to enhance the accuracy of stock movement

predictions, noting that stocks exhibit momentum across varied time scales. [96]

conduct an analysis to determine the optimal length of the lookback window for

their model, concluding that a 20-day period is most effective, a finding that is

consistent with established strategies in [1]. Similarly, [257] also identify 20 as an

optimal window length, though they experiment with various durations. Further-

more, [20] highlight the need for categorizing models based on their suitability for

long-term versus short-term forecasting, indicating distinct methodologies for each

forecasting horizon. The authors assert that long-term forecasting primarily con-

centrates on macroeconomic trends, whereas short-term forecasting is designed to

respond swiftly and flexibly to unforeseen events that may cause only minor price

fluctuations. In [19] it is demonstrated that the size of ∆t significantly influences

model performance.

Evaluation Methods The evaluation of the models can be divided into two

areas, at least for the SPP/SMP models. The simple performance measurement

metrics such as accuracy [24] [38] [244] [38] [125] [147] [29] [20] [166] [122] [253]

[127] [146] [61] [85] [84] [33] [25] , F1-Score [38] [244] [200] [199] [226] [29] [20] [166]

[139] [127] [25] , MCC [199] [29] [122] [253] [139] [146], [127] [85] [84] [33] , MAE

[115] [91] [228] [192] [143] [4] [144] [61] or MSE / RMSE / R2 [286] [110] [260] [166]

[61] [241] [119].

In [274], the reported accuracy values are presented in relation to the defined

trend constructs rather than directly to price movements. For the various Chinese

indices, accuracy rates between 81% and 83% are achieved. Similarly, an accuracy

of 80% is observed for the S&P-500 , while the DJI demonstrates an

accuracy of 83%.
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Furthermore there are stock domain specific measurements methods including the

Sharp Ratio [199] [110] [69] [139] [127] [230] [242] [33] [237] the CR [237] the

Maximum Mark Down [69] [127] the Return metrics [69] [20], or the IRR [66] [201]

[230] [242] [33] explained in detail in Section 4.4. In [61] the top-k selection hit rate

is used. Some publication such as [68] [229] evaluate their respective model also

on risk sensitive metrics 3. Stock-specific metrics are often based on the potential

financial gains that could have been realized if the model’s predictions had been

used to inform investment decisions.

Simulation Profitability metrics can be derived either through simulations or

by directly incorporating profitability into the loss function of predictive models.

For instance, [203] argues that incorporating profitability into the loss function is

more effective than traditional approaches such as cross-entropy or hinge loss, as

the primary objective in stock movement prediction is to maximize trading gains,

particularly from significant price shifts.

The primary purpose of these simulations is to assess the model’s potential prof-

itability in real-world scenarios when combined with trading strategies of varying

complexities. Several studies have employed simulation-based evaluations to gauge

the effectiveness of stock prediction models, including [66] [79] [54] [258] [233] [2]

[5] [44] [92] [138] [116] [162] [151] [20] [126] [139] [108] [244] [242] [237] with some

implicitly or explicitly predicting trading actions.

Time Series Input Features As previously mentioned, stock price data across

different granularities is frequently represented using the OHLCV format. In ad-

dition to OHLCV, a variety of technical indicators, often derived from these fea-

tures, are commonly employed in the analysis of financial time series. Given the

extensive number of potential features and corresponding research publications,

it would be neither feasible nor constructive to exhaustively list them here. In-

stead, the interested reader is directed to the comprehensive resources provided

by AV (https://www.alphavantage.co/documentation/) and Financial
3Again these are examples and not a full list of all publications using this metrics.

https://www.alphavantage.co/documentation/
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Modeling Labs (https://www.fmlabs.com/reference/default.html),

which offer detailed overviews of widely utilized features and indicators.

Alternative Stock Related Tasks Next to portfolio optimization and risk

minimization, other relevant predictive tasks are found in the SPP/SMP literature.

Ranking tasks in finance involve arranging stocks with respect to their anticipated

returns based on predictive models. One notable implementation of such a model

is described in [66], which employs a specialized ranking algorithm. Additionally,

[201] integrates a ranking network with a ranking loss function to enhance predic-

tion accuracy. Further illustrations of ranking tasks can be found across several

studies: [231] and [61] explore ‘Top-K selection’; [213] discusses strategies labeled

as ‘Top-K, buy, sell’ and [230] [134] [96] [209] [214] [124] [240] [242] [257] [197]

provide similar methodologies.

Recent literature mainly focuses on predicting values for the next immediate time

step. This focus is understandable given the significant challenge posed by predict-

ing equities even over short intervals, which diminishes expectations for successful

multi-step forecasting, consequently leading to infrequent exploration of altern-

ative methodologies. Nevertheless, exceptions to this trend are documented in

(but not limited to) several studies, such as [246] [134] [214] [249] [113]. Notably,

[110] addresses the rationale for multi-day predictions by noting the regulatory re-

quirements imposed on institutional investors. Specifically, it notes that financial

regulators require institutional investors to maintain a liquidity horizon of at least

ten days for selling risky assets,.

Backtesting Simulation Strategies in Stock Prediction Models Backtest-

ing (simulation) is a crucial step to evaluate how a stock prediction model would

perform in real trading. In these simulations, researchers define a trading strategy

that uses the model’s forecasts to make buy/sell decisions, then apply it on his-

torical data to compute profits. The primary purpose of these simulations is to

assess the model’s potential profitability in real-world scenarios when combined

with trading strategies of varying complexities. Several studies have employed

https://www.fmlabs.com/reference/default.html
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simulation-based evaluations to gauge the effectiveness of stock prediction mod-

els, including [66] [79] [54] [258] [233] [2] [5] [44] [92] [138] [116] [162] [151] [20] [126]

[139] [108] [244] [242] [237] with some implicitly or explicitly predicting trading

actions. Across the surveyed works, backtesting is implemented as a (daily), rules-

based portfolio simulation that maps model outputs to trades with fixed rebalan-

cing. The dominant protocol is a closing price-to-closing price Top-k strategy: at

each day t, stocks are ranked by predicted return or rise probability, the Top-k

are equally weighted, bought at the closing price of t, and sold at the closing price

of t+1, with daily rebalancing [66] [108] [244] [242] [139] [20] [79]. Some stud-

ies explicitly compare different values of k to analyze the impact of portfolio size

on returns [66]. Classification-based models translate probabilities into trades by

ranking confidence scores or by thresholding to execute only high-confidence sig-

nals, typically evaluated with the same daily horizon and rebalancing [151] [233]

[258] [116] [138] [2] [44] [5]. A subset adopts an opening price-to-closing price

intraday round-trip with full reallocation each day [92]. Action-centric methods

let the model output buy/hold/sell decisions directly and backtest by executing

those actions with variable holding periods [237]. Most simulations are long-only,

assume sufficient liquidity, and either use a fixed per-day budget (no compound-

ing) or reinvest the full portfolio each day (compounding); transaction costs are

often ignored or modeled as a constant per-trade rate [66] [92]. An alternative

binary trading rule predicts ŷ ∈ {0, 1} for each stock and goes long on ŷ=1 while

holding cash or shorting on ŷ=0, with long-only implementations being most com-

mon [162]. News- or factor-driven studies couple text-based signals with prices but

evaluate under the same Top-k or thresholded trading rules [126] [54]. Overall,

the literature explicitly adopts or implicitly aligns with the Top-k, equal-weight,

daily rebalanced, closing price-to-closing price template popularized by [66], with

variations chiefly in entry/exit timing (closing price vs. opening price), confidence

gating, action granularity, and the treatment of compounding and costs.

Initial capital and position sizing: Simulations usually assume an initial capital

(e.g. $100K or an arbitrary unit of 1.0) and track its growth over the test period.

To isolate the model’s effectiveness, many studies normalize the investment per
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trade or per day. As noted above, one simple method is to invest a fixed amount

each day or per stock. Feng et al. [66], for instance, reset the investment each

day to a constant (e.g. $50K per day) rather than reinvesting profits, so that

each day’s result contributes equally to overall returns. This avoids compounding

and “temporal dependency” during testing, ensuring a fair comparison between

days (each day is like an independent trial with the same stake). On the other

hand, many researchers do allow compounding by reinvesting gains, which is more

reflective of real portfolio growth. In those cases, the portfolio value is updated

each day and then fully reallocated according to the strategy. Hu et al. [92],

for example, simulate a portfolio that is rebalanced daily: at each morning they

allocate the entire current portfolio value evenly into the top-k stocks predicted

by their Hybrid Attention Network, then sell at day’s end [92]. This means profits

(or losses) from previous days affect how much is invested subsequently. Both

approaches – fixed daily budget vs. reinvested portfolio – are used in the literature,

with the choice often depending on the metric being used (some metrics sum

daily returns assuming fixed investment, while others compute actual compounded

growth).

Transaction costs and practical constraints: To make backtests more realistic,

some studies incorporate transaction costs like brokerage fees or slippage. For

instance, the news-driven model of Hu et al. adds a 0.3% transaction cost for

each trade in their simulation [92]. This cost is deducted when buying and selling,

reflecting broker fees or bid-ask spreads, and it can notably reduce net returns if the

strategy trades frequently. In their results, using too small a K (e.g. top-20 stocks)

led to frequent trading and the accumulated costs offset some gains. By contrast,

Feng et al. [66] ignore transaction fees in their backtest, reasoning that modern

U.S. broker fees are very low (around $5 per trade). Similarly, most academic

studies assume sufficient market liquidity – i.e. the strategy’s trades (often using

end-of-day prices) can be executed without moving the market price. Short-selling,

margin, and other advanced trading aspects are usually not included unless the

study’s focus is specifically on those mechanisms. In summary, the simulations

tend to be idealized – they trade at published prices (open or close) with either
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no or minimal fees, aiming to isolate the model’s predictive power in a frictionless

setting.

Evaluation metrics: After running the simulation on the test set, researchers typic-

ally compute a set of profitability metrics. The most direct measure is total return,

i.e. the percentage increase in portfolio value over the test period. This is often re-

ported as cumulative return ratio or IRR, calculated by aggregating daily returns

across the evaluation horizon. Another widely used metric is annualized return,

which normalizes the overall profit to a yearly rate, making results comparable

across test periods of different lengths. In addition, many studies benchmark their

strategies against standard baselines such as major market indices (e.g. S&P 500

, Dow Jones ) or an equal-weighted market portfolio. Such comparisons re-

veal whether the proposed model provides added value beyond simply following

the general market trend. Some works also include an oracle strategy, which selects

the best-performing stocks in hindsight, to provide an upper bound on achievable

returns and contextualize model performance.

Aside from return percentages, a few works evaluate risk-adjusted metrics. Al-

though not always reported in the cited papers, it’s common in finance to consider

the Sharpe ratio (return vs. volatility) or maximum drawdown (largest peak-

to-trough loss) of the strategy. These help assess if a high return comes with

unacceptable risk. For instance, a strategy that doubled the money could still

be less attractive if it had huge swings or large interim losses. In the given ref-

erences, most emphasize raw returns and sometimes volatility implicitly through

observing the equity curve. Hu et al. present an equity curve (cumulative profit

curve) for the portfolio over time, which allows visual inspection of volatility and

consistency of gains. Generally, a smoother upward curve is preferred to a wildly

fluctuating one. Some papers also report the number of winning trades vs losing

trades, or average return per trade, but these are secondary to overall ROI in most

ML-oriented stock prediction papers.

Using model predictions in simulation: The way model outputs are turned into

trades can differ slightly by paper. If the model outputs a predicted return value

(regression), one naturally ranks stocks by this value (higher predicted return is
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seen more attractive). If the model outputs a probability of rise vs. fall (classifica-

tion), some studies use the probability score directly for ranking or as a confidence

threshold. Other researchers might set a threshold on the probability – e.g. only

trade if the model is more than 60% confident in an upward move, otherwise stay

out. This can reduce false signals and was employed by some to improve preci-

sion (especially in cost-sensitive approaches like [151], where avoiding bad trades

is emphasized). Indeed, Man et al. [151] introduced a cost-sensitive ensemble

of BERT models for news-driven trading; their strategy selects trades where the

ensemble has strong agreement, yielding a higher return on investment (reported

around 21% in their experiments) at the cost of fewer trades. In essence, these

techniques adjust the trading frequency: a lower threshold (or always trading the

top prediction) maximizes usage of predictions but can include noise, whereas a

higher bar for confidence yields fewer but potentially more profitable trades.

It should be noted that some research goes a step further and optimizes for profit

during training. For example, Zhou et al. [203] argue that using a profit-related

loss function (instead of traditional classification loss) can directly train the model

to favor profitable predictions. In such cases, the evaluation still involves a backtest

simulation to verify actual trading performance, but the model has been explicitly

tuned to maximize those trading metrics. This approach extends the standard

simulation: instead of only assessing a model’s financial returns after the fact, the

model is encouraged to generate outputs that perform well within the simulator.

Still, even these profit-driven models (and others like cost-sensitive models [151])

rely on the final backtest as the ultimate proof of performance.

Across the literature, backtesting frameworks share a similar technical outline:

train the model on past data, use its predictions to trade on a forward test set

under a predefined strategy (often daily rebalancing with top-K or threshold rules),

and measure outcomes like cumulative return, annualized return, and comparison

to benchmarks. The main differences concern the chosen strategy (top-K ranking,

classification signals, or direct action outputs) and whether transaction costs are

taken into account. Nonetheless, the goal is uniform – to assess the real-world

profitability of the model. By reporting these simulation results, studies such as
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[66] [92] [151] [237] [233] [258] [116] [138] [54] demonstrate how predictive modeling

translates into investment gains. This provides a practical evaluation on top of

conventional metrics like accuracy: a model that performs well in backtesting is one

that would hypothetically earn money if its predictions were used for trading. Each

incremental improvement in prediction (be it through novel network architectures,

data sources like news [2] [44] [126], or relational learning [108] [139] [242]) is

validated by a higher return or a more robust profit curve in simulation. These

consistent backtesting protocols across studies build confidence that the proposed

ML models are not just predicting stock movement in theory, but can indeed

generate profitable trading strategies under realistic conditions.

XAI Given the substantial financial risks involved, the requirement for explain-

ability of specific prognostications in the SF domain is justifiable. In contrast to

SF, XAI has been most developed in NLP. In SF, XAI is still early, with relatively

few dedicated studies. Explainability is also required for risk management when

model outputs are deployed, as noted in [126].

A central question is how the behavior of complex models can be made under-

standable to humans. The study detailed in [260] employs the generative GPT-4

[173] model to concurrently generate explanations in natural language alongside

the predictions. Similarly, the research in [111] utilizes LLMs for SMP, generat-

ing explanations for specific predictions. Comparable approaches to generating

explanations are also explored in [215] [80] for reinforcement learning.

In works such as those detailed in [38] [124], visual explanations are employed to

elucidate the operational dynamics of models. Similarly, [122] and [251] explore

the explainability aspects of models. [55] argues that visualizing attention between

stocks (as in the ASMs in Section 7.7) improves interpretability. Furthermore, the

depiction of temporal and feature-specific attention maps in [19] marks a significant

advancement toward XAI in the SF sector. This can be attributed to the ability

to express the relevance of specific features to the output at at each timestep.
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Financial Instruments This thesis focuses on stocks, but the literature often

studies other asset classes and targets alongside them. For instance, the incor-

poration of ETFs and stock index data is a common practice, as evidenced in

numerous studies such as those by [272] [184] [157] [214] [97] (primarily for evalu-

ative purposes).

As [204] shows, overall market data are integrated with stock-specific data because

market moves strongly affect stock interactions. The study posits that ‘it is widely

known that the overall market movements significantly influence the interactions

between the stocks’ [204]. Further reinforcing this perspective, [245] emphasizes

the importance of analyzing financial markets from a macroeconomic standpoint.

Similarly, [124] incorporates global market information as a gating mechanism

within the model pipeline, suggesting that broader market data can enhance the

predictive accuracy of stock-specific models. [240] leverages links among major

institutional shareholders to provide global context for local stock interactions.

Moreover, currency exchange rates (e.g. USD /EUR ) are another popular

alternative asset class that is frequently studied alongside indices4 and ETFs, as

evidenced in the literature by [245] [168] [272] [214] [67] (only Exchange rates).

That latter study includes gold and index data and also considers cryptocurrency

prediction, which has gained traction recently. Notably, research in [100] [46]

[67] [180] underscores the increasing importance of cryptocurrencies in financial

predictions. Among these, Bitcoin , Ethereum , Ripple , and specific trading

platform-related coins such as the Binance Coin (BNB) are frequently analyzed

due to their popularity and market impact, as detailed in [180].

Further extending the scope of financial instruments studied, [238] explores the

role of derivatives (financial contracts whose value is derived from the price of an

underlying asset, such as stocks, bonds, or commodities) —specifically options and

futures—in predictive financial models. In [236] future contracts are used.

4National stock indices are not technically an asset class, as one cannot invest directly in
them. Instead, one would invest in an ETF or index fund that aims to track their performance.
For simplicity, the term will be used interchangeably in the following.
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Table 2.3: Overview of data sources.

Yahoo! Finance Retail feed for daily/in-
traday OHLCV, split-
s/dividends, and basic
metadata; widely accessed
via community wrappers.

https://finance.
yahoo.com

[64] [68] [260]

Kibot Subscription service for
historical intraday and
daily price series (U.S.
equities/ETFs).

https://kibot.com [51] [256]

WIND (Wind In-
formation)

Institutional termin-
al/database covering
Chinese markets (prices,
fundamentals, macro
series).

https://www.wind.
com.cn

[5] [269] [228]

Google Finance Legacy quote feed, mainly
used for end-of-day equity
data in academic proto-
types.

https://www.google.
com/finance

[231]

Quandl (Nasdaq
Data Link)

Aggregator for financial
and economic datasets
with unified download
APIs.

https://data.nasdaq.
com

[19]

Tushare API for China A-share
markets providing quotes,
factors, and fundamentals.

https://tushare.pro [24] [270]

Baostock Free Chinese stock data
API for historical prices
and indicators.

http://www.baostock.
com

[134]

EastMoney Retail portal frequently
scraped for Chinese market
quotes and news signals.

https://www.
eastmoney.com

[241] [179]

Kaggle Community-hosted
CSV datasets; often
used for benchmarking
equity/crypto time series.

https://www.kaggle.
com

[119] [255]

Binance Cryptocurrency exchange
exposing public, high-
frequency trade/quote
data.

https://data.
binance.vision

[180]

Taiwan Economic
Journal (TEJ)

Institutional database for
Taiwan: equities, funda-
mentals, and events.

https://www.tej.com.
tw

[25] [240]

Reuters Professional newswire used
for event- and sentiment-
based features aligned to
price time series.

https://www.reuters.
com

[64] [26]

Bloomberg Terminal and data feeds of-
fering professional market,
fundamental, and news
data.

https://www.
bloomberg.com

[26]

WRDS Platform providing access
to multiple financial data-
bases through a unified in-
terface.

https://wrds-www.
wharton.upenn.edu

[214] [26]

CRSP Canonical U.S. equity re-
turns and events database
used for robust backtest-
ing.

https://www.crsp.org [81]

Alpha Vantage
(AV)

Commercial API for
daily/intraday equities
and FX

https://www.
alphavantage.co

[260]

Company relations Knowledge-graph style
sources of corporate en-
tities/links (e.g., Diffbot,
PitchBook, Crunchbase,
CB Insights, Tracxn, Tian-
YanCha, S&P Capital IQ)
to derive stock relations
rather than prices.

(various) [13]

https://finance.yahoo.com
https://finance.yahoo.com
https://kibot.com
https://www.wind.com.cn
https://www.wind.com.cn
https://www.google.com/finance
https://www.google.com/finance
https://data.nasdaq.com
https://data.nasdaq.com
https://tushare.pro
http://www.baostock.com
http://www.baostock.com
https://www.eastmoney.com
https://www.eastmoney.com
https://www.kaggle.com
https://www.kaggle.com
https://data.binance.vision
https://data.binance.vision
https://www.tej.com.tw
https://www.tej.com.tw
https://www.reuters.com
https://www.reuters.com
https://www.bloomberg.com
https://www.bloomberg.com
https://wrds-www.wharton.upenn.edu
https://wrds-www.wharton.upenn.edu
https://www.crsp.org
https://www.alphavantage.co
https://www.alphavantage.co


Chapter 3

Critical Analysis and Research

Gaps

Existing research on SF is scrutinized with respect to the implementation of NLP

techniques. This examination is conducted to substantiate the originality of the

thesis and to affirm that the integration of NLP within this context has not been

previously explored in such a manner. Furthermore, the connections between the

proposed models and existing frameworks are endeavored to be elucidated. This

comparison aims to establish that the proposed models from this thesis constitute

a substantive enhancement of the current research landscape, offering innovative

extensions to established methodologies.

3.0.1 Embedding Space

In [110], it is explained that stock prices, being continuous and changing at high

frequencies, are represented as discrete samples drawn from the underlying con-

tinuous distribution, which may not fully capture the intrinsic behavior of stock

movements. These samples are referred to as ‘market snapshots’ [220], and in-

stead of a continuous time series, a concatenation of discrete samples is inserted

as explained.

Further in [110], it is claimed that embedding the data into a lower dimensional

continuous space, enables the model to learn a more expressive, continuous latent

representation that can better handle the stochastic nature of stock prices. This

53
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latent continuous space is referred to as the embedding space [196]. The authors

argue that this helps improve the generalizability of the model, especially in multi-

step prediction tasks where directly predicting noisy target price sequences would

further complicate the problem.

A conceptual alignment is established between a market snapshot or a feature vec-

tor and word-token embeddings as utilized in NLP. This theoretical correspond-

ence was originally proposed in [270], wherein the latent layer was introduced as

a direct substitute for word embeddings. In NLP, it is customary for embeddings

to be either pretrained or subject to additional training, tailored to the specific

requirements of the downstream task.

Further support is provided by [253], where instability in subsequent modules is

reported when multi-dimensional features from multi-view data are used without

a stabilizing model. Additionally, [246] posits that financial models exhibit im-

proved performance when operating within their respective embedding spaces.

The concept of latent high-dimensional representations has been extensively ex-

plored in prior research, including but not limited to [115] [4] [146] [258] [124]

[214] [12] [263] [242]. More complex architectures have also been investigated in

this context, such as GRUs and LSTMs [29], VAEs [122], and MLP-Mixer-based

approaches [253]. Furthermore, [190] demonstrates the application of PCA to

OHCLV features, which can itself be interpreted as a form of embedding. For this

study, the proposed latent embedding model is treated as structurally analogous

to the word-embedding matrix used in NLP.

3.0.2 Adapting Word2Vec

As previously delineated in the literature, such as in the works of [179] [13], nu-

merous types of relationships exist between companies. However, stock forecasting

methodologies often fail to adequately represent the breadth of these relationships.

Furthermore, as described by [245], it is necessary to capture latent interactions

and couplings among financial variables that conventional time-series analysis and

basic ML models cannot adequately represent.
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The studies in [97] [255] have highlighted the limitations and unviablity of tradi-

tional categorization methods, which predominantly classify companies by country

or industry sectors. Such fixed and predefined categories are often considered inad-

equate and of limited use for detailed analysis. The rationale for embedding com-

panies in a high-dimensional space and expressing their interrelationships through

these positions is to represent complex dependencies more effectively.

From a non-SMP/SPP based perspective, it can also be important to express

relationships between stocks as noted in [217], as finding stocks with similarities

is an important task in itself (e.g. for bond swapping, portfolio management,

risk management). The latter aspect is particularly crucial in the context of the

ASMs discussed in Section 6.11, wherein S2V embeddings constitute an integral

component.

In this section, models, approaches, and studies that focus exclusively on the

construction of embeddings or relationship expressions for stocks—without incor-

porating them into downstream tasks or model pipelines—are examined. Given

that the identification and utilization of inter-stock correlations and relationships

have been established as fundamental components of successful stock forecasting,

it is a logical extension to represent these relationships through embedding vectors.

It is found that this aspect aligns more closely with the direct adaptation of speech

models, as discussed in Section 6.11. The majority of the works reviewed in this

section are designed for portfolio optimization and adhere to the underlying prin-

ciple of generating embeddings that encapsulate company-specific characteristics.

The motivation is that a context-sensitive embedding of a stock can help in port-

folio diversification, since it can be quickly seen which stocks correlate with each

other and have dependent price developments. In stock market modeling, integ-

rating information on stock correlations into predictive models is essential, since

these relationships strongly influence future stock movements. At this point, two

possibilities emerge: relationship information can either be incorporated into the

ML model as a static structure derived from fundamental data, or it can be dy-

namically generated from quantitative data in the form of correlation metrics.

There are wide-ranging debates about which method is preferable and arguments
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for both sides. Liu et al. [139] who call the methods ‘price-based methods’ [139]

and ‘side-information based methods’ [139] argue, as an example of many others,

that quantitative methods can not capture ‘macroeconomic, industry relations,

company management, and investor perception’ [139]. On the other hand funda-

mental methods used to create relational information are not flexible to changing

rules, or environments which are present in non-stationary stock data.

In [108], performance differences are demonstrated with respect to the employed

relationship modeling, such as "Industry-Product or Material Produced" or "Coun-

try of Origin-Country," highlighting the importance of appropriately representing

relationships.

The Stock Embeddings model, proposed by Dolphin, Smyth, and Ruihai [50], en-

deavors to predict companies with comparable returns. The underlying premise is

that stocks exhibiting similar return values are likely subjected to analogous mar-

ket fluctuations, which may indicate a level of underlying similarity. The authors

also propose an approach in [48] that leverages the computation of similarities

between sliding windows of time series data for two stocks. They determine the

probability of a stock pair being classified as a positive or negative sample based

on the frequency of their co-occurrence among the top-k most similar time series

within each sliding window.

In [168], a bag-of-features approach is proposed for handling time series data, and

conceptual similarities to the CBOS adaptation are exhibited.

Another model, introduced by Du and Tanaka-Ishii [54], leverages an attention

mechanism that utilizes key and value vectors extracted from financial news head-

lines, in conjunction with query vectors derived from quantitative data for stock

forecasting. The generation of these query vectors involves employing stock em-

beddings tailored to individual companies, with the explicit aim of training and

refining these embeddings.

Sarmah et al. [196] have adapted the W2V training algorithms to generate em-

beddings for companies by employing random walks of specified length extracted

from a pruned graph network, treating these paths as ‘sentence-like structures’. In

this graph, individual nodes represent companies, and edges denote correlations
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in return values.

The Asset Embeddings Model, developed by Gabaix et al. [68], assumes that in-

vestors in financial markets organize assets in a way comparable to how documents

organize words in NLP. Here, investors, including holdings, mutual funds, and

ETFs, are analogized to sentences, with the position of a company—determined

by variables such as market capitalization or its proportion in an investor’s port-

folio—mirroring the position of a word within a sentence. Employing a W2V

approach, the model tasks itself with identifying companies with similar positions

within an investor’s portfolio. Furthermore, [68] incorporates the BERT architec-

ture by adapting MLM to predict a masked company using concatenated company

embeddings as input.

In [246], embeddings are also trained and subsequently utilized within the model

pipeline. Unfortunately, there is no explicit evaluation of these embeddings, and

they are not subjected to a standalone investigation. Through contrastive training

methods, the incorporation of negative samples, and specialized loss functions, the

model ensures that similar embeddings cluster closely within the embedding space,

while dissimilar ones are positioned further apart. Deep hashing is used in [275] in

order to represent stock correlations. In the model pipeline in [258] sliding windows

of each time series of each stock are represented as dense vectors. Similarly in [139]

LSTMs are used to create graph nodes.

The model described in [255] utilizes W2V algorithms to analyze market snap-

shots. The methodology employed remains unclear, as the paper does not provide

specific implementation details, nor is the associated code published. Additionally,

attempts to establish contact with the authors for further clarification have been

unsuccessful.

Additional stock embedding methodologies developed by Dolphin, Smyth, and

Ruihai include the application of case-based reasoning [49]. Furthermore, [47] have

adopted a multimodal approach that capitalizes on newspaper articles mentioning

multiple companies. Similarly, the research described in [145] [230] examines the

co-occurrences of company names in news headlines. The latter ones also proposes

to use information about the biggest shareholders per stock. The model in [97] uses
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static metadata like ‘sectors, company descriptions, and the 3-statement financial

data’ [97]. In [217] LLMs are used to extract embeddings using textual data from

the descriptions of SEC reports doing an industry classification task.

An intriguing methodology worth mentioning is presented in [218], which adopts an

almost ‘antithetical’ approach to embeddings. This research aims to generate op-

timized NLP embeddings for financial documents associated with companies that

may lack specifically defined embeddings in the embedding matrix. To predict

these absent embeddings, stock data and stock returns are utilized. Furthermore,

[13] details the construction of a knowledge graph that incorporates company (de-

scription) embeddings along with 15 distinct inter-company relations. In [209],

encoding-decoding techniques are employed to generate high-dimensional dense

feature representations for each stock by applying GRUs or transformers to sub-

sections of time series data, with the aim of predicting future stock prices.

The primary objective goes beyond achieving intrinsic evaluation of embedding

models, understood as representation quality independent of a specific task [196].

The embedding models discussed throughout this chapter are predominantly de-

signed either to facilitate clustering based on specific sectors [49] [50] [196] [174]

or to elucidate market correlations through high-dimensional vector representa-

tions. Furthermore, evaluation methods such as those in [24] [50] [97] [196] involve

finding nearest neighbors for company embeddings and discussing the connections

from an economical point of view. The overarching goal is to enhance extrinsic

performance as characterized in [196] by utilizing these embeddings in downstream

task. Consequently, the focus is placed on developing an application-oriented im-

plementation that effectively translates NLP problems into the SF domain. An

approach to establish objective criteria, proposed in [97], involves searching for

similar stocks either within the same exchange or across different exchanges, with

the ‘actual’ similarity determined with DWT. Moreover, [255] details prediction

tasks based on these embeddings. These tasks include predicting industry sectors,

estimating ESG rating scores, or determining company size. [13] offers innovative

ideas for evaluating embeddings using expert-labeled datasets. The tasks proposed

include similarity prediction, competitor retrieval, and similarity ranking.
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Research Gap Based on the reviewed research, it is evident that although

several initiatives construct embeddings for stocks, often referencing principles

from NLP, the proposed mapping remains underexplored and underutilized.

To the best of the authors knowledge, this work is the first to introduce the pro-

posed SMC and SRE, as explained in Section 6.6, as distinct computational tasks

for embedding training. The names for these non-predictive tasks are inspired by

[54]. To connect these concepts, the W2V model is adapted to a financial context,

using quantitative data both as input features and as target variables. Unlike

previous approaches that rely on abstract stock properties, the proposed method-

ology directly models concrete price movements and absolute price levels, thereby

circumventing conventional predictive paradigms. The only potential exception to

this assertion may be the work presented in [255], which might exhibit similarities

to the X-CBOS/X-SG models introduced in Section 6.6. However, a precise com-

parison remains challenging due to the limited and imprecise description provided.

Furthermore, to the best of the authors knowledge, embeddings are formally in-

tegrated for the first time as a downstream component within the proposed pre-

dictive modeling pipeline, particularly in ASMs that leverage S2V embeddings.

These embeddings, previously analyzed in isolation, are systematically evaluated

here for their effectiveness in modeling relational stock dynamics. Additionally, a

structured investigation into the temporal and market-specific axes is conducted

for the first time using both dominant W2V paradigms: CBOW and SG. Within

the ASM framework outlined in Section 6.11, this paradigm is further extended

by implicitly training context-sensitive embeddings during the pretraining phase.

This proposed mechanism parallels the use of LLM embeddings (e.g. BERT em-

beddings) in NLP, yet remains an unexplored avenue in financial applications. To

the best of the authors knowledge, no prior study has systematically addressed

this gap within the SF domain.

3.0.3 Adapting Hierarchical Models

The preceding sections have outlined how a large body of literature suggests that

stock markets exhibit fluctuations and trends at different frequencies. In [276], for
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example, it is argued that ‘credit and monetary policy cycles’ create periodic pat-

terns, indicating that models able to capture and operate across different frequency

components are especially well suited to these dynamics.

The usefulness of NLP for this challenge is examined, while it is acknowledged that

suitably adapted LLMs provide strong hierarchical processing internally shown by

their capability to process (hierarchically structured) language. As a result, hier-

archical models that process data at different frequencies have been repeatedly

proposed in the literature. Chen et al. [20] criticizes the employment of excessively

fine-grained data, positing that such data may be disproportionately influenced

by macroscopic, coarsely granular trends, thereby underscoring the significance of

hierarchical data processing. Furthermore, as demonstrated in [202], temporal fre-

quencies are crucial for the processing of fundamental data, exemplified through

the disparate temporal representations of news and tweets. Additionally, hier-

archical modeling strategies are employed to represent sentences within specific

contexts as explored in [55].

Given these considerations, it is logical to employ hierarchically structured mod-

els for NLP tasks. However, the authors principal motivation extends to the

hierarchical processing of quantitative stock data, which is a focal point of the

investigation in this thesis. Support for this approach is provided by numerous

related publications. It is explained in [267] that stock prices are shaped by both

short- and long-term commercial and trading activities, reflecting multiple trading

frequencies.

The necessity of considering multiple time windows to accurately predict stock

movements is acknowledged in [203]. This approach addresses the diverse tem-

poral momentums observed in stock movements, which have significantly enhanced

their predictive results. Furthermore, the study in [43] not only acknowledges the

hierarchical structure of time series data but also, through the implementation

of hierarchical attention mechanisms, enables a visualization that highlights the

relative significance of data derived from varying time intervals. In [280], the

identification and integration of distributional shifts are highlighted as essential

components of a model designed for the separate analysis of time series across
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different hierarchically decomposed frequency levels, distinguished into trend and

seasonality components.

Wang et al. [230] acknowledge that stock market fluctuations exhibit regularit-

ies across various short- and long-term time horizons. To capture these multi-

periodic price features, Wang et al. employ a Hyper RNN-Unit. LSTM networks,

as modified in [267], include specialized memory cells that decompose incoming

data across multiple frequencies. Similarly, the HATR model described in [229]

utilizes a hierarchical structure of stacked convolutional layers to discern patterns

at different frequencies. Wavelet transforms are utilized in [5] to represent vari-

ous frequency components and to denoise the data. The study in [4] considers

different time scales as distinct modalities. It employs embedding encodings for

these time scales, which are described as ‘a time-sensitive version of positional

encodings used in transformers’ [4]. Choi et al. [28] introduces a model based

on the FEDformer architecture [277], which is explicitly designed to handle data

across different frequencies. This model integrates seasonal-trend decomposition

to analyze more finely-grained structures. In [214], the authors utilize a model

that separates the seasonal and trend components. They employ a transformer

architecture with varied attention mechanisms to leverage intrinsic periodic pat-

terns effectively. Lastly, [231] critiques traditional attention mechanisms for their

limited capacity to capture pointwise dependencies and proposes an alternative ap-

proach aimed at recognizing broader, higher-frequency patterns critical in financial

contexts. This novel approach suggests a significant shift in modeling techniques

to better understand the complexities inherent in financial time series data.

Other frequency and hierarchical processing methods are also explored in vari-

ous works, including those by [115] [276] (Fourier modification in the attention

mechanism), [259] [20], as well as through the hierarchical VAEs in [110], series

composition in [166], multi-level contexts in [258], and the concepts introduced in

[19], namely the multi-temporal pyramid and the time-wise embedding matrix.

In [244], various graph networks operating at different hierarchical levels model

distinct trend levels within the financial markets. These networks are structured

to represent individual stocks, specific industries, and the broader market. Unlike
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frequency-focused approaches, the hierarchy in [244] is based on stock classifica-

tions, with individual stocks at the base, followed by sectors and then the overall

market.

In classical trading, multi-timeframe analysis is widely used, with indicators ap-

plied across time scales to assess market conditions. As described by Lien, promin-

ent indicators such as the RSI, Fibonacci retracement levels, and Moving Averages

(e.g. the 20-day or 100-day SMA) are integral to this analysis [133]. Consequently,

models that incorporate these technical indicators, effectively engage in hierarch-

ical processing, integrating information across multiple time scales to enhance

predictive accuracy.

Research Gap While the research of models that process stock data at different

frequencies is well represented in the literature, the proposed CWRNN model that

is anticipated has not yet been implemented for stock data. What distinguishes

Clockwork RNNs from existing hierarchical or frequency-based approaches is their

inherent modular structure: hidden units are partitioned into distinct modules

operating at different clock rates. This mechanism allows the model to naturally

capture both short-term fluctuations and long-term trends without requiring ex-

plicit frequency decomposition techniques such as Fourier transforms or wavelet

analysis. Despite their proven success in speech recognition tasks, where temporal

hierarchies are equally crucial, CWRNNs have not yet been applied to financial

time series forecasting. This represents a clear gap in the literature: the potential

of CWRNNs to provide an efficient and interpretable way of handling multi-scale

temporal dependencies in stock market data remains unexplored. Addressing this

gap is a central contribution of this thesis.

3.0.4 Transformer

The most successful NLP models, particularly those categorized as LLMs, are

predominantly based on transformer architectures and pretraining techniques. In

this section, the work will be contextualized within this framework by addressing

related research. An exhaustive review of all transformer-based financial models
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is not attempted. The transformer has become a standard model; surveying every

application would add little to this discussion. Recurrent transformers for pro-

cessing extended financial sequences in the stock domain are introduced in this

work.

To the best of the authors knowledge, there are no existing examples of recurrent

transformers being utilized to enhance ∆t and facilitate the reprocessing of longer

sequences. The only approach identified that integrates LSTMs and transformers

is presented in [236]. However, in this case, the architecture operates in the reverse

manner: global attention is computed over the output blocks of the hidden states

produced by locally operating LSTMs.

Given this novelty, focus will be placed on literature that, on the one hand, sup-

ports the potential benefits of using longer sequences and, on the other hand,

explores techniques to manage the challenges associated with such sequences. It

is argued in [280] that processing long sequences can facilitate handling domain

shifts.

Despite criticism regarding the use and effectiveness of transformer architectures

for time series analysis, particularly concerns raised about temporal information

loss due to the permutation-invariant nature of self-attention, the limited improve-

ments observed with larger input windows, and the increased complexity without

clear advantages over simpler models as highlighted by Zeng et al. [261], trans-

formers remain widely utilized in time series and multivariate time series tasks.

A key reason for their continued application is arguably the inherent distance

invariance of the transformer model, which can be advantageous in capturing

dependencies between market snapshots and stock relationships, depending on

the specific implementation. The relevance of temporal attention mechanisms is

further supported by ablation studies, such as those conducted by [122] [258].

In contrast, [186] advocate for recurrent architectures, arguing that they offer

greater robustness against noisy data characteristics, making them a compelling

alternative in certain time series contexts.

Additional support for the use of multi-head attention mechanisms is provided in

[134], where it is posited that investors tend to adhere to specific strategies for
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buying and selling stocks. When a significant proportion of market participants

engage in identical strategies, discernible patterns emerge within the stock market

data. When multiple patterns are present, a single model may not capture them

well. This limitation is said to be mitigated through the use of multi-headed

attention.

Furthermore, [165] surveys several transformer adaptations for time series pro-

cessing. It is stated that unlike words in a sentence, a single timestep has little

standalone meaning, making the extraction of local structure important for inter-

connections. It is also argued that previous methodologies predominantly utilized

point-wise input tokens with channel independence, necessitating the integration

of stock correlation data as an additional context. Accordingly, robust input rep-

resentations are treated as a critical step before downstream training in several

models.

In studies such as [209] [246] (which also consider datasets divergent from typical

stock data such as commodity closing prices or indices related to the US Treasury

and inflation) embedding representations are pretrained specific to the task at

hand. The technique of contrastive pretraining, as discussed in [257], involves

inserting varied sequences into the model to predict their sequential congruence,

drawing parallels to the NSP task in NLP. These parallels are acknowledged, and

the adaptation and further emphasis of this approach are proposed to facilitate

the learning of macroeconomic trends.

Initial concepts for generalized methodologies using transformers for Multivariate

Time Series were introduced by Zerveas et al. [263] and further developed by Nie

et al. [165], leading to a universal framework for multivariate time series analysis.

Key elements of these methodologies include the patching of overlapping univari-

ate time series and the assumption of channel independence, which necessitates

additional context for information on stock relationships. Patching is a method

that is often followed in time series processing with transformers, for example in

[234] as univariate forecasting. These studies also emphasize the importance of

initial input denoising [263]. While the datasets used in [165] [263] did not spe-

cifically focus on financial data, the core concepts have been adapted for financial
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applications in other works. Due to the challenges inherent in the representation

of inputs, additional solutions are proposed as outlined in Section 6.11. In the

portion of this thesis examining the utilization of pretraining and transformers,

channel mixing is employed, which necessitates the transformation of input time

series or market snapshots into an embedding space that encapsulates stock and

indicator interrelationships. One could argue that this approach on its own falls

short of fully capturing the complexities of stock relationships. Enhancements to

this model will be addressed in the ASMs detailed in Section 6.11.

Inspired by these ideas, the study by Fan et al. [242] employed a transformer-

encoder model for stock ranking tasks. Due to the principle of channel inde-

pendence, each stock feature and individual stock is processed through a separate

encoder, with relationships among stocks incorporated as additional contextual

information through a graph model. This methodological approach is prevalent in

several models discussed in Section 3.0.6.

Fan et al. [61] introduce one of the few generative models employing an encoder-

decoder architecture. Prior to stock prediction and ranking tasks, the model un-

dergoes training on a contrastive task, which aims to maximize the similarity of

historical representations within the same stocks, ensuring they align more closely

than those of different stocks. It has been demonstrated in [61] that a model

trained on these dual tasks can achieve comparable performance on specific finan-

cial tasks with significantly reduced training data. The denoising objective, which

plays a critical role in enhancing model performance, is also employed in [246]

[249].

Numerous models leverage transfer learning which involves training models on

stock data from a specific market, stock, or index, and subsequently applying

the learned parameters to different markets or indices. This strategy is primarily

motivated by two objectives in the realm of SF. Firstly, some models aim to ab-

stract general data patterns or market dynamics that could be applicable to other

markets. On the other hand this approach seeks to mitigate the lack of sufficient

training data and to circumvent the need for retraining models from scratch. In

practice these aims are often aligned: models seek patterns that transfer across
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markets to improve robustness and reduce computation. Hoseinzade et al. [88]

employed a transfer learning strategy to distill generalized patterns by training on

a primary dataset and subsequently utilizing the acquired weights for a second-

ary dataset. This approach intentionally avoids overfitting the initial dataset to

maintain a level of abstraction. This methodology is predicated on the assumption

that financial markets exhibit broadly similar characteristics, a concept also ex-

plored in [88]. The underlying motivation for this approach is to capture universal

market dynamics during the pretraining phase, leveraging general embeddings for

equities and encapsulating overarching trends within the vector space represent-

ation. Hoseinzade et al. argue the efficacy of transfer learning, highlighting its

advantage in reducing the necessity to retrain models from scratch. In [163], pre-

training (inductive transfer) was used mainly because interday datasets are small

and because it can shorten training by avoiding training from scratch each time.

The methodology involved training on a bigger dataset followed by fine-tuning on

a more narrowly defined set of target stock data. However, this approach has its

critics, as noted in [85], where the risk of negative transfer is discussed in contexts

where the source and target datasets are notably dissimilar. The scarcity of data

is a recurrent theme in the literature, with [184] detailing the training of mod-

els on the IHSG index and their subsequent application to more specialized

indices. A similar strategy is described in [242], where a model initially trained

on NASDAQ data demonstrated enhanced performance on NYSE stocks

after additional training. The scalability aspect is identified in [150] as the primary

motivation for training the model on a diverse set of financial time series to achieve

reduced training time in downstream tasks. The pretraining assets include MSFT

, AAPL , GOOGL , AMZN , ETH / USD , XRP / USD , LTC

/ USD , and ADA / USD , while the downstream task is performed on

BTC / USD .

Several models address the challenges of data paucity and stochastic, non-static

market behaviors through synthetic data integration. The model presented in [71]

includes a denoising component to reduce the impact of artificially added noise.

Similarly, [65] uses adversarial data to challenge the latent feature representations
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in later stages of the model. Moreover, the strategy outlined in [249] involves the

use of a masking technique within a graph model, creating new training samples

for each masking, that delineates stock and industry interrelations. In [128], parts

of the graph are masked during pretraining for bond-default prediction. Additional

instances of utilizing transfer learning and pretraining techniques are evidenced in

[28], where models are initially trained for SPP tasks prior to being fine-tuned for

portfolio optimization applications. Likewise, [113] illustrates an approach where

SMP is done before fine-tuning on SPP.

As previously outlined, agreement with [34] is expressed, as it is posited that

processing longer sequences may be beneficial for addressing the non-stationarity

inherent in stock data. Therefore, similar to [34], it is hoped that the time-invariant

self-attention mechanism is a suitable approach for this.

In [280], it is argued that transformers exhibit strong performance in handling

seasonal irregularities. This supports the anticipation of utilizing transformers in

the proposed approach. Furthermore, the study highlights that the handling of

long-range dependencies (as addressed by recurrent transformers) has not received

sufficient attention.

However, transformer models are generally not suitable for processing lengthy

sequences due to their quadratic time and memory complexities.

Despite these limitations, transformers remain advantageous for processing stock

price data, primarily due to their self-attention mechanism, as also noted in [242].

To reconcile the need for handling long sequences with the capabilities of trans-

formers, three novel recurrent transformer architectures have been proposed in

[224]. These architectures share similarities with the Recurrent Memory trans-

former model [10], the TransformerXL model [31] and the Block-Recurrent trans-

formers [94], aiming to enhance the handling of long sequences without comprom-

ising computational efficiency. In [115], the capabilities of transformer models to

model long-term dependencies are emphasized, advocating for the use of recurrent

transformer models to address this need. Supporting this approach, publications

such as [110] underscore the importance of long-term horizons for effective volat-

ility forecasting, stating that ‘a long-term horizon is crucial for forecasting its
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volatility’ [110].

As depicted in Section 2.3, it is uncommon to encounter larger ∆t values; typ-

ically, extended time horizons are associated with coarser temporal granularity,

such as interday data. In addition to the patching strategy previously introduced,

a prevalent method to incorporate longer time horizons at finer granularities in-

volves stacking data frames, as described in [43]. This approach underscores the

significance of the ∆t values.

The quantitative model presented in [189] integrates a bagging-inspired multi-

transformer architecture tailored for volatility forecasting. This model involves

random sampling of input data segments, which are subsequently distributed

among individual transformer attention heads. The head outputs are then com-

bined. Parallels are exhibited between this methodology and the recurrent trans-

formers introduced, wherein lengthy inputs are segmented into discrete chunks.

However, [189] primarily cites resource constraints as an indirect motivation for

this strategy, aiming to enhance the stability of the training process through the

adoption of a bagging-inspired approach. The stock data model delineated in

[207], which employs State Space Models as detailed in [78], represents a relatively

recent and promising advancement in the modeling of extended sequences. This

supports using long sequences in financial modeling. Despite not being centered

on financial data, the study presented in [165] demonstrates that even within

the constraints of the transformer architecture, performance benefits accrue from

longer sequences. Furthermore, the analysis in [46] advocates for the use of pro-

longed time windows, identifying optimal performance with 120-day periods. This

window is much longer than those in Section 2.3.

Nevertheless, there are scholarly contributions that present counterarguments re-

garding the utilization of extensive ∆t values in relation to noisy data environ-

ments. For example, the study in [233] suggests that high ∆t values increase

cross-entropy measures because of the inherent properties of noisy data. Simil-

arly, [20] supports the preference for short-term forecasting, rationalized by rap-

idly changing dynamics and the potential for unexpected events. Moreover, the

experiments conducted in [268], which employed larger ∆t values for interday data
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intervals such as 5, 7, or 10 days, have demonstrated a decline in performance.

It is critical to acknowledge that for all studies arguing against the adoption of

large ∆t values, these metrics are generally considerably smaller than the values

proposed for ∆t in the authors research (wrt. some transformer models). In [264],

temporal domain shifts and changing market conditions are cited as reasons for

caution when incorporating older data, as the rules and patterns learned from past

data may no longer be relevant to current conditions.

Research Gap This thesis aims to bridge several critical gaps in the application

of transformer models in the context of financial time series processing. To this

end, inspiration is drawn from advancements in NLP, and established pretraining

methodologies such as MLM and NSP are leveraged. Notably, to the best of the

authors knowledge, the proposed adaptation of NSP in the form presented in this

thesis has not been systematically explored in this domain. The only comparable

approach—though differing in its implementation—is presented in [257]. Further-

more, with respect to MLM, a multidimensional/multi-axis masking framework

has been developed, with spatial, temporal, and feature-wise dimensions. This en-

ables a systematic evaluation of transformer architectures under these constraints.

Within this model, both classification and regression tasks are systematically ana-

lyzed in the context of masking. Additionally, a significant gap persists in the

literature regarding the evaluation of transformer-based architectures across a di-

verse range of downstream tasks. To the best of the authors’ knowledge, this is

the first approach that processes substantially longer sequences while preserving

transformers’ time-invariant temporal modeling. This is accomplished by integ-

rating the proposed recurrent transformer architectures, which enable effective

modeling of long-range dependencies while preserving temporal coherence. To the

best of the authors knowledge, he is also the first to provide pre-trained recurrent

transformers for time series in general and quantitative stock data in particular.

Moreover, in contrast to many SOTA models, the imposition of channel independ-

ence and patching strategies is deliberately avoided in the proposed approach.
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These conventional methodologies often disrupt the spatial and relational struc-

ture of the input data, thereby obscuring critical interdependencies among finan-

cial indicators of different stocks. By maintaining the holistic integrity of spatial

and correlation-based information, the representational capacity of transformers

in financial time series analysis is enhanced by the proposed model. Finally, an

absence of research is observed in which SOTA LLMs are employed as transformer

encoders, pretrained on financial data, and subsequently utilized for downstream

tasks such as SMP, SPP, or SDM.

3.0.5 Doc2Vec

The conception of the proposed Doc2Vec adaptation involves encapsulating C (see

section 6.2) across a temporal span ∆t, thereby forging dense, abstracted repres-

entations of the prevailing market dynamics. This approach is analogous to the

methodology utilized in Doc2Vec models, where documents are encapsulated into

high-dimensional embedding vectors. These models are used to improve training

for downstream tasks, provide standalone visualizations, and support comparat-

ive analysis, similar to Stock2Vec (see Section 6.6). Although embedding mar-

ket dynamics over extended periods is rarely documented, related strategies that

integrate dense vector representations into model pipelines have been reported.

Notably, the authors prior work [223] pioneered the concept of generating market

embeddings over protracted durations and conducting their evaluations. To the

authors knowledge, this remains a unique contribution. No direct predecessors are

reported, only related studies use dense vector representations to compress inputs

and provide contextual information to models. These methods are typically used

to inform the model about broader market trends and to improve interpretation

and prediction. Other approaches regulate learning during exceptional situations,

which are also targeted in this work via Doc2Vec adaptations.

The utilization of Doc2Vec embeddings is proposed to facilitate learning regular-

ization by identifying exceptional market situations that are significantly distant

from normative states and may not generalize effectively. The idea aligns with [92],
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where difficult examples are first excluded from training and attention is later fo-

cused on critical periods. By contrast, exceptional periods are de-emphasized on

the premise that the dynamics observed then are unlikely to be reproducible. In

related works, such as those in [115] or in [160], a similar methodology to the

authors regularization method is utilized, wherein the loss function is ‘adjusted

according to domain rules to obtain a better network’ [115]. In [223], domain

knowledge is encapsulated by the assumption that exceptional situations can be

identified through the anomalous distances of embeddings relative to other data

points. One of the limited instances where dense representations are systematic-

ally compared occurs in the study presented in [208], where time series data from

cryptocurrencies are encoded, and the reconstruction error is utilized for anomaly

detection. The authors work in [223] proposes a similar methodology, employing

the distances between vector representations to detect anomalies, thus facilitat-

ing the identification of exceptional market conditions. Further, [142] explores

the model weights under varying market conditions, which effectively highlighted

the extraordinary circumstances during COVID-19 as well as the associated mar-

ket volatility. In [169] similarity vectors are calculated and dissimilar sections in

the data are muted. Modulating weights to reduce the influence of exceptional

situations during pattern abstraction—and increasing them once conditions sta-

bilize—closely resembles the learning-regularization method R(.) (F ⟨R⟩) proposed

in [223]. The necessity for some form of learning regularization in response to

exceptional situations is indirectly evidenced in various studies. For instance,

[201] observes substantial performance discrepancies between models applied to

US-American and Chinese stock markets. This divergence is attributed to the

distinct market conditions during the test periods; specifically, the authors note,

‘The China & Hong Kong test period encompasses the 2015-16 China Stock Mar-

ket Turbulence—a bearish market scenario’ [201] whereas the ‘ S&P-500 test

period reflects standard market conditions’ [201]. The implication is not only

the acknowledgment of ‘standard market conditions’ but also the assumption that

model performance under these conditions tends to be superior, a hypothesis that
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was empirically validated in this work. This observation motivates the learning-

regulatory approach, which does not necessarily improve performance in atypical

markets but is intended to prevent these periods from disproportionately shaping

training. The rationale is that the dynamics regulated are likely to be less applic-

able in future scenarios. In [30], poor performance in terms of SPP is explained by

high price fluctuations, which may suggest—albeit to a certain degree—exceptional

circumstances.

As mentioned at the outset, the Doc2Vec approach exhibits significant parallels

with models designed to generate dense vector representations of segments within

time series data. The model described in [267] utilizes internal memory states

to encapsulate trading patterns, thereby transforming these into compact, dense

representations of numerical data across temporal intervals. Concurrently, the

summarization of stock data blocks, particularly concerning media stock prices,

is addressed in [51]. Furthermore, the model outlined in [110] employs VAEs to

generate ‘more complex and low-level latent variables’ [110]. Further examples in

this field include the decomposition of sequential data into separate components,

as shown in [115], and the use of the ‘routing-by-agreement’ [138] method to

classify features. Significant use of AEs for creating dense input representations

is documented in several studies, including [46] [81] [247] [208] [214]. In [280],

the idea of learning representations for seasonality and trends through an AE is

proposed to integrate them into the model. In particular, [214] argues that such

feature representations are key to identifying seasonality and trends in the data.

For the models in [269], factorization and reconstruction techniques are utilized

to generate low-dimensional data suited for subsequent analytical processes. The

study in [16] discusses data compression as a method to reduce the computational

demands inherent in processing stock data. Moreover, [20] explores models that

produce coarser data granularities within the modeling pipeline. Conversely, the

challenge of feature sparsity, as highlighted in the literature such as [55], can be

mitigated through the application of dense representations like those found in the

Doc2Vec adaptions.

The authors proposed Doc2Vec based abstract summaries of market conditions
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over a period of time can be used as indicators of macroeconomic trends. In [5],

AEs are used to learn abstract representations of multivariate data, with mac-

roeconomic information added as contextual input. Similarly, the study in [230]

utilizes a graph contrast module to learn macro-market scenarios, positing that

this approach could mitigate issues arising from non i.i.d data. In [101], a HMM is

adopted to conceptualize the current macroeconomic market conditions as hidden

states, aiming to delineate distinct, discrete market conditions through a special-

ized training regimen dubbed ‘Stock State Modeling’ [101]. The work in [264]

introduces a contrastive learning task that leverages embeddings of sequences to

discern domain shifts effectively. This methodological framework seeks to train

the model on recognizing and adapting to these shifts. The concept of Neighbor

Similarity was proposed in [223], based on the premise that embeddings in close

proximity are likely to exhibit analogous future values. Although this approach

yielded limited success beyond Volume prediction, it provided valuable insights

into embedding-based predictive models. Conversely, [264] tackles this issue from

an alternative perspective by initially generating embeddings where future price

trends serve as labels. The labels, while not directly employed in making predic-

tions, serve to guide the spatial proximity of embeddings within the vector space,

with the Frobenius norm facilitating this arrangement.

In the context of fundamental/T data, the concept of generating event embed-

dings is explored. Such embeddings involve the transformation of specific events

derived from fundamental/T data into high-dimensional vector representations.

These vector representations effectively encapsulate market dynamics over desig-

nated periods or under particular conditions. Event embeddings are considered

analogous to the proposed quantitative Doc2Vec adapted embeddings [223]. The

literature presents several models that incorporate event embeddings or analogous

structures. Notable examples include works by [232] [18] [251] [44] [279] [269] [32].

These models utilize embeddings to interpret and predict market behaviors by

encapsulating event-driven market characteristics.

Several models utilizing T data exhibit profound similarities with applications of

quantitative Doc2Vec adaptions, particularly in their attempts to contextualize
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the latent representations in relation to one another. In the model from Ma et al.

[149], news events are employed to create event embeddings. Ma et al. underscore

the necessity of modeling the relationships between different events to facilitate

effective learning, referring to techniques utilized in NLP for Doc2Vec models.

Moreover, in [38], event embeddings are integrated into a graph to systematically

establish inter-event relationships.

Research Gap Unlike adaptations such as Stock2Vec, the literature reports

no dedicated pretraining or evaluation of market-situation embeddings, let alone

their integration into ML pipelines. One approach in [121] incorporates a distinct

evaluation methodology, yet it remains fundamentally different from the proposed

in both structure and assessment. This method employs a hybrid framework

that integrates TS and fundamental mixed-method approaches, exemplified by

the concept of the ‘investor information space’ introduced. This framework util-

izes Tucker decomposition to uncover latent relationships among variables. It is

expected that, unlike models that implicitly produce dense vector representations

of long time periods, better quality for the intended applications can be achieved

by explicitly analyzing the embeddings. As mentioned at the beginning, there are

some learning regulation approaches that are similar to the one proposed in the

authors prior publication, i.e. [223] but a research gap exists in the regulation

of training through the evaluation of market conditions based on their estimated

reproducibility/rarity.

3.0.6 Adapted Speech Models

Following [132], foundation models are defined as pretrained, often self-supervised

models trained on large datasets to learn general domain representations. These

models have become the cornerstone in fields such as natural NLP and CV. The

authors suggest that adapting these models to time series data—referred to as

TSFMs—offers a promising direction for future research. The argument rests on

zero-/few-shot capabilities and broad cross-domain applicability.
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Liang et al. highlight examples of general-purpose TSFMs such as TimeGPT [72]

and Lag-LLaMA [191], which diverge substantially in both concept and target do-

main from the proposed ASMs proposed in this thesis. The study categorizes the

pretraining tasks for these models into two principal types: generative tasks, which

include generative decoder models and predictive next-token prediction tasks ex-

emplified by [220], and contrastive learning tasks, as utilized in NSP/TM [220].

In their perspective paper, Guo and Shum [82] propose the idea of building found-

ation models for quantitative finance, though they present neither experiments

nor a concrete implementation. They term the concept the ‘Large Investment

Model’ [82], by analogy to LLMs. The model is envisaged to be pretrained on

large, sector-wide data across assets and markets and then fine-tuned for specific

tasks.

Their rationale follows the success of self-supervised pretraining in NLP. How-

ever, their focus pivots specifically towards the application of generative models.

In contrast, this thesis adopts MLM and NSP as the main pretraining tasks.

The utilization of predictive models, akin to BERT-like architectures, is advoc-

ated, predicated on the assertion that predictive forecasting alone (in contrast to

generative,multi-step forecasting) within the stock domain presents considerable

challenges. This complexity limits the practicality of purely generative approaches,

as noted in prior work. Rather than generative pretraining on separate univariate

series, the approach here incorporates multivariate, relational, and spatio-temporal

dependencies among stocks. A pretraining strategy that involves a masking task

is employed, as it is believed to better capture the dynamics inherent in financial

datasets. For the processing of univariate time series, they propose the adoption

of regressive generative tasks and patching techniques for the transformer-based

Large Investment Model, methods that are conceptually similar to those outlined

in [165].

Because relational data are absent, structured inputs (e.g., graphs) are added dur-

ing fine-tuning. Consequently, the dimension of relational information is construed

as a component pertinent to downstream tasks. Pretraining uses indicators and

time-step cues but excludes cross-indicator and cross-series correlations described
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in [62]. Data diversity is emphasized and is central to the proposed ASMs. This is

important because the models are trained on data from various national markets,

as explained in Chapter 4. In the study referenced by [67], a foundational model –

TimesFM [35] – undergoes pretraining utilizing a variety of financial datasets, ana-

logous to the methodologies employed in [280]. Its generative pretraining targets

next-step prediction and is followed by task-specific fine-tuning. The authors re-

port weaker performance without pretraining. The in [82] proposed enhancements

for finetuning encompass a range of techniques, notably SMP and SPP, alongside

advanced strategies in portfolio optimization and risk management.

For the domain of risk management, a series of advanced methodologies utiliz-

ing ASMs is proposed in Section 9.1. Their strength lies in modeling relational

dynamics relevant to risk assessment. Additionally, the potential of fundamental

investing, also proposed in [82], is explored through the lens of adapted vision and

language (V+L) multimodal models. In this setting, ASMs assume the backbone

role typically held by LLMs. According to Guo and Shum, the universality of

LLMs should be considered in several dimensions when designing Large Invest-

ment Models: instrument universality (which is outside the purview of this thesis

due to data limitations); exchange universality (which is achievable within the

operational constraints); and cross-frequency universality (manifest in both hier-

archical models and during the pretraining phase). They ask whether ‘pretraining

+ fine-tuning’ is feasible for quantitative stock research and suggest that such a

paradigm shift could significantly enhance research efficiency within the field.

This thesis presents a constructed and evaluated implementation of a robust in-

vestment model. Proposed as an ASM, this Large Investment Model represents

the culmination of various explorations into NLP-adapted methodologies. It is en-

visaged as a progressive stride towards realizing an ‘artificial general intelligence

system for quantitative investment’ [82].

In addition to the concept of adapting foundation models for application to time

series, particularly within the realm of quantitative stock data, existing method-

ologies have explored the direct utilization of LLMs for such purposes. Similarly,
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Wang conducts an empirical study on large language models for asset return pre-

diction, outlining the scope and limitations of such applications [288]. However,

these applications exhibit three principal limitations, which this thesis intends

to address comprehensively. First, it is critical to acknowledge that instead of

utilizing LLMs as foundational models, the prevailing approach employs gener-

ative transformer decoders, which, although similar to LLMs, exhibit substantial

differences in both function and design. Second, the structural orientation of

LLMs typically prioritizes representation learning over advanced temporal pro-

cessing capabilities, often aligning more closely with embedding strategies from

transformer implementations, as outlined in Section 6.11.1. Third, the domain of

quantitative finance is conspicuously underrepresented in these models, suggesting

a gap in the current methodology and application. Furthermore, the literature,

such as [102] [165] [67] [15], frequently highlights the prevalence of channel inde-

pendence in most transformers used for time series data. This contrasts with the

spatio-temporal design of the proposed ASMs.

In the seminal work by Jin et al., as previously referenced in [222], the direct

adaptation of LLMs for time series analysis may initially appear counterintuitive.

However, Jin et al. highlight that this methodology is embraced in several studies,

such as [278] [22] [137], which either employ LLMs or their transformers and

self-attention mechanisms. Despite fundamental differences from the proposed

approach—such as in [72] (which lacks an LLM backbone) and [191]—mainly due

to their focus on generative prediction and pretraining, the use of LLMs is clearly

identified as a promising research direction.

Additional applications of LLMs for time series analysis have emerged in non-

financial sectors, such as in traffic forecasting, where they are used for generative

tasks, exemplified by works like [137]. This approach deviates notably from that

of ASMs in several respects: it lacks pretraining, eschews the incorporation of

context-sensitive embeddings that are pretrained, and employs frozen components

within the model architecture. Moreover, the structural foundation significantly

diverges from that of ASMs, as it utilizes a GPT-2 backbone wherein feature

vectors, derived from each variable of the multivariate time series, are explicitly
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provided.

In [15] the motivation for the adapted LLMs (here again GPT-2) (again not for

financial data) are the few shot capacities and the self attention mechanism of the

LLMs, but the time series recognition abilities are acknowledged as a problem.

An example in quantitative finance in the use of LLMs, in this case BERT, for

time series data can be found in [136] where the BERT-transformer algorithm is

used to predict the market at future states by leveraging its structure to encode

transition probabilities, replacing selected values with masked states, and refining

predictions through the residual-based transformer framework. The inputs of the

model (and BERT) are (regressive) sentimental and illiquidity variables which is

therefore remotely similar to the authors embedding-based approaches, in which

the LLMs are also treated as special transformer-encoder variatons. The 21 in

[136] different sentiment values are not textual data but technical indicators such

as EPS.

As previously noted, analyses that solely focus on ‘uni-stock movement prediction’

[123] without considering intercorrelations among stocks are generally insufficient

for accurate stock price prediction. Several studies, such as [240] [123] [200] [249]

[197] [179] [66], have criticized the common practice within SF of examining stock

trends as isolated time series. The critiques stress the omission of inter-stock

relations, which are crucial for understanding market moves.

The investigation of inter-stock correlations as ‘multi-stock movement prediction’

[123] is widely recognized in the literature as a critical element for accurate SF.

Numerous studies underscore the importance of modeling relationships between

stocks comprehensively. For example, it has been shown that irrelevant informa-

tion, such as prices from unrelated stocks, can negatively impact prediction per-

formance [116].

In [53], the limitation of relying solely on historical price data for predicting fu-

ture trends—rather than incorporating intercorrelations—is explicitly highlighted.

This thesis aims to address this research gap by developing models that integrate

intercorrelation analysis to enhance predictive accuracy. Through the proposed ad-

aptation of MLM techniques and the contextualized learning of embeddings and
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relationships, a concept is used that comes close to the idea of ‘relation discovery’

presented in [123].

The most pivotal argument in this domain is centered around the identification

of stock intercorrelations as a fundamental mechanism for predicting stock prices.

The concept of momentum spillover is frequently mentioned in literature, e.g. in

[230] [26]. This phenomenon describes how the momentum—whether upward or

downward trends—of one asset or market can influence and propagate to other

assets or markets [3]. Stocks from the same industry or supply chain often exhibit

correlated movements, underscoring the interconnected nature of financial markets

[240] [174] [230]. However, as stated in [26], not every movement characteristic

necessarily has to spill over to other stocks.

Many studies emphasize the value of incorporating stock relationships within pre-

dictive models, identifying this approach as one of the most promising [242] [259]

[249] [204] [185] [174] [231] [33] [269]. Furthermore, some research initiatives utilize

pre-defined relationships based on correlations, industry sectors, or even external

databases like Wikipedia to enhance model accuracy [230] [66] [166] [199] [108]

[25] (using fund investments to create graph edges). However, this approach has

been criticized by several works, which argue that relying solely on predefined

relationships is inadequate [242] [174] [124] [259] [275] [26]. It is increasingly ac-

knowledged that the relationships among stocks must be contextualized tempor-

ally, recognizing the dynamic nature of these relationships. In the ablation study

in [26], different types of relationships, which are also compared in the attention

mechanism, are tested and the inferred relations perform significantly better than

the predefined ones such as ‘supplier’, ‘customer’ or ‘competitor’ (up to 2.7% SMP

accuracy).

Modeling the temporal context is crucial not only for capturing relationships

between stocks but also for identifying broader market trends. As noted in [244],

different stocks have varying levels of influence on the overall market state, and

this influence can change over time. Such modeling is crucial for a comprehensive

understanding of market dynamics and for the accurate representation of temporal

variations in stock importance.
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The main challenge is explained by Chen et al. as ‘There are two major challenges:

it is non-trivial to model the relationship between corporations; it is difficult to

integrate corporation relationship into existing prediction model’ [24]. This is the

first gap/challenge that is intended to be addressed with the ASMs. The authors of

[242] highlight the superiority of models that dynamically represent relationships.

Consequently, spatio-temporal models have become highly popular for predicting

stock prices due to their ability to capture these dynamic interactions, for their

efficacy in stock price prediction and the ability to reflect the complex and time-

varying nature of stock relationships. The perspectives are concurred with, and

it is contended that relationships among stocks are too intricate for static models

and must be understood as inherently dynamic. In line with this, the viewpoint is

supported that creating an embedding which captures stock price changes across

companies over time effectively represents a company’s temporal dynamics [255],

and the critical importance of considering temporal contexts in modeling stock

relationships is acknowledged.

As posited in Chapter 1 and in [222], LLMs are well-suited for spatio-temporal data

analysis. Conceptually, LLMs process data that is sequentially organized, such

as word-tokens, which are represented through their embedding vectors positions

within a multidimensional vector space [222]. These vectors not only represent the

tokens but also encapsulate their interrelationships and, after the addition of the

position embedding, their temporal correlations. In the domain of NLP, numerous

tasks rely on the sequential processing capabilities of LLMs. These tasks include

predicting future developments of an input sequence, such as in next-token predic-

tion, as well as generating comprehensive semantic interpretations from structured

inputs, such as sentiment analysis. This requirement is particularly relevant for

financial time series data, where stock prices are temporally ordered and exhibit

high intercorrelations. Although most LLMs are based on transformer models,

which have proven effective in semantic correlation extraction across various SF

models, they encounter specific challenges when applied directly to time series

data. Criticisms, such as those presented in [261], argue that despite their efficacy
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in semantic analysis, transformers struggle to capture temporal dynamics effect-

ively due to their permutation-invariant self-attention mechanism. This limitation

is a significant concern when transformers are used for SF, as many existing ap-

proaches fail to adequately address the dual need to process both indicator and

stock correlations within the temporal dimension. These correlations are often

treated simply as extra embedding dimensions, leaving it to the attention mech-

anism to infer inter-temporal relationships—a task it is not inherently designed

for. This oversight can undermine the model’s ability to leverage the full pre-

dictive power of temporal data, thereby impacting the effectiveness of stock price

forecasts.

To provide a comprehensive overview and acknowledge research that shares the

same motivation, the relevant studies will be categorized into three distinct groups.

Firstly, models that exhibit characteristics similar to ASMs will be examined, in-

cluding the three key capabilities of spatio-temporal processing, the ability to

generalize or expand, and proficiency in few-shot or zero-shot learning. The last

feature being crucial for managing the dynamic and often unpredictable shifts in

data distributions. Secondly, models that employ techniques akin to those inten-

ded for use—particularly those that utilize embeddings to represent stocks—will

be explored. This category includes models that treat technical indicators as a

form of embedding or those that incorporate a global contextual understanding

through embeddings. Lastly, models that either utilize LLMs—which diverge sig-

nificantly from most of the approaches taken in this thesis—or models from other

domains, such as vision, that are adapted for SF, will be acknowledged. This seg-

mentation will allow us to delineate the landscape of existing methodologies and

highlight the innovative aspects of the authors approach in integrating stock data

with LLMs.

Initially, models designed to incorporate attributes analogous to ASMs is ex-

plored. The foremost, and perhaps most critical attribute, is the capability to

model spatio-temporal relationships. As elucidated in [100], a primary challenge

in asset representation is capturing the dynamics at specific timesteps. This is-

sue has been addressed by [124], who developed novel correlation representations
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for every t (see Section 6.2). Furthermore [230] argue that each stock needs an

individual and temporal-dependent representation encoding.

The integration of temporal dimensions and spatial representations of stock rela-

tionships has precipitated the development of numerous spatio-temporal models.

Predominantly, these models (partially) operate in a non-euclidean space and em-

ploy graph-based or process-based graph neural networks to delineate stock rela-

tionships [231] [174] [26] [240] [259] [204] [98] [33] [242] [249] [229] [53] [163] (sorting

stocks in terms of similarity as an additional context) [139] [25] [108] [244] [123]

[79]. Ablation studies in [79] further highlight the effectiveness of graph-based

approaches compared to relying solely on time series information.

For these non-Euclidean models, [175] provides a comprehensive conceptual over-

view that is widely adopted in the GNN-based literature reviewed herein (similar

to the overview in [124]). In this paradigm, temporal information is processed

through a dedicated temporal encoding mechanism, while spatial dependencies

are captured within a relational module, typically constructed using a GNN or a

similar graph-based model. In the realm of NLP, parallels can be drawn to CLM,

where Π (see Section 6.2) encapsulates relational information i.e. the graph, and

(w̃(1), . . . , w̃(t)) represents the time series. The underlying graph structure is typ-

ically based on correlation or similarity matrices—such as the Pearson correlation

coefficient [175] [79]—or on predefined relational graphs, sometimes built from

textual data. As emphasized in several studies, such as [53] [79] [167], it is crucial

to account for the temporal aspect of stock data, which can also manifest in dy-

namically evolving relationships and structural changes within relational graphs.

Alternative approaches which depict a method of working in an Euclidean space

include the utilization of tensors [203] / stock correlation matrices [93] [125]. Cer-

tain studies, such as [242] [33], assert that employing singular graph structures

is insufficient to capture the complexity of financial networks. Consequently, sev-

eral works have adopted the use of multiple graphs to represent different types

of relationships, as demonstrated in [185] [230]. Others have utilized hyperedges

/ hypergraphs to enhance the expressive power of these models, as for example
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done in [206] [147]. Specifically, [230] incorporates techniques from the NLP do-

main—namely, Word Context Factorization and Positive Pointwise Mutual In-

formation—to refine the representation within hypergraphs, thus enriching the

model’s ability to encapsulate and analyze multifaceted relational data. In [146]

Transfer entropy is used to model causal relationships between stocks.

Other models incorporate multiple modules for spatial, temporal, and spatio-

temporal dimensions such as [62] [37]. It is widely acknowledged that embedding

this relational information within a temporal context is crucial to model efficacy,

as supported by [174] [124] [204] [119] [249] [203] [259]. Numerous studies employ

DWT to generate time-series dependent correlation information, including [33]

[119] (Logistic Weighted DWT) [231] [242] [204] [20] [53] [177].

The capacity to manage distribution shifts represents a critical quality in the ad-

aptation of speech models. Jeon et al. [100] argue that while modern SF models

effectively capture common trends, they tend to downplay sudden changes by

treating them as anomalies or outliers. This classification approach may result in

the oversight of significant market transformations, potentially culminating in sub-

stantial investment losses. A key challenge in developing such models is maintain-

ing sensitivity to both long-term trends and sudden market movements. Maintain-

ing this balance is essential to ensure that significant distribution shifts—critical

for accurate financial forecasting and risk management—are not overlooked.

As delineated in Chapter 1, it is anticipated that these models will exhibit capabil-

ities akin to few-shot learning, wherein minimal exposure to new scenarios facilit-

ates rapid adaptation. The concept of employing few-shot learning methodologies

to address SF is proposed in the study by [264]. This work introduces a mechan-

ism for recognizing domain shifts by analyzing temporal windows, a method that

shares similarities with the NSP adaptation in Section 6.9.2 and the Doc2Vec ad-

aptation in Section 6.7. The integration of global context information, as detailed

in [264], enhances model predictions by incorporating this broader understanding

of market dynamics. The importance of this integration is further highlighted in

[245], which identifies it as a key factor in model performance. Studies such as [4]

[5] [258] adopt a TST-strategy, inputting global market movements to enable the
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model to establish pertinent correlations, thereby enriching the predictive frame-

work. In [45], a bifurcated approach is proposed, employing both local models

for individual stock assessments and a global model to incorporate wider market

data.

As highlighted in [253], the issue of inadequate modeling of stock correlations

is addressed through the introduction of an attention mechanism modification,

termed the ‘Multi Head Market Attention Block’ [253]. This modification is de-

signed to enhance the existing model pipeline by integrating a more robust market-

stock correlation modeling framework, thereby enriching the analytical capabilities

of the model with respect to understanding complex financial interdependencies

depended on global market contexts. Similarly, [12] proposes a uniform, multi-

faceted algorithm aimed at learning invariant representations to effectively address

distributional shifts, whether within or across different stocks. Furthermore, [230]

outlines additional methodologies to address challenges associated with non-i.i.d.

data and distribution shifts. The work discusses the use of causal learning and do-

main generalization as strategies. The model itself implements hypernetworks and

meta-learning to operationalize these strategies. Lastly, [97] explores strategies to

recognize and accommodate temporal distribution shifts and non-stationarity in

the creation of embeddings used in the model pipeline.

In Chapter 1, the critical need for SF models to be extensible and generalizable to

adapt to evolving market conditions has been stressed—a capability that manifests

in several aspects. In [263], various domains (excluding stock data) are exempli-

fied wherein transformer-based architectures are employed to develop generalized

models capable of managing multivariate time series data. Notably, many SF

models suffer from their inability to seamlessly incorporate new stocks, which can

diminish their capacity to generalize patterns, particularly in relation to new, ex-

panded, or modified markets as mentioned for example in [88] [79]. The market

and the assets in it continuously evolve through events such as bankruptcies or

IPOs. The term ‘Universal Predictor’ [88] used by Hoseinzade et al. aptly de-

scribes the envisioned architecture for ML models in relation to SF, a descriptor

that fits well with proposed ASMs due to their inherent extensibility.
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For LLMs, the theoretical possibility exists to expand the vocabulary by introdu-

cing new word-tokens and embeddings [218]. If these embeddings are pretrained,

the model can more quickly learn their meanings and better align them with exist-

ing tokens. The broad ability of LLMs to handle many different types of text fur-

ther highlights their versatility. However, the SF models, typically non-expandable

and trained for particular markets, lack this desirable feature. Hoseinzade et al.

[88] point out that SF models often fail to account for the emergence or disappear-

ance of companies in the market. In contrast, domain generalization is proposed

as an effective way to handle distribution shifts and non-i.i.d. data, as discussed

in [230]. The potential and utility of such models are reinforced by Hoseinzade et

al., who suggest that the ‘promising results of this experiments suggest to further

investigate the possibility of extracting general patterns that explain the behavior

of different markets’ [88]. Few studies such as [242] [88] have attempted to train

models on specific markets before retraining them on others to assess how the mod-

els benefit from transferred knowledge and whether the general patterns learned

are applicable across different contexts. Furthermore, the approach of pretraining

models on a broad range of stocks before fine-tuning them on a subset is detailed

in [163] [150].

As stated in the work of Xu and Cao [245] speech models are adept at ‘jointly

model high-dimensional dependencies, long-range dependence structures [...] and

latent features and relations’ [245]. Xu and Cao emphasize the importance of

integrating global contextual information (as discussed in the previous section),

which is essential for applying models across diverse financial settings.

Regarding similar techniques, following the proposed pretraining approaches out-

lined in Section 6.9, most attention is given to representing inter-stock relationships

through embeddings. Literature in the field, such as [62] [259] [230] [255] [197] [95],

underscores the complexity inherent in inter-stock relationships. These relation-

ships, as highlighted, can manifest in multiple forms [179] and their complexity is

arguably beyond the scope of the already discussed modeling approaches.
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To address these challenges, representing stock relationships within high-

dimensional embeddings is recommended. This aligns with Xu and Cao’s ar-

gument that such embeddings are well suited to capture complex relationships.

Notably, [259] identifies two main issues with GNN-based approaches: their lim-

ited ability to model the dynamic and asymmetric nature of stock interactions,

and the shortcomings of existing stock-to-stock attention mechanisms in capturing

temporal correlations. In response to these challenges, the study in [124] proposes

representing each stock and time pair as an input vector of dimensionality ∆t · |C|.

This approach is echoed in [37], where a flattened version of the time series of di-

mension ∆t · |C| is utilized. These transformed representations are then integrated

into three distinct modules, each dedicated to capturing either spatial, temporal,

or spatio-temporal relations. Moreover, the work in [230] employs contrastive

inter-stock training to formulate and refine stock embeddings.

Additionally, [246] incorporates embeddings within its model pipeline, reinforcing

the prevalent integration of embeddings in diverse modeling scenarios. Subsequent

models specifically utilize textual data for forecasting stock prices. For instance,

[66] customizes distributed vector representations for each company, specifically

tailored according to the currently processed textual data. Moreover, [113] com-

putes stock-specific event representations by employing embeddings derived from

the NLP representations of each stock ticker, thereby enhancing the predictive

precision of temporal financial events. As delineated in Section 2.1, the ‘rout-

ing by-agreement’ method described in [138] facilitates the clustering of feature

representations of a stock at a specific time step.

In the study conducted by [91], the model incorporates statistical, time-invariant

features that are essential for capturing the fundamental characteristics of the data.

Similar to this approach, the embedding representations employed in the proposed

ASMs capture essential attributes of the companies under analysis. These charac-

teristics are abstracted and represented within a vector space of the ASM embed-

dings. Conversely, the model described in [91] utilizes a distinct methodology by

integrating what is referred to as ‘types of stock’ [91] while the ASMs use a more

abstract representation in the form of stock embeddings.
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In the development of contextual embeddings, an extension beyond the utilization

of S2V is proposed through the creation of domain-specific embeddings by aggreg-

ating technical indicators into composite embedding vectors (see Section 6.11.2).

This methodology is echoed within the existing literature, where various studies

incorporate multiple metrics to enrich their models. For example, [237] integrates

152 indicators, while [96], [180] and [74] incorporate 13, 42 and 65 indicators, re-

spectively. However model like [74] are not comparable to the proposed metric

usage in the ASMs as they do not take any stock relationships into account. Ad-

ditionally [65] [5] [210] [162] [238] (which notably includes options and futures),

along with [143] [19] [88] (which partly utilizes static features grouped into eight

categories), further substantiate the extensive application of technical indicators

in enhancing model performance and specificity.

There are select instances in which models from alternative domains are adapted

for use with stock data. Some LLM applications integrate non-linguistic data, a

less common but growing line of work. In [132], a series of examples are presented

in which LLMs are utilized for data from other modalities. Notably, visual trans-

former models have been adapted for the analysis of time series data relevant to

financial markets.

The transformer utilization of different visual models is exemplified in the work of

[74]. Here, stock price data is converted into a two-dimensional image format, spe-

cifically a 65×65 matrix, where each pixel represents one of 65 different indicators

for a single stock, albeit without processing inter-stock correlations. Furthermore,

an adjacent but notable approach involves leveraging a modified ResNet architec-

ture, traditionally used for image classification, for time series data analysis as

documented by [264].

The authors in [270] point out the problem that categorical and textual data can

be processed in LLMs, while numerical time series cannot be presented as word

embedding. As a solution, an unconventional approach is suggested, as delineated

in Section 6.11.3, which involves tokenizing regression data to mimic the entire

pipeline of LLMs. According to [102], the work of Xue and Salim [248] presents

the first approach to reformulating time series data as text in the form of prompts.
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While this strategy is not directly analogous to the core methodology, there exist

several precedents where LLMs have been employed for SF and even directly with

regression datasets.

Notably [215] [260] as well as [126] demonstrate the integration of LLMs with tex-

tual inputs to facilitate SMP. Contrary to traditional fundamental models, these

studies sometimes incorporate quantitative data as part of the input set. Specific-

ally, in [260], obfuscated price data are inputted into the GPT-4 [173] model, com-

plemented by additional textual data, enabling the model to generate predictions

regarding future market trends. The systematic review in [287], which synthes-

izes 84 studies (2022–early 2025), categorizes LLM applications in equity markets

along two dimensions—end-use cases (e.g., forecasting, sentiment analysis, port-

folio management) and technical methods (prompting, fine-tuning, multi-agent

systems, RL)—and highlights ongoing challenges in scalability, interpretability,

and real-world validation.

Likewise, [126] integrates news and time series data into an LLM, enhancing its

predictive capacity. Furthermore, [215] describes a process termed ‘Number-to-

Text Alignment’ [215] where time series features are incorporated into an LLM.

Additionally, [111] explores the entry of portfolio weights into an LLM to facilitate

adjustments and optimization of investment portfolios. Moreover, [45] employs

LLMs for the generation of global event embeddings, a technique which also relates

to the integration of extensive global information to address distribution shifts.

Also noteworthy is the work presented in [235], where LOB messages are processed

by an LLM to generate market data. The LLM employs a specialized vocabulary

and tokenizes the numerical values contained within the LOB messages.

The literature points to strong potential for spatio-temporal approaches in SF.

It has been argued that transformer models, recognized for their proficiency in

modeling relationships and semantic correlations, have not been fully leveraged to

address either the temporal dynamics or relational intricacies of stock data—areas

in which LLMs possess inherently suitable architectures. Moreover, LLMs exhibit

qualities such as few-shot learning and generalizability, which are highly valued

in the SF domain, as indicated by existing literature. However, there appears
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to be a gap in the integration of these attributes within a single model. The

authors research aims to bridge this gap by adapting LLMs to fully harness their

capabilities for SF.

Research Gap The present thesis introduces several novel contributions that

advance the field of quantitative finance through the adaptation of LLMs, the

development of foundational models tailored for financial applications, and the

formulation of a new, Euclidean, extensible, spatio-temporal modeling framework.

A critical gap emerges from the existing body of literature reviewed in this section:

the absence of a generalized, extensible, and pretrained model capable of effectively

modeling quantitative—or more broadly, time series—data. This model should

inherently leverage the advanced spatio-temporal processing capabilities of LLMs

originally developed within the NLP domain. Addressing this gap necessitates

the resolution of several key research questions, including the design of effective

pretraining tasks and an evaluation of their impact on subsequent fine-tuning

procedures.

As outlined in [82], a ‘Large Investment Model’ is pretrained on an extens-

ive dataset yet remains structurally extensible to accommodate diverse finan-

cial instruments. In the context of this thesis, each individual training ‘sen-

tence’—conceptualized as a sliding window of quantitative financial data—can,

in principle, incorporate alternative Ć(t) ⊂ C and a distinct t at each training

step.

The proposed framework represents a significant advancement toward a universal

and extensible modeling paradigm. Unlike many non-Euclidean GNNs, which con-

stitute a predominant class of spatio-temporal and patching models, the architec-

ture introduced herein is explicitly designed to overcome their inherent structural

limitations.

Fine-tuning of this universal model has been conducted across a range of predictive

tasks, examining its adaptability and efficacy. Furthermore, prospective applic-

ations in risk assessment and optimization are outlined, illustrating the model’s

broader utility beyond predictive analytics. A fundamental principle in pretraining

is the explicit integration of relationship and intercorrelation information, thereby
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ensuring that this critical component is not relegated solely to task-specific fine-

tuning.

Building on the expected model structure, three key dimensions—correlation in-

formation, indicator-based information, and temporal dependencies—are system-

atically combined into a single model, as proposed in [62]. Importantly, these

aspects are incorporated at the pretraining stage, ensuring their foundational role

in downstream applications. The direct utilization of LLMs from the NLP domain

is a pivotal innovation proposed in this thesis, as these architectures inherently

exhibit exceptional spatio-temporal processing capabilities. To the authors know-

ledge, neither the models, the underlying algorithmic formulation, nor the specific

task configurations introduced in this work have been previously explored in the

literature. Systematically trained and validated S2V embeddings for downstream

use have not been documented previously. Finally, the proposed tokenization

strategy, particularly in conjunction with the pretraining paradigm, represents a

novel methodological approach that has not been implemented in this manner in

existing studies.

3.0.7 Summary of Main Research Gaps

Across the surveyed literature, there is (i) no coherent, pipeline-level treatment

of representation learning for multivariate financial time series that is truly ana-

logous to NLP embedding practice, including principled pretraining and system-

atic downstream validation (3.0.1). (ii) Current Word2Vec adaptations remain

methodologically incomplete: they lack clear formulations linked to quantitative

targets, thorough CBOW/Skip-Gram comparisons across temporal and spatial

axes, and extensive downstream evaluations (3.0.2). (iii) The research gap per-

tains specifically to the proposed hierarchical model—exemplified by a Clockwork-

RNN–style design—whose implementation, ablation strategy, and empirical val-

idation on financial time series remain insufficiently developed; this does not

imply that hierarchical approaches in general are underexplored (3.0.3). (iv)

Transformer-based approaches show gaps in adapting core pretraining objectives
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(e.g., multi-axial masking and NSP analogues), handling very long contexts effi-

ciently, preserving cross-asset/channel dependencies beyond naive patching, and

offering encoder-only, finance-specific pretraining suited to diverse downstream

tasks (3.0.4). (v) Doc2Vec-style market-state embeddings lack dedicated pre-

training protocols, robust validation, and demonstrated utility for regularizing

rare regime learning (3.0.5). (vi) Finally, there is no spatio-temporal, extensible

“foundation” model—here conceptualized as AMSs—that jointly learns relational

dynamics end-to-end while enabling few/zero-shot generalization and domain ro-

bustness without fixed structural assumptions (3.0.6).



Chapter 4

Methodology and Experiments

In the following, the methods and experiment setup will be explained. The meth-

odological approach combines diverse financial datasets with a focus on leveraging

both high-quality U.S. intraday data and broader international data for pretraining

discussed in Chapter 5. Training strategies are adapted to account for distribution

shifts and model instability, using early stopping and trial-based hyperparameter

tuning as explained in Section 4.2. A trading simulation–which is explained in

Section 4.3–based on daily buy-hold-sell scenarios is used to assess financial per-

formance under realistic deployment conditions. Section 4.1 describes the research

design, the balance between exploratory concept development and hypothesis test-

ing, the evaluation metrics, and the study’s methodological position. An overview

of the metrics used for the model evaluation and the simulation is given in Sec-

tion 4.4.

4.1 Research Methodology

A quantitative, experiment-driven research design is adopted, combining two com-

plementary strands. On the one hand, a hypothesis-testing perspective is used,

reflected in three guiding research questions and benchmarking against baseline

models. On the other hand, an exploratory, methodological path is taken by de-

veloping ASMs—a new, extensible model for applying NLP-inspired methods to

92
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multivariate financial time series. The latter is presented as the main contribu-

tion, while the former provides empirical rigor and testability. Exploratory and

confirmatory phases are kept separate: exploratory analyses are used to develop

architectures and hypotheses, while confirmatory tests are run on a single time-

ordered test set under predefined rules.

Data are evaluated via temporal splits as commonly done in the literature (see Sec-

tion 2.3), in which each training window strictly precedes its validation and test

windows. Any transformation with temporal scope (e.g. normalization) is com-

puted using information available strictly up to the cutoff time (cf. Section 5.2).

All data originate from secondary sources, specifically the AV API, and are split

into training, validation, and test sets with strict temporal separation to account

for non-stationarity. The methodological pipeline is aligned with standard ML

practice: data collection is followed by preprocessing and quality checks, then

model training, evaluation, and simulation. Reproducibility is ensured through

systematic experiment tracking with Weights & Biases 1, version control with

GitHub 2, and controlled randomness via seeds in PyTorch3, in line with practices

commonly associated with MLOps.

Two sets of criteria are used. For model development and optimization, SMP

accuracy is used as the primary metric, with F1, MCC, and sMAPE as supporting

measures to provide a broader view of model behavior. Practical utility in financial

contexts is assessed with Sharpe Ratio, IRR, IR, and MD, linking the technical

results to realistic investment outcomes (see Section 4.4). In this way, applied ML

engineering is integrated with conceptual innovation, and the ASM framework is

positioned as both an experimental contribution and a methodological advance.

Two distinct levels of evaluation are pursued. First, predictive models are ex-

amined with respect to their performance in SMP/SPP tasks and in trading sim-

ulations, providing a direct measure of practical utility. Second, embeddings are

analyzed as independent artifacts. Their quality is assessed in two complement-

ary ways: through extrinsic evaluation, where embeddings are implicitly tested
1https://wandb.ai/site/
2https://github.com/
3https://pytorch.org/

https://wandb.ai/site/
https://github.com/
https://pytorch.org/
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by their contribution to downstream predictive performance when integrated into

models, and through intrinsic evaluation, where the representational structure of

embeddings is studied independently of predictive tasks (cf. Section 7.2.2).

4.2 Training Method

For all models, in addition to the usual hyperparameters, ∆t as well as |C| were

also tuned as hyperparameters, particularly for the more resource-intensive ASM

models.

To determine the optimal number of training epochs, it was approximated via

trial and error and then early stopping was used with a patience ψ, after an

individual predefined epoch. This approach was necessary because traditional

hyperparameter tuning on the validation set (and SGD-based tuning of Θ on

the training data) proved to be ineffective. The primary reason for this lies in

the differing distributions of the datasets: The training, validation, and test sets

follow distinct distributions, making the validation set’s performance an unreliable

predictor of the expected test set performance. Consequently, a fixed number of

epochs was defined for each model. Unless otherwise specified, the SPP/SMP runs

were repeated three times per model. The test and validation sets each account

for 4% of the total time steps and are separated according to temporary order.

The models exhibit significant instability, which is partly due to the inherent

difficulty of forecasting stock prices. As a result, many hyperparameter had to be

determined through extensive trial-and-error procedures. All of them are refrained

from being listed here. If suitable hyperparameters were identified, a grid search

was subsequently conducted in their vicinity (in particular learning rate, ξ, and

ρ). Lengthy enumerations are omitted because they do not add to the thesis

argument. SMP and SPP were optimized using early stopping based on the best

SMP accuracy, as this metric is crucial for determining profit or loss in real-world

application scenarios (not MSE or sMAPE).

The training procedures were implemented using the PyTorch framework. Due to

the extensive measurement effort and the heterogeneous requirements depending

on the model architecture and dataset size, a wide range of hardware configurations
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was utilized. Specifically, training was conducted on a variety of GPUs available on

the HAW Hamburg computing clusters, including 2× H100, 2× L40S, 14× P6000,

and 12× V100 GPUs. Depending on the model and dataset, parallel training

across multiple GPUs was employed to ensure efficiency. Given the significant

variability in execution setups, a detailed listing of the specific hardware allocation

per experiment is not provided.

4.3 Simulation

Backtesting and simulations have been introduced in Section 2.3. A simulation

technique proposed in [66] is adopted to analyze the practical usage of SF models

in real-world trading applications. In particular, a daily trading scenario with a

capital of $50K has been simulated, analogous to [66], whereby each day’s model

prediction is used to buy and hold a selected stock until the market close of

the following trading day, at which point the position is sold. Throughout this

procedure, no transaction costs are considered, and it is assumed that all orders

are executed at the official closing prices (as in [66]). Under this protocol, the

cumulative return can be measured by aggregating the daily gains or losses over

the complete test horizon. Further key metrics, such as Sharp Ratio, IRR, IR,

MDD are reported as was done in [66].

In the present work, the daily buy-hold-sell trading strategy and overall simula-

tion framework from [66] have been applied to assess the performance of SPP-ASM

models. Contrasting with [66] all stock predictions generated by the models under

study have been incorporated. For the experiments, the best SPP-ASM mod-

els identified for each dataset have been selected. Unlike the original evaluation

protocol, the entire accumulated capital each day is reinvested instead of using

a fixed daily investment amount. The SPP method was favored because its F1

score, as discussed in Chapter 8, was significantly higher than in SMP approaches.

Moreover, the ASM variants have been included since they constitute a core contri-

bution of this thesis, offering an extensible, generalizable foundation, particularly

under the motivation of research question 3 (see Section 1.2). A schematic rep-

resentation of the simulation can be seen in Figure 4.1. To assess robustness and
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generalizability, the simulation was run on both the validation and test splits, and

results are reported separately.

Inputs : F : X
Scores si

(t)  | Prices xi
(t)

 

Rank by si
(t)

Select Top-k: ϒ

Enter positions
Buy @ Close t

Equal-weight over ϒ
Fixed budget per day

Hold overnight
t → t+1

Exit positions
Sell @ Close t+1

Compute returns
ri

(t) = (ri
(t+1)  -  ri

(t) )  / ri
(t) 

 (t) =  ϒ -1  *  Σi∈ ϒ  ri
(t) 

Aggregate
IRR (fixed): IRR +=   (t) 

Next day: t ← t+1
Rebalance and repeat

Figure 4.1: Schematic representation of the simulation according to [66].
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4.4 Metrics

In the following the metrics for the results are defined.

Regression metrics (SPP/SPE)

fsMAPE = 1
|I|

∑
(i,t)∈I

2 ·

∣∣∣y(t+ω)
i − ŷ(t+ω)

i

∣∣∣
|y(t+ω)

i |+ |ŷ(t+ω)
i |+ ϵ

(4.1)

fMAPE = 1
|I|

∑
(i,t)∈I

∣∣∣y(t+ω)
i − ŷ(t+ω)

i

∣∣∣
|y(t+ω)

i |+ ϵ
(4.2)

fMAE = 1
|I|

∑
(i,t)∈I

∣∣∣y(t+ω)
i − ŷ(t+ω)

i

∣∣∣ (4.3)

fMSE = 1
|I|

∑
(i,t)∈I

(
y

(t+ω)
i − ŷ(t+ω)

i

)2
(4.4)

fRMSE =
√
fMSE (4.5)

Confusion-matrix definitions Let the ground-truth class be y(t)
i ∈ {0, 1} and

the predicted class ŷ(t)
i = I

(
p̂

(t)
i ≥ θ

)
with threshold θ ∈ (0, 1) (default 0.5). The

positive class is the event defining y=1. For SMP in this thesis:

y
(t)
i = I

(
x

(t)
i > x

(t+ω)
i

)
.

Using the index set I (all evaluated (i, t)), define the global (micro-averaged)

counts

mTP =
∑

(i,t)∈I
I
(
y

(t)
i = 1 ∧ ŷ(t)

i = 1
)
, (4.6)

mTN =
∑

(i,t)∈I
I
(
y

(t)
i = 0 ∧ ŷ(t)

i = 0
)
, (4.7)

mFP =
∑

(i,t)∈I
I
(
y

(t)
i = 0 ∧ ŷ(t)

i = 1
)
, (4.8)

mFN =
∑

(i,t)∈I
I
(
y

(t)
i = 1 ∧ ŷ(t)

i = 0
)
. (4.9)



Chapter 4. Methodology and Experiments 98

From these, define the intermediate rates

mP = mTP

mTP +mFP + ϵ
(Precision), (4.10)

mR = mTP

mTP +mFN + ϵ
(Recall). (4.11)

Classification metrics (SMP/SMC)

fAcc = mTP +mTN

mTP +mTN +mFP +mFN
(4.12)

fF1 = 2mP mR

mP +mR + ϵ
(4.13)

fMCC = mTP ·mTN −mFP ·mFN√
(mTP +mFP)(mTP +mFN)(mTN +mFP)(mTN +mFN) + ϵ

(4.14)

Performance Metrics (Definitions and Prerequisites)

In the following the trading metrics are defined. The have been adapated to follow

the notations used in this thesis.

Time, assets, and prices Let T be the discrete time index and let |C| denote

the number of equities. Let x(t)
i be the close price of asset i at time t.

Post-rebalancing weights and returns Let m(t)
w ∈ R|C| denote portfolio

weights after rebalancing at time t, with ∑
i m

(t)
w,i = 1 (fully invested). Define

simple per-asset returns

m
(t)
r,i = x(t)

i − x(t−1)
i

x(t−1)
i + ϵ

, m(t)
r =

(
m

(t)
r,1, . . . ,m

(t)
r,|C|

)⊤
.

Assuming zero transaction costs, the realized portfolio return is

m(t)
r =

〈
m(t−1)

w , m(t)
r

〉
.

Equity curve Initialize equity with m
(0)
V = V0 and update

m
(t)
V = m

(t−1)
V

(
1 +m(t)

r

)
∀t ∈ T.
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Equivalently,

m
(t)
V = V0 ·

∏
u≤t

(
1 +m(u)

r

)
[308].

Sample moments and annualization Let

mr = 1
|T|

∑
t∈T

m(t)
r , mσr =

√√√√ 1
|T| − 1

∑
t∈T

(
m

(t)
r −mr

)2
.

Let m(t)
rf

denote the per-period risk-free return (or a constant rf ) and mrf
=

1
|T|
∑

t m
(t)
rf

. Let α be the annualization factor (e.g., α=252 for daily).

Benchmark and active returns. Given benchmark returns m(t)
rb

, define active

returns m(t)
ra

= m(t)
r − m(t)

rb
, with mean mra and standard deviation mσra

defined

analogously. These quantities are prerequisites for the Information Ratio defined

below.

Metrics

Cumulative Return (CR)

fCR = m
(max T)
V

V0
− 1 =

∏
t∈T

(
1 +m(t)

r

)
− 1 [308].

Sharpe Ratio

fSharpe =
√
α
mr −mrf

mσr + ϵ
[309].

Information Ratio (IR)

fIR =
√
α

mra

mσra
+ ϵ

[310].

Maximum Drawdown (MDD)

m
(t)
peak = max

s≤t
m

(s)
V , m

(t)
DD = 1− m

(t)
V

m
(t)
peak + ϵ

, fMDD = max
t∈T

m
(t)
DD [311].
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Internal Rate of Return (IRR) Given cash flows cf(u) at integer offsets u =

0, . . . , U (positive for inflows, negative for outflows), define

mNPV(ρ) =
U∑

u=0

cf(u)

(1 + ρ)u
, fIRR =

{
ρ
∣∣∣mNPV(ρ) = 0

}
[312].



Chapter 5

Dataset

The following chapter gives an overview about the dataset used in this thesis.

Evaluation in Section 5.2 emphasizes real-world reliability by filtering static data

points, avoiding biased weighting, and aligning metrics with practical outcomes.

5.1 Data Acquisition and Market Coverage

The AV API1 is used for the data. Due to data availability constraints, unfortu-

nately only US-American stocks were able to be meaningfully incorporated, spe-

cifically the S&P-500 , into the models for the SMP/SPP tasks. This decision

was primarily driven by two factors: First, for non-US markets, access is gener-

ally limited to interday data, which rarely extends further back than the early

2010s. This limitation further intensifies the well-known problem of data scarcity,

as discussed in Chapter 2.

Second, non-US data is often characterized by substantial gaps, necessitating ex-

tensive use of padding methods. In comprehensive experiments conducted on

indices such as the CSI300 , DAX-40 , FTSE100 , BOVESPA , and

BSE100 , it is observed that these data limitations rendered meaningful train-

ing infeasible under the given conditions, placing such efforts beyond the scope of

this thesis. This was reflected, for instance, in an unrealistic above 60% accuracy

in interday SMP tasks, which can largely be attributed to the applied padding
1https://www.alphavantage.co/
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methods, as well as an sMAPE score of 1.180 (compared to a naive baseline score

of 1.686). Since intraday data is available for US-American stocks, focusing on

this market presents an excellent opportunity to compare the performance, dy-

namics, and market understanding of the models across different time intervals

(i.e. interday data, 60min intraday data and 1min intraday data).

Nevertheless, as outlined earlier, the intercorrelation of stocks constitutes one of

the most crucial aspects for accurate predictions, and markets naturally exhibit

international interdependencies. Moreover, distinct markets and their respective

processes represent valuable knowledge that models may leverage to generalize to

analogous situations. Consequently, data from non-US markets was decided to be

utilized for the pretraining phase. This approach allows the model to benefit from

the insights inherent in these markets. The inferior data quality in these cases is

less critical, provided that the downstream performance improves, no systematic

distortion of results occurs, and the pretraining — similar to approaches in NLP

— is conducted on broader data corpora than the downstream training dataset.

In addition to the S&P-500 , it was decided to include the CSI300 ,

which is the second most frequently studied index in the literature, as outlined

in Chapter 2 (and China is the second biggest economy in the world). Further-

more, the DAX-40 and the FTSE100 are included, as these indices are

representative of the major stock markets in the home countries of the respective

research institutions. The opportunity to examine additional stock markets that

fall outside the traditional scope of Western industrialized nations and the OECD

region would have been welcomed. Such an extension would have been par-

ticularly valuable given the presence of spillover effects between various sectors

across different nations, which was intended to be investigated in greater detail.

However, access to available data is highly dependent on the respective stock

exchanges, which has significantly constrained the ability to conduct a more com-

prehensive analysis in this regard. Stocks corresponding to prominent indices such

as the TASI , IDX , and Merval could not be obtained. An exception

to this limitation was the availability of data pertaining to the CSI100 and

CSI300 indices, which were accessible via the exchanges platforms SSH ,
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SHE , and SZ . It was also found that Brazilian stocks could be obtained

from the SAO exchange, which led to the inclusion of the BOVESPA index

and additional Brazilian stocks in the dataset. Similarly, stocks constituting the

BSE100 were retrievable through the BSE . For stocks listed within the

FTSE100 , data acquisition was achieved by sourcing from the LON ex-

change. Correspondingly, data for the DAX-40 was predominantly obtained

via the FRK exchange. In cases where data retrieval proved challenging, fall-

back options included the XETRA exchange or the acquisition of ADRs listed

on U.S. exchanges. Additional indices incorporated in the dataset included the

CAC40 and the EURO STOXX 50 , both sourced from the XETRA

exchange. Notably, the latter index comprises stocks originating from various na-

tional European indices. With regard to Japanese stocks, data acquisition for the

NIKKEI225 and TOPIX100 was constrained. Consequently, the available

data from these indices was blended, and their respective stocks were obtained as

ADRs. Lastly, ADRs pertaining to the RTS and the S&P Africa 40

indices were also obtained.

It should be noted that not all stocks from each index were consistently available.

This limitation was particularly pronounced for indices where reliance on ADRs

was necessary, as only a limited number of such stocks could be obtained. ETF

data, which can serve as indicators of various countries’ economic performance,

were successfully retrieved for multiple nations and tested only on the Baseline

models (see Section 7.1 and Appendix A.2).

Furthermore, data for cryptocurrencies and commodities could only be obtained

for relatively short periods, typically limited to one year (with interday resolution)

or a single trading day (with intraday resolution). This data coverage is insufficient

for effectively training an ML model.

The pretraining dataset is defined as

C = All(2010:) =

S&P-500 ∪ CSI300 ∪ DAX-40 ∪ FTSE100 ∪ BSE100 ∪

NIKKEI225 + TOPIX ∪ BOVESPA ∪ RTS ∪ CAC40 ∪

EURO STOXX 50 ∪ S&P-40 Africa .
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The dataset commences on December 9, 2009, as earlier data was, as previously

mentioned, insufficient in quality and quantity. The validation period begins on

March 16, 2022, while the test period spans from July 18, 2023, to June 11, 2024.

The S&P-500 dataset starts at the 3rd January 2000 and ends on the June

11, 2024.

5.2 Data Quality and Evaluation Criteria

In the context of intraday data, it is common to encounter instances where the

data exhibits no movement. This issue of static values, particularly in the intraday

range, is rarely addressed in the literature (with exceptions such as [269]). Fortu-

nately, the distribution of SMP labels for interday data in the dataset is relatively

balanced.

Dedicated experiments were conducted to account for the prevalence of non-

moving elements in the data, as described in Section 7.7. In these experiments,

model performance was evaluated exclusively on the subset of data points that

exhibit movement. Consequently, the model was optimized in each step only with

respect to these moving elements.

The application of weighted loss functions, such as the approach proposed in [221],

proved to be suboptimal for stock market data. This is primarily because the test

and validation sets are OOD compared with the training data, and the weighting

strategy assumes a distribution that may not hold for these sets. Moreover, util-

izing loss weights derived from the test or validation set introduces bias, as such

information would be unavailable in a real-world deployment scenario.

For interday data, a threshold was defined to achieve an approximately 50/50

distribution of the labels, following established research approaches outlined in

Chapter 2 (e.g., [170]). However, this strategy was not feasible for intraday data

due to the presence of non-moving/zero values. The implications of this limitation

for model performance are further discussed in Section 8.3. To ensure that the

F1-score does not misleadingly benefit from the prevalence of non-moving values,

the threshold was deliberately adjusted to avoid this effect.
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Monotone linear interpolation is used for missing values, which does not affect the

SMP labels but is more stable for SPP and also more accurate in the evaluation.

Further data cleaning and preparation information can be found in Appendix A.6.



Chapter 6

Proposed Adapted Approaches

for Stock Forecasting

In the following, the proposed models and the methodological framework adop-

ted from the domain of NLP for SF are delineated. The methodology is aligned

with the standard NLP pipeline, with targeted deviations to test the effectiveness

and utility of specific components for SF. This pipeline structure is discussed in

Section 6.1.

6.1 Conceptual Architecture of LLMs

The architecture of an LLM within the NLP paradigm was previously elucid-

ated in [222]. For coherence, the conceptual framework is briefly restated here.

These frameworks are theoretical; practical implementations may vary, especially

in training procedures such as W2V.

The pertinent stages of the NLP pipeline, along with their proposed adaptations

to the specific components of the LLM framework, are depicted in Figure 6.1.

The word token embedding model F̃<E>

((
ṽ(i)

)l̃

1=i
, Ẽ
)

constructs the embeddings(
ẽ(i)
)l̃

1=i
utilizing a (pretrained) embedding matrix Ẽ. The input to F̃<E>(.) com-

prises the word tokens
(
ṽ(1), ṽ(2), . . . , ṽ(l̃)

)
: ∀ṽ(i) ∈ Ṽ ⊂ N. These tokens are

generated by a tokenizer F<TO>(X̃, Ṽ ) utilizing the input text X̃ and the pre-

defined vocabulary Ṽ .
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Figure 6.1: NLP/ASM Pipeline build-up visualization. The illustration is
taken from the authors publication [222] and modified.

In the realm of predictive LLMs, the classifier token h̃CLS is integrated into a

prediction head, for instance, a classification head, to facilitate the execution of

specific model tasks, such as sentiment analysis. Generative LLMs are not con-

sidered; the discussion is restricted to predictive approaches. As elucidated in

Chapter 2, predictive models represent the predominant trend in SF, attributed

to the inherent complexity of SF.

6.2 Notations

This chapter introduces the notation used throughout the thesis to ensure a con-

sistent and unambiguous formulation of the models, methods, and mathematical

concepts. No claim of originality is made for the notation; common conventions

are followed, primarily aligned with [43], which is widely used in SF.

Basic Notations Each tensor is denoted by Latin letters, where any tensor

X with rank(X) ≤ 2 is represented by uppercase letters, while tensors with

rank(x) = 1 are represented in bold lowercase form. Sets are similarly expressed in

uppercase Latin letters, e.g., M . Functions are denoted by lowercase letters, such

as f(.). When a function represents an ML model, it is expressed in uppercase,

e.g., F (.). The model’s name is indicated as a superscript above, F ⟨name⟩. Scalars

are represented by lowercase Latin letters, e.g. a. Hyperparameters are expressed
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using lowercase Greek letters, such as λ. Abstract concepts are represented by

uppercase Greek letters or with special formatting, such as T. These include, for

example, contextual information for predictions Π or general model parameters Θ.

The˜symbol is used when discussing NLP concepts to distinguish them more eas-

ily from topics in stock forecasting. Since a spatio-temporal problem is addressed,

the time axis is consistently represented using superscripts and the spatial axis us-

ing subscripts. For example, the temporal axis is denoted as X(t) and the spatial

axis as Xi. Furthermore, consistent notation is maintained for the same concepts

throughout all chapters, as defined in the following.

Data The entire period of a stock price is considered as T. Stock prices are

denoted for stocks ci ∈ C, where C is the set of all assets within the market

context currently used. Stock prices, even for a single company, are typically

not provided as univariate time series but rather as a feature vector comprising

interval-based features such as Open price, Close price, High price, Low price, and

trading Volume (OHCLV [70] [144]). Additional features may also be included.

The price feature of a stock ci at time t is denoted as x(t)
i ∈ RF. Brackets are used

around the superscript to distinguish it from an exponent when referring to the

timestep.

The horizon observed by a model (also referred to as the lookback window) is

denoted as ∆t. Consequently, the complete dataset is X̂ ∈ R|C|×T×F.

For most models, stacked representations X̀ ∈ R(|C|·F)×T are utilized, which are

defined as

∀ci ∈ C, ∀t ∈ N < T,∀f ∈ N < F : k = (i− 1) · F + f (6.1)

and X̀[k, t] = X̂[i, t, f ] .

To simplify the notation for indexing data access x(t)
i = X[i, t], Xi = X[i] and

X(t) = X[j, t] with 1 ≤ j ≤ |C| · F is defined. At each training step, i ∼ U(N <

T − (∆t + ω)) and X[v, j] = X̀[v, i + j] , ∀j ∈ N < ∆t are defined. Thus, the

model receives an input X ∈ R(|C|·F)×∆t.
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In practice, instead of using raw data, we typically utilize returns, relative returns,

or (relative) log returns. A return (defined here for one price feature) is given by

x
(t)
i − x

(t−1)
i a relative return [50] is defined as x

(t)
i −x

(t−1)
i

x
(t−1)
i

, a log return as [196]

log(x(t)
i ) − log(x(t−1)

i ) and a relative log return as log(x(t)
i +ϵ)−log(x(t−1)

i +ϵ)+1
log(x(t−1)

i +ϵ)+1
. To the

authors’ knowledge, this specific definition of a relative log return has not been

previously published; independent prior use cannot be ruled out.

Throughout, we denote returns, log returns, or relative returns consistently as X,

unless explicitly specified otherwise. After embedding through a latent layer F ⟨LL⟩,

X is in the embedding space and is represented as X̄ ∈ Rξ×∆t. Conceptually,

this latent transformation serves a function analogous to embeddings in NLP:

each market snapshot is projected into a structured representation, ensuring that

its positioning within the vector space is meaningful relative to other snapshots.

Therefore we can regard the latent layer as analogous to the W2V embedding

matrix, which functions not for indexed word tokens but for regressive market

snapshot data; X(t) ≡ ṽ(t) ⇒ F ⟨LL⟩ ≡ Ẽ.

The author empirically verified that utilizing returns, relative returns, or log re-

turns yields better results than normalization, except for Volume (or other sizeable

feature values), which would become excessively large otherwise. If normalization

is applied, it is conducted on a feature/channel basis, as exemplified in [233], due

to the significant differences in the magnitudes of feature value ranges.
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Machine Learning In general, the focus is placed almost exclusively on time

series-based stock price prediction with the objective of forecasting prices at t+ 1.

Accordingly, an ML model can be expressed as FΘ : X 7→ ŷ. In most cases,

ŷ ∈ R|C| holds.

Within the scope of SF tasks, a distinction is made between SPP and SMP. The

correct values, i.e., the labels, are denoted by y. The goal of SPP is to predict

y = X(t+ω). For SMP, the target is

y = I(t)(X(t) > X(t+ω)) (6.2)

predicting a binary label of 0 or 1 to identify decreases or increases (notation follows

Yoo et al. [258]). The offset for the prediction target is ω, which is typically set

to ω = 1. SMC is defined as SMP with ω = 0 and SPE is SPP with ω = 0 where

y /∈ R|C| holds and details of the task can be found in the corresponding model

descriptions.

The CLS token hCLS ∈ Rξ typically represents the model’s condensed understand-

ing of input sequences and serves as the basis for the final classification in most

cases. The tensor H is the model’s last hidden state, and unless otherwise spe-

cified, H ∈ Rξ×∆t holds. The layer number is denoted by ρ. In iteration-based

models, such as recurrent models, the iteration number is referred to as κ.

The final classification in most models is performed using ŷ = F ⟨CLS⟩(hCLS), where

F ⟨CLS⟩ is a linear layer with an initial tanh(.) activation function and batch nor-

malization. For SPP/SPE no activation function is used and for SMP/SMC the

logits are calculated i.e. the σ function is used. The notation P() denotes prob-

abilities and X the random variable i.e P(X = x). A vector containing only ones

is denoted by 1.

Repeatedly used Parameters Numerous parameters and notations are em-

ployed across various models, which are enumerated here. In principle, these

parameters are redefined in each chapter, and specific indices are used when re-

ferring to parameters from a previous chapter. In most models, the model size

or hidden size is denoted as ξ. The loss function is defined as L. Parameters λ
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represent balancing parameters. Thresholds are denoted by θ, and sliding window

sizes are indicated by ϖ.

Tables In tables, upward arrows next to a metric’s name signify that higher

values indicate better performance, and vice versa. Regression metrics fm are

usually calculated as fm(y(t)
i , ŷ

(t)
i ). In order to provide a comparison or baseline

for the regression values, the mean value of all fm(x(t)
i , x

(t+1)
i ) is indicated as a

naive model. The information for the test sets and validation sets is reported

separately, as the values sometimes deviate significantly from each other due to

the non-stationarity of the time series. The validation set and test set performance

is reported for each metric. The best accuracy is highlighted by writing them in

bold.

Rest The sigmoid function is represented as σ(.), and binary cross-entropy is

denoted by H. The symbol ⊙ is used to denote the concatenation of two tensors

along the second axis, while ⊗ represents the Hadamard product. A logical xor is

represented as ⊕.

The •-function is defined as the multiplicative counterpart to the abs(.) = |.|

function. To denote this, x is written, where the lines represents the analogy to

the absolute value notation abs(x) or |x|.

The function is defined as:

x = exp | ln x| . (6.3)

To the best of the authors knowledge, this function has not been previously intro-

duced in the literature. Assignments / redefinitions of variables are marked with

← or →. In contrast, logical implications are denoted by ⇒ or ⇐. The Cartesian

product of sets A and B is denoted by A ⋏⋊⋉ B, to distinguish it from tensor axis

dimension size definitions (×). The 7→ arrow is used for function mapping. A ⊴ B

is used to indicate that tensor A is fully contained within tensor B.
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6.3 Preliminaries

Before the model details, key assumptions and notational conventions are specified

for clarity. This discourse predominantly addresses the TS prediction of stock

prices, framing SF as a multivariate time series forecasting endeavor. Fundamental

information (e.g., text from social media, reports, or news) is intentionally left out

of the analysis. Instead, the informational inputs used consist solely of numerical

time series indicators, including several technical indicators, together with data

on the industries and sectors linked to the stocks (TSG).

While the primary focus remains on stock prices, it is pertinent to mention that

within the context of this thesis, the term ‘stock’ is used interchangeably to refer

also to ETFs and other financial assets. However, the scope of this thesis does not

extend to other asset classes such as derivatives, currencies, currency exchange

rates, commodities, and the like.

For the majority of models, with the notable exceptions of S2V and AMS, mar-

ket information at t is represented as X(t), consisting of stacked feature vectors.

These vectors may include OHCLV features, other technical indicators, or scaled

features specific to S2V. This representation enables the model to encapsulate

both inter-stock and intra-stock correlations within a temporal context. This has

been identified by Li et al. [124] as a pivotal approach for SF models.

In the proposed methodology, each market snapshot is conceptualized as a ‘token’

in NLP, similar to Li et al. [124]. This conceptual alignment allows the temporal

axis of stock trends to be paralleled with the positional indices used in text se-

quences within NLP. Furthermore, the dimensions of stock features i.e the spatial

axis is mapped onto the embedding dimension in NLP, i.e. |C| ≡ ξ̃ ∧∆t ≡ l̃ .

For the fine-tuning of all models, SPP and SMP are specifically focused on as down-

stream tasks, with or without pretraining, depending on the model configuration.

These tasks involve generating alpha predictions as defined in [82]. Consequently,

the models are primarily applicable to directional trading and long-short trad-

ing strategies, as defined in [82]. Outputs such as position recommendations or

portfolio rebalancing fall outside the scope of this thesis. Additional downstream
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applications, including their potential utility in risk management and market sim-

ulation, are discussed within the context of ASMs in Section 9.1.

6.4 Basic Modules

In the following the basic modules are introduced.

Information Embedding To enhance model training, additional information

is incorporated by introducing learnable embeddings, a technique commonly em-

ployed in NLP. This approach, similar to the inclusion of positional embeddings,

allows the model to encode auxiliary features, potentially improving its ability to

capture complex patterns and dependencies within the data. This approach is

frequently adopted in multimodal NLP research, particularly in V+L models, as

for example demonstrated in [23]. Especially with stacked feature inputs of the

form

X ∈ R(|C|·F)×∆t (6.4)

this can be useful. For readability, X(t)
i,d is defined as the feature d of ci in timestep t

in X. First, the stock embeddings are defined as a learnable matrix EC ∈ R|C|×∆t.

Further

X
(t)
i,d ← X

(t)
i,d + EC [i, t] (6.5)

is assigned. Furthermore the interval feature embedding matrix EF ∈ RF×∆t and

X
(t)
i,d ← X

(t)
i,d + EF[d, t] (6.6)

is defined.

Incorporating additional sector-specific information regarding each company may

enhance the model’s predictive performance. Stocks listed on exchanges can be

organized into various sector classifications. One such taxonomy, derived from

the AV database, groups stocks into eight primary sectors: technology , trade &

services , manufacturing , finance , life sciences , energy & transportation

, real estate & construction and, other (null) . During this thesis, these
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symbols are appended to stock tickers to indicate the corresponding sector, thereby

facilitating the reader’s understanding and classification of the respective stock. To

formalize this categorization, a set of sector indices is defined asK = {k1, . . . , k|K|},

where each index kj ∈ N denotes the unique identifier for a specific sector category.

An auxiliary vector k ∈ R|C| is introduced to indicate the sector category for each

stock.

Further, the option of utilizing industry-specific information is available (analog-

ously defined as K̇). However, this data is employed selectively across various

methodologies due to its highly specialized nature. Within the S&P-500

dataset, for instance, there are 191 distinct industries, 92 of which appear only

once, significantly limiting the potential for the models to generalize patterns of

specific industries.

The sector-specific embedding matrix EK ∈ R8×∆t which captures the distinct

learnable features associated with each of the eight sectors is defined. The in-

corporation of sector information is realized by augmenting the stock time series

as

X[i, j]← X[i, j] + EK [k[i mod F], j] (6.7)

to embed sector-specific characteristics within the representation. The resulting

representation can be used across architectures, including the proposed trans-

formers, during pretraining and fine-tuning to incorporate sector information.

Transformer-based models require additional contextual information within the

attention mechanism to accurately differentiate individual positions within em-

beddings [219]. To address this, relative positional embeddings are utilized, as

proposed in [205], [171] (rel-e, rel-b, and rel-b), and [31]. Furthermore, rotary

position embeddings from [212] are tested. For comprehensive implementation

details, interested readers are directed to the original publications.

Handling Non-Stationarity As extensively discussed in Chapter 2, stock data

is inherently non-stationary. This characteristic poses substantial challenges, par-

ticularly when there is a significant temporal gap between the training set, val-

idation set, and test set. In practice, distributional shifts are observed not only
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for prices but also for returns, relative returns, and (relative) log-returns. Con-

sequently, regularization of X is required at each timestep to maintain stability in

the model’s predictions.

In this approach, an adaptation of the method presented by [263] is experimented

with, as it has demonstrated promising results in addressing non-stationarity. To

mitigate the non-stationarity within stock data, a modified ‘Normalization Mod-

ule’ from [141] is implemented, while the ‘De-stationary attention’ is omitted. This

proposed methodology aligns with the approach taken by [33], providing a reliable

baseline for handling temporal variance in financial time series data. Further-

more, for the ASM in Section 6.11, it has been found that the method described

in Appendix A.1 performs better.

6.5 Proposed Baseline Models

Chapter 2 outlines the datasets and the difficulties in comparing SPP and SMP

methods reported in prior work. Although alignment with prior models is pursued,

the main goal is to establish a baseline that clarifies the relative performance of the

proposed models. Also the baseline-experiments are intended to expose the main

challenges of SPP and SMP within a simplified setting. For both SMP and SPP,

three simple baseline models F ⟨BM⟩ : X 7→ ŷ are defined. A multi-layer transformer

F ⟨BM-T⟩, a multi-layer RNN F ⟨BM-R⟩, and a multi-layer LSTM F ⟨BM-L⟩ are chosen.

RNN and LSTM models are selected, as they are commonly employed as baseline

models for SF, as demonstrated in [286]. The primary objective of the baseline

models is to enable comparison and evaluation of the effectiveness of the developed

models in this thesis, as the heterogeneity of the data sets identified in Chapter 2

otherwise prevents comparison with other models. For the proposed F ⟨BM-T⟩ the

concept of [263] is followed, H is flatted and the size of the prediction layer is

increased accordingly. Transformer models are specifically introduced to assess

the criticisms raised in [261] and [272] regarding their application to time series

processing, enabling the more complex (transformer-based) models implemented

later to be evaluated from these perspectives.
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6.6 Proposed Stock2Vec Models

This section is mainly based on the authors publications [220] and [224].

The initial stage in the NLP pipeline involves constructing of Ẽ ∈ R|V |×ξ̃. Notably,

SG and CBOW are the predominant methodologies for training the embeddings

ẽ(t). The foundational concept of representing relationships between word tokens

in NLP revolves around these word token embeddings.

Expanding on this concept, as proposed in Chapter 1, an analogous approach can

be applied to financial markets, where stock entities are transformed into high-

dimensional embeddings. This approaches facilitates the expression of inter-stock

relationships and correlations. The core idea of the S2V models is to use spatial

associations among stocks represented as high-dimensional embeddings. As dis-

cussed in Chapter 2, forecasting stock prices is inherently stochastic and highly

sensitive to volatility. Nevertheless, representing spatial interconnections effect-

ively may support methods that predict the consequences of unforeseen market

events (though not the events themselves). Furthermore, a model that is good

at recognizing the relationships between stocks can rely on the prediction of indi-

vidual stocks (possibly more predictable ones) and infer the performance of others

from this relationship information. In particular, assuming market efficiency is

not absolute—especially at high-frequency intervals—this approach may provide

a predictive advantage.

Section 3.0.6 discussed the prevalent use of predefined relational information within

embeddings. However, an emerging body of literature advocates for a dynamic

training approach. Focusing on time series analysis, this research will exclusively

utilize stock price data to construct these embeddings. Seo et al. [203] have em-

phasized that time series data, in adherence to the EMH, suffices for representing

relationships as it ostensibly encompasses all necessary information.

Unlike the methodologies that employ GNNs as described by Seo et al., the W2V

models are adapted as the proposed S2V algorithms in this study to better suit the

data-driven objectives. This adaptation is predicated on the hope that the well-

established concepts from the NLP domain will prove efficacious in quantitative



Chapter 6. Proposed Adapted Approaches for Stock Forecasting 117

finance as well.

Brief Review of W2V in NLP The prediction of an SG model F̃ ⟨SG⟩(.) can

be formally described as

F̃ ⟨SG⟩(ṽ(t)) = fsoftmaxj(Ẽ[ṽ(t)] ·W T
SG + bSG) (6.8)

with WSG ∈ R(2·ϖ̃·|Ṽ |)×ξ̃ and the fsoftmaxj(.) function being applied to each of the

2 · ϖ̃ sliding window predictions [156].

The resulting |Ṽ | dimensional stacked vectors represent the probability for each

ṽ(t) ∈ Ṽ to appear in the sliding window context

{ṽ(t−ϖ̃), ṽ(t−(ϖ̃−1)), . . . , ṽ(t−1), ṽ(t+1), . . . , ṽ(t+(ϖ̃−1)), ṽ(t+ϖ̃)} of the current word

token ṽ(t). For LSG the mean Cross-Entropy is calculated between the predicted

sliding window probabilities and the true word token context.

Conversely, for the CBOW approach, the training of F̃ ⟨CBOW⟩(.) can be defined as

F̃ ⟨CBOW⟩((ṽ(t−ϖ̃), ṽ(t−(ϖ̃−1)), . . . , ṽ(t−1), ṽ(t+1), . . . , ṽ(t+(ϖ̃−1)), ṽ(t+ϖ̃)) )

= fsoftmax

 (t+ϖ̃)∑
j=t−ϖ̃

Ẽ[ṽ(j)]
 ·W T

CBOW + bCBOW

 (6.9)

with WCBOW ∈ R|V |×ξ̃ [156].

While actual implementations of both SG and CBOW might differ and other more

efficient approaches such as [181] exist, the above is sufficient as an intuition to

transfer the model into the SF.

Adaption in the Stock Domain In the SF domain, the feature vectors derived

from OHCLV data encounter several challenges when adapted to NLP applications.

Firstly, these vectors are characterized by their low dimensionality, which may

limit their effectiveness in capturing the complex patterns typically required in

NLP models. Additionally, the feature vector associated with a particular stock

ci, fails to encapsulate any information regarding its relational dynamics with other

stocks cj ̸=i. This lack of relational information limits their applicability in NLP

models, where representing interdependencies/spatial information is essential.
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It would be advantageous to transform stock prices into high-dimensional vectors

i.e. representations, wherein positions within the vector space hold domain-specific

significance. Whereas the desired vector positions in a W2V model correlate dir-

ectly with word tokens, adapting this approach to the S2V framework presents

non-trivial challenges due to the stochasticity of the market in the dynamic, time-

varying relationships of stocks [48].

Viewing stock data as a multivariate time series allows for the redefinition of

context within SG and CBOW models along both the temporal and the ‘Market’-

axis (spatial axis). While the temporal axis commonly receives primary attention

in SF, such as in univariate stock price prediction, [257] also incorporates the

market axis in its pretraining methodology.

To redefine the adaptation along the temporal axis, the proposed SG methodology

necessitates employing a specific stock price feature x(t)
i , to predict adjacent stock

prices within the set {x(t−ϖ)
i , ..., x

(t+ϖ)
i }\{x(t)

i }. Conversely, the CBOW approach,

when adapted to a CBOS model, utilizes the context {x(t−ϖ)
i , ..., x

(t+ϖ)
i } \ {x(t)

i }

to predict the stock price x(t)
i .

Both methodologies are evaluated in the subsequent sections. It is imperative to

acknowledge that SPP constitutes a regression task, characterized by the relative

continuity of stock prices and the rarity of substantial discrepancies and cases

where |x(t+1)
i − x

(t)
i | ≫ 0 holds. This contrasts with NLP, where the predicted

values ṽ(t+1), can vary widely since v represents merely an index within V .

In this analysis, methods predicated on predicting the prices of identical stocks,

i.e. operating on the temporal axis, are distinctly identified with the label ‘X’

(denoted as F ⟨X-SG⟩(.) and F ⟨X-CBOS⟩(.)) to signify a focus on one specific stock

price, x. To represent x(t)
i , any of the F features may be employed. It is common

in related research to utilize the Close price as a representative feature.

The usage of x is also possible by feeding either x(t)
i or {x(t−ϖ)

i , . . . ,x(t+ϖ)
i }\{x(t)

i }

to the model and predict either x(t)
i or {x(t−ϖ)

i , . . . ,x(t+ϖ)
i }. Models using all F

interval features are marked with ‘F’.

To enhance the understanding of inter-stock relationships, a more robust meth-

odology is proposed, which utilizes the Market Snapshot X(t) (operating on the
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spatial/market axis). Notably, the scalar x(t)
i , representing any price feature, could

serve as a predictive tool for the price of another company cj ̸=i. This approach

enables the embedding vector to be contextualized with respect to the stock axis,

rather than focusing only on the univariate time series components of Xi.

Proposed techniques, operating on the spatial axis, necessitating the prediction

of prices from other stocks are denoted with ‘C’ (F ⟨C-SG⟩(.) and F ⟨C-CBOS⟩(.)),

referencing the set of companies C. Furthermore, the vector x(t)
i can be used as

input to the model, which aims to predict the vectors X(t) for all stocks. Models

employing this strategy are subsequently identified with the symbol F throughout

the subsequent sections. The proposed approach presented at [220] is followed to

incorporate current stock price data into the embedding vectors. This integration

is achieved through a scaling operation denoted by ⋆ (as in [222]), which can

manifest either as multiplication or addition. For clarity in subsequent discussions,

the term ‘stock price’, represented by x
(t)
i , will be employed as a proxy for any

arbitrary OHCLV feature associated with the stock or all of them. The definitions

are first done for SPE and in Section 6.6 a concept is proposed to use all of them

for SMC.

Skip-Gram Adaption Initially, the proposed modifications applied to the SG

models are introduced.

C-SG Model The initial training objective is to predict the present values of

all x(t)
j ̸=i given the current stock price of one specific company x(t)

i . To achieve this,

the model F ⟨C-SG⟩(.) is utilized, which is formally defined as

F ⟨C-SG⟩(x(t)
i ) = (E[i] ⋆ x(t)

i ) ·W T
C-SG + bC-SG (6.10)

, with WC-SG ∈ R|C|×ξ. The output from this model is a vector of dimension |C|

encapsulating the predicted current stock prices x(t) of all cj ∈ C (including ci).

C-Alt-SG Model A refined approach to the implementation of F ⟨C-SG⟩ involves

excluding the current ci from representation in ŷ. This approach should force

the model to recognize the stock under consideration and adjust the prediction
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accordingly. This objective is achieved through the following adjustment of the

model:

F ⟨C-Alt-SG⟩(x(t)
i ) = (E[i] ⋆ x(t)

i ) ·W T
C-Alt-SG + bC-Alt-SG (6.11)

with WC-Alt-SG ∈ R(|C|−1)×ξ. The standard practice of averaging the embeddings

E and the matrix WC-Alt-SG, as commonly employed in NLP embedding training

methodologies [227], becomes impossible due to the resultant dimensions.

F-C-SG Model To use x the model F ⟨F-C-SG⟩(x(t)
i ) is defined as

F ⟨F-C-SG⟩(x(t)
i ) =


E[i] ⋆ x(t)

i [1]

. . .

E[i] ⋆ x(t)
i [F− 1]

 ⋆ W T
F-C-SG + bF-C-SG (6.12)

with WF-C-SG ∈ R|C|·F×ξ·F.

The definition for the alternate function mirrors the previously stated model, yet

it employs WF−Alt-C-SG ∈ R(|C|−1)·F×ξ·F.

X-SG Model The second training objective within the S2V SG framework in-

volves the estimation of future and past stock prices based on a current obser-

vation, operating on the univariate temporal axis. Specifically, given the current

stock price x(t)
i , the model is tasked with predicting the context

{x(t−ϖ)
i , x

(t−(ϖ−1))
i , . . . , x

(t−1)
i , x

(t+1)
i , . . . , x

(t+(ϖ−1))
i , x

(t+ϖ)
i }. This prediction task is

a direct adaption of F̃ ⟨SG⟩(.) as F ⟨X-SG⟩. The model F ⟨X-SG⟩(.) for this adaptation

is defined as

F ⟨X-SG⟩(x(t)
i ) = (E[i] ⋆ x(t)

i ) ·W T
X-SG + bX-SG (6.13)

where WX-SG ∈ R(2·ϖ)×ξ holds true. This operation projects x(t)
i into a 2 · ϖ

dimensional vector space.

F-X-SG Model Again an alternative model can be defined which allows for

the comprehensive utilization of the entire feature vector x(t)
i . The model
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F ⟨F-X-SG⟩(x(t)
i ) is articulated as

F ⟨F-X-SG⟩(x(t)
i ) =


E[i] ⋆ x(t)

i [1]

...

E[i] ⋆ x(t)
i [F]

 ·W T
F-X-SG + bF-X-SG (6.14)

where WF-X-SG ∈ R(2·ϖ·F)×ξ·F holds. Furthermore, the models can be combined by

summing their loss terms, allowing the embedding E to be trained jointly across

multiple tasks. This integration is quantified by the loss term LS2V-SG.

XOM  DVN  GZPM   SHEL  SR.2222

- 0.056? ? ? ?

????

...      ....      word    ...         ...      

Figure 6.2: Schematic sketch of the C-SG approach.

An illustration of the C-SG principle is provided in Figure 6.2. Similar to the

C-CBOS approach, the C-SG framework maps the current price information of a

stock to a word in the NLP-SG paradigm. In the NLP setting, context windows

are inherently dynamic, as each position is occupied by different words drawn

from natural text which the sliding window iterates over. In contrast, within the

financial adaptation, the set of stocks serving as context i.e. C remains fixed (e.g.,

the constituents of the S&P 500 ), with numerical differences arising from their

associated price movements within the sliding window. This structural difference

means that, unlike NLP where context tokens vary, the financial model relies on

the temporal/indicator dynamics of the same entities to generate representations.
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CBOW Adaption Now CBOW is adapted as CBOS. This modification is ap-

plicable both temporally and across market/spatial axis.

C-CBOS Model In line with the models delineated previously, the

model F ⟨C-CBOS⟩(.) is defined for estimating x
(t)
i within a specified context

{x(t)
1 , x

(t)
2 , ..., x

(t)
|C|−1, x

(t)
|C|} \ {x

(t)
i }.

The formal definition is given by

F ⟨C-CBOS⟩
(
{x(t)

1 , x
(t)
2 , . . . , x

(t)
|C|} \ {x

(t)
i }

)

=
 ∑

xj∈{x
(t)
1 ,x

(t)
2 ,...,x

(t)
|C|}\{x

(t)
i }

(E[j] ⋆ xj)


·W T
C-CBOS + bC-CBOS

(6.15)

where WC-CBOS ∈ R1×ξ holds.

F-C-CBOS To use x(t)
i the model F ⟨F-C-CBOS⟩ is defined as

F ⟨F-C-CBOS⟩({x(t)
1 ,x(t)

2 , . . . ,x(t)
|C|} \ {x

(t)
i })

=



∑
xj∈{x(t)

1 [1],x(t)
2 [1],...,x(t)

|C|[1]}\{x(t)
i [1]}(E[j] ⋆ xj)

...∑
xj∈{x(t)

1 [F],x(t)
2 [F],...,x(t)

|C|[F]}\{x(t)
i [F]}(E[j] ⋆ xj)


·W T

F-C-CBOS + bF-C-CBOS

(6.16)

with WF-C-CBOS ∈ RF×(F·ξ).
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Xj
(t) FΘ xi

(t)

A: +0.012
AAPL: +0.078

ZBRA: -0.1304
 ZTS: -0.3142

Figure 6.3: Schematic representation of the C-CBOS approach.
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Figure 6.4: Schematic representation of the C-CBOS approach compared to
an NLP approach.

As illustrated in Figure 6.3, the C-CBOS models aim to map the current market

conditions as spatial information to the corresponding state of one stock. Similarly,

as depicted in Figure 6.4, this approach aligns conceptually with the CBOW model,

wherein each word is analogous to the current state of a stock. Again unlike words

in the CBOW model, the stocks i.e. the position of each stock and the set of stocks

in the C-CBOS framework remain consistent throughout the mapping process.
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X-CBOS The F ⟨X-CBOS⟩(.) approach for predicting x
(t)
i in a univariate time

series requires a modification compared with the market axis. A temporal con-

text integration into {x(t−ϖ)
i , ..., x

(t−1)
i , x

(t+1)
i , ..., x

(t+ϖ)
i } is needed; absent this, the

methodology would reduce to a mere summation of scalars or OHCLV feature vec-

tors, which is similar to a bag of features approach as outlined in [168] for dealing

with non-stationarity. This has proven to be inferior in the experiments in this

thesis. Without a temporal embedding, the model would collapse the sequence

into an unordered sum of returns, losing information about the order of time

steps. Such a setup would make the prediction task difficult, as the model would

be unable to tell whether a particular input came from the recent past or from

an earlier point within the context window. By introducing ET , each observation

is assigned a learnable temporal representation, ensuring that sequential order is

preserved and that the model can use position-dependent dynamics rather than

relying on undifferentiated scalar aggregations. Preliminary (untabulated) experi-

ments confirmed this: when temporal embeddings were omitted, the models failed

to learn because the input reduced to an unordered scalar sum without sequential

information.

In NLP, however, the challenges are different. In the CBOW model, word em-

beddings are aggregated, yet the differentiation between these embeddings is suf-

ficiently large as the index values of the word tokens and the embeddings differ-

entiate from each other. This idea of distinctiveness also plays an important role

in the X-CBOS approach in SF when using ET which helps the model recognize

and use the unique features of each time step.

Initially, a trainable time-step embedding matrix ET ∈ R(ϖ·2)×ξ is introduced.

Subsequently, the definition of the X-CBOS model is adjusted as

F ⟨X-CBOS⟩
(
{x(t−ϖ)

i , ..., x
(t+ϖ)
i } \ {x(t)

i }
)

=
 ∑

x
(j)
i ∈{x

(t−ϖ)
i ,...,x

(t+ϖ)
i }\{x

(t)
i }

(E[i] ⋆ (ET [j] · x(j)
i ))


·W T

X-CBOS + bX-CBOS (6.17)
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with WX-CBOS ∈ R1×ξ. This formulation allows the model to sum learned tem-

poral representations, each scaled by the corresponding stock price, rather than

aggregating scalar values directly.

F-X-CBOS-Features The X-CBOS model taking x as an input is defined utiliz-

ing the same methodology as previously employed. Initially, a trainable time-step

embedding matrix is introduced as ET ∈ R(ϖ·2)×F×ξ. This step ensures that, as

in the other models, temporal order is preserved and jointly learned, rather than

reducing the computation to a simple summation scalar values used for the scaling.

The model is subsequently adjusted as

F ⟨F-X-CBOS⟩({x(t−ϖ)
i , ...,x(t+ϖ)

i } \ {x(t)
i }) =

∑
x(j)∈{x(t−ϖ)

i [1],...,x(t+ϖ)
i [1]}\{x(t)

i [1]}(E[i] ⋆ (ET [j, 1] · x(j)))
...∑

x(j)∈{x(t−ϖ)
i [F],...,x(t+ϖ)

i [F]}\{x(t)
i [F]}(E[i] ⋆ (ET [j,F] · x(j)))


·W T

F-CBOS + bF-CBOS

(6.18)

with WF-CBOS ∈ RF×(F·ξ).

In the framework of the S2V X-CBOS model, both the F ⟨X-CBOS⟩ and F ⟨C-CBOS⟩

modules are employed to generate predictions for x(t)
i . To synthesize the individual

predictions, an averaging method is utilized, expressed as

F ⟨S2V-CBOS⟩(x) = 1
2F

⟨X-CBOS⟩(.) + 1
2F

⟨C-CBOS⟩(.) (6.19)

where LS2V-CBOS denotes the combined predictive output of the model.

Similarly, this methodology is applicable to the feature-level predictions provided

by F ⟨F-C-CBOS⟩ and F ⟨F-X-CBOS⟩.

Combining CBOS and SG In the domain of NLP, a methodology that can be

adapted is the concurrent training of both SG and CBOW models. This approach

necessitates the calculation of both tasks utilizing a shared embedding matrix E.

The resultant loss functions, LS2V-SG for SG and LS2V-CBOS for CBOS, are integ-

rated using a weighted sum to formulate the composite loss function, expressed
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as:

FS2V(x) = λCBOS · LS2V-CBOS + λSG · LS2V-SG . (6.20)

SMC Models S2V models can also be applied to SMC tasks, serving as a

framework for both output predictions ŷ and input processing. Recent studies

have demonstrated the feasibility of integrating categorical labels in lieu of con-

tinuous regression values within these models, as evidenced by implementations

in high-frequency cryptocurrency analysis and time-series forecasting [180] [113].

Furthermore, the study by [257] introduces a co-movement prediction task, which

bears resemblance to the SMC tasks discussed herein. It has been noted in [257]

that the evolution of time series can be conceptualized as a stochastic process,

resembling a random walk with tridirectional movement. This characterization

aligns closely with methodologies in NLP, as indices replace the stock regression

data, enhancing the model’s parallels to NLP tasks. To incorporate SMC labels as

input data, each time series element is transformed using x(t)
i ← sign(x(t)

i −x
(t+ω)
i )

with ω = 1. Conceptually, this method parallels the NLP W2V framework, treat-

ing stock movements as binary outcomes with V = {0, 1}. The ‘sentences’ in this

analogy are constructed either from
(
ṽ(i)

)|C|

i=1
≡ X(t) or

(
ṽ(i)

)T

i=1
≡ Xi. If the SMC

labels are used not only as targets but also as input scaling, the task of the model

moves away from relating regression values to recognizing correlations of which

stocks are likely to rise or fall together, as was done in [50], for example.

The determination of whether a stock price has risen or fallen depends on the

specific model employed. The architecture of these models remain consistent,

requiring only modifications to the architecture and the predictive targets to adapt

to various SMC applications.

SG-SMC The F ⟨C-SG-SMC⟩ is the SMC adapted variant of the F ⟨C-SG⟩(.) model

and is defined as

F ⟨C-SG-SMC⟩(x(t)
i ) = σ((E[i] ⋆ x(t)

i ) ·W T
C-SG-SMC + bC-SG-SMC) (6.21)

, with WC-SG-SMC ∈ R(|C|−1)×ξ.
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This implies that the architectural framework, along with all subsequent modifica-

tions, remains largely consistent with the original design. For SMC y = I(t)(X(t) >

X(t+ω)) is set and LC-SG-SMC(ŷ, y) = H(ŷ,y) is defined.

Next, the F ⟨X-SG⟩(.) is adapted as F ⟨X-SG-SMC⟩ for SMC as

F ⟨X-SG-SMC⟩(x(t)
i ) = σ((E[i] ⋆ x(t)

i ) ·W T
X-SG-SMC + bX-SG-SMC) (6.22)

with WX-SG ∈ R(2·ϖ)×ξ.

The target of the prediction is defined as

yX-SG-SMC[j] = I(t)(x(t)
i > x

(t−(ϖ−(j−1))
i ) (6.23)

with 1 ≤ j ≤ ϖ · 2 and for LX-SG-SMC again H(., .) is used.

CBOS-SMC The F ⟨C-CBOS-SMC⟩ and F ⟨X-CBOS-SMC⟩ models are defined as

F ⟨C-CBOS-SMC⟩
(
{x(t)

1 , x
(t)
2 , ..., x

(t)
|C|} \ {x

(t)
i }

)

= σ

 ∑
xj∈{x

(t)
1 ,x

(t)
2 ,...,x

(t)
|C|}\{x

(t)
i }

(E[j] ⋆ xj)


·W T
C-CBOS-SMC + bC-CBOS-SMC


(6.24)

with WC-CBOS-SMC ∈ R1×ξ and

F ⟨X-CBOS-SMC⟩({x(t−ϖ)
i , ..., x

(t+ϖ)
i } \ {x(t)

i })

= σ

 ∑
xj∈{x

(t−ϖ)
i ,...,x

(t+ϖ)
i }\{x

(t)
i }

(E[i] ⋆ (ET [j] · xj
i ))


·W T
X-CBOS-SMC + bX-CBOS-SMC


(6.25)

with WX-CBOS-SMC ∈ R1×ξ.

Both receive

yCBOS-SMC = I(t)(x(t)
i > x

(t+1)
i ) (6.26)
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as a target and H(., .) is used to calculate LCBOS-SMC.

All of the above models, predictions and loss functions can be combined as in

the models before. The models are adapted for multiple features following the

examples for the regressive tasks.

Vocabulary Based Approach The C-CBOS-SMC methodology is adjusted

to better align with the NLP W2V frameworks. The target variable is expan-

ded from a binary outcome to the full vocabulary. The target y ∈ {0, 1}2·|C|

is one hot encoded with y = 1 for j = I(t)(x(t)
i > x

(t+1)
i ) · |C| + i with i being

the currently sampled stock in the training step. WC-CBOS-SMC is extended to

WC-CBOS-SMC-Vocab ∈ R2·|C|×ξ and the model is defined as

F ⟨C-CBOS-SMC-Vocab⟩
(
{x(t)

1 , x
(t)
2 , ..., x

(t)
|C|} \ {x

(t)
i }

)

= fsoftmax

 ∑
xj∈{x

(t)
1 ,x

(t)
2 ,...,x

(t)
|C|}\{x

(t)
i }

σ(E[j] ⋆ xj)


·W T
C-CBOS-SMC + bC-CBOS-SMC


(6.27)

with LC-CBOS-SMC-Vocab using the Cross-Entropy loss function.

For the F ⟨F−C-CBOS-SMC-Vocab⟩ model, an additional layer is implemented to enhance

the integration of price feature information, as detailed in Section 6.11.2. This

enhancement involves a learnable price feature embedding layer for each stock

ci which maps x(t)
j to a representation which can be integrated to E[j] via the

⋆-operation. Within this model, the target vector is defined as y ∈ {0, 1}F×2·|C|

facilitating feature-specific predictions. Each feature within the model is predicted

independently. The main idea of this approach is to build a target vocabulary that

requires the model to identify both the correct company and its stock movement.

This dual requirement is intended to align with NLP models and to address a

limitation of the CBOS methodology.

In particular, this strategy is designed to circumvent the issue where the aggrega-

tion of e-s in the CBOS approach leads to a market-centric representation rather
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than capturing distinctions specific to individual stocks per ei. The output vocab-

ulary is conceptually defined as

V =
1⋃

y=0
{(ci, y)}|C|

i=0 (6.28)

where the model has to choose the correct ‘word’ at each timestep. A schematic

illustration of the approach can be seen in Figure 6.5.
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Figure 6.5: Schematic representation of the vocabulary-based approach.
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6.7 Proposed Doc2Vec Adaption

This section is mainly based on the authors publication [223].

Doc2Vec models are designed to represent long sequences of word tokens

w̃(1), . . . , w̃(l̃)—from sentences to entire documents—as single high-dimensional

dense vectors. This approach draws a parallel to W2V models, which similarly

transform discrete textual elements into continuous vector spaces. For multivari-

ate time series, aggregating data over ∆t timesteps is interpreted analogously to

Doc2Vec’s document representation.

By analogizing documents to a finite collection of textual data {w̃(i)}l̃<∞
i=1 , the

author defines ‘market situations’ as a fixed temporal segment of size ∆t, consisting

of sequential market snapshots. This adaptation was introduced as QMSEs in

[223], with the aim of summarizing market dynamics in embeddings suitable for

downstream ML models.

6.7.1 QMSE as Autoencoder Model

In [223] three different models are proposed to obtain a dense vector representation

e ∈ Rξ of X, which are mainly based on encoder-decoder structures and will be

briefly explained again below.

Autoencoder Model Doc2Vec models in NLP can generally be divided into

two primary types. The first type includes less common models like Skip-Thought

[109], which apply W2V techniques at the document level. The second type con-

sists of encoder-decoder architectures, which are more commonly used in practice.

These were already mentioned in [245] in the context of SF for the development of

a distribution-based probabilistic modeling for latent variables. Due to the lack of

successful outcomes from preliminary (untabulated) experiments with the first cat-

egory, the focus has shifted towards encoder-decoder architectures. The encoder

F ⟨E⟩ maps the input to a latent vector e intended to capture the main charac-

teristics. This latent representation is then used by the decoder function F ⟨D⟩ to

reconstruct the input as ŷ, with y ≡ X. For tasks involving textual data and stock
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price prediction, the use of recurrent architectures for both F ⟨E⟩ and F ⟨D⟩ appears

intuitive. A key advantage of recurrent architectures lies in their capability to

process input sequences of arbitrary length during both encoding and decoding

phases. However, [223] shows that while recurrent encoder–decoders reconstruct

well, they yield weaker representations e; therefore, they are not pursued further

here.

Established NLP Doc2Vec models can be utilized by treating X̃ directly as the

embedding and circumventing the standard embedding process for w̃(i). This

method parallels the embedding-based strategy applied to ASMs, as described

in Section 6.11.1. While this direction was explored in a series of preliminary (and

untabulated) experiments using Sentence-BERT [194], further investigation was

ultimately decided against. The decision was based on the same shortcomings

observed for RNN- and transformer-based models, namely unstable training dy-

namics, low pairwise distances between embeddings, the lack of coherent clustering

structures, and the tendency to prioritize reconstruction accuracy over the repres-

entation of complex market behavior, as detailed in Section 7.4. The same holds

true for Skip-Thought [109] adaptions. AEs, which are widely used for embedding

training, excel at compressing high-dimensional information into more compact

forms. For example, in the financial domain, Bao, Yue, and Rao [5] proposed an

architecture based on LSTM networks that employs AEs to derive abstract and

generalized representations of X.

The proposed AE model, denoted as F ⟨A⟩ is constructed by combining an encoder

F ⟨E⟩ and a decoder F ⟨D⟩ and it is formally defined as

F ⟨A⟩(X) = F ⟨D⟩(F ⟨E⟩(f(X))) (6.29)

where F ⟨D⟩ and F ⟨E⟩ are multilayer neural networks that utilize the tanh(.) activ-

ation function across ρ layers represented as F ⟨L⟩
n . The function f(.) is employed

to flatten the input, which has dimensions of either |C| ×∆t or |C| ×∆t×F. Ad-

ditionally, it holds that ∀n : dim(W
F

⟨L⟩
n

D) = dim(W
F

⟨L⟩
ρ−n

E ), with dim(W
F

⟨L⟩
n

D)[0] <

|C| ·∆t(·F).

To commence model training, the loss function is defined as LA =
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fMSE(F ⟨A⟩(X), X). In the present work, the model originally proposed in [223]

is extended by incorporating SMC and utilizing RLRs. This modification is form-

ally represented as

LA = H(F ⟨A⟩(σ(X)), I(X ≤ 0)) (using relative returns in the notation). (6.30)

This shifts the objective toward approximating SMC labels rather than recon-

structing returns, aligning better with SMP. Furthermore, the QMSE e ∈ Rξ is

expressed as e = F ⟨E⟩(f(X)).

6.7.2 QMSE Adaption

For the application of the QMSEs, scenarios have already been presented in [223],

which are briefly summarized in the following.

CLM Adaption Within the domain of NLP, the utilization of CLM is often

preferred over ULM, as opposed to the primary focus set in [220] which draws

parallels between ULM and SF. CLM incorporates a distinct context Π to ex-

press w̃(l̃+1) and is defined by Pθ(X = w̃(l̃+ω)|Π, w̃(l̃), . . . , w̃(1)) [75]. In the field

of finance, particularly in TST/TSG analysis, the definition can be redefined as

Pθ(X = X(t+1)|Π, X(t), . . . , X(t−∆t)), with Π including fundamental data from pre-

viously mentioned sources. Research within financial analytics, such as [247] or

the publications mentioned in Chapter 2, highlight the critical role of integrating

such contextual information.

Similar to how document types are integrated into NLP models (as Π/through

their representations in a Doc2Vec format), the present market scenario, when

quantified as QMSEs for SF, can also be incorporated into the model. It is pro-

posed that the methodology of representing ‘Situations’ as distributed embeddings

aligns with the approach of event embedding models, as detailed in Section 7.4. In

these models, structured event representations are extracted from essential news

data, which enhance SMP processes. These event embeddings are broadly used
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as embedded representations of market conditions, thus forming a crucial com-

plement to the quantitative approaches. Similarly to the CLM, where document

type information might be encoded into the model as Π, the proposed QMSEs

can be used as the context to SF models (Π = e). As previously discussed in

Section 3.0.5, incorporating global information into the model is vital for SF and

is frequently employed to provide global information on the current market.

Learning Regularization In [223], methods to utilize QMSEs not directly for

forecasting but as a technique to regularize the learning phase have been outlined.

By recognizing unique scenarios, the model can tailor its learning strategy, given

that current data might not accurately reflect ‘traditional’ stock market behaviors.

This strategy aims to evaluate if the present training data, which could stem from

unusual events, might prove ineffective for application and generalization across

different scenarios.

Given non-stationarity and theories like RWT and EMH, it is reasonable to ques-

tion if all market states should be labeled as exceptional. Arguments for the reg-

ularization approach are given in prior literature, such as [201], which explicitly

acknowledges the existence of ‘standard market conditions’ [201] as a distinguish-

able baseline.

To determine whether the current training data stems from an unusual situation,

its deviation from other QMSEs is analyzed. Experimental investigations suggest

that calculating the distance from the entire set of QMSEs is not useful. Instead,

the distance d to the previous κ QMSEs is computed. This method helps identify

major deviations from normal market conditions, which may indicate an excep-

tional situation.

The calculation of d focuses on the distances among the embeddings e rather

than the values of X, aiming to uncover underlying relationships and particularly

movements that might not be detected by traditional metrics such as EMA or

volatility indices. The regulatory model is formulated as

F ⟨R⟩(X(t)) =
∥∥∥∥∥∥
1
κ
·

t−1∑
j=t−(1+κ)

F ⟨E⟩(f(X(j)))
− F ⟨E⟩(f(X(t)))

∥∥∥∥∥∥
2

. (6.31)



Chapter 6. Proposed Adapted Approaches for Stock Forecasting 134

With each successive t, the model integrates X(t) into the sliding window, con-

tinuously assessing its alignment with previously observed data. The value of d

is directly linked to the extent of deviation from all other e vectors correspond-

ing to the past κ market states. An increase in d thus reflects an exceptionally

uncommon market condition relative to the current temporal context.

To incorporate this principle into the training process, the moderation of weight

updates during backpropagation for atypical market scenarios is proposed. The

rationale for moderating weight updates during backpropagation in atypical mar-

ket scenarios lies in the assumed lower reproducibility of these situations. Market

states that deviate strongly from recent conditions are assumed to be exceptional

situations rather than structural patterns that generalize across time [223]. If such

scenarios dominate the gradient signal during training, the model risks overfitting

to these outliers, thereby lowering its ability to capture more stable dynamics. By

scaling the loss function according to the deviation measure d, the proposed regu-

larization reduces the influence of atypical cases while still allowing the model to

incorporate them. This ensures that the learning process is not disproportionately

driven by rare events, but rather maintains a balanced representation of both com-

mon and exceptional market states. Conceptually, this parallels robust training

strategies in ML where sample reweighting or curriculum learning is employed to

stabilize optimization under heterogeneous data distributions.

As outlined in [223], alternative strategies such as integrating QMSEs as additional

context vectors or shifting embeddings within the prediction models did not yield

improvements. Modulating weight updates during backpropagation, by contrast,

provides a direct and architecture-independent mechanism to control the influence

of atypical scenarios. Since the adjustment is derived directly from the embedding

space, it leverages the same representational structure used for all market states,

ensuring that the detection of atypicality and its impact on learning remain con-

sistent and data-driven. This allows the model to adjust carefully when faced with

unusual data, while keeping the same architecture and training loop. A pragmatic

means of achieving this involves the proposed modification of the loss function as

Lq-reg ← L · (1 + (1 + d)−1).
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6.7.3 Further Experiments

Further potential applications of the QMSEs, previously explored in [223], are

outlined. However, these approaches have been excluded from further consid-

eration due to their limited relevance to SMP/SPP. The direct application of

QMSEs through a Nearest Neighbor Similarity strategy (hereafter referred to as

the Nearest Neighbors Approach, NNA) for SMP is briefly acknowledged but not

elaborated on in this thesis due to its suboptimal results. As mentioned in Sec-

tion 7.2 the evaluation of contextual embeddings presents a notable challenge,

reflecting ongoing efforts within the research community to define quality met-

rics for word embeddings. One possible methodology involves examining nearest

neighbors and determining whether the characteristics of these neighbors corres-

pond to those of the original data point, thereby assessing whether the embedding

effectively captures meaningful relationships.

The analysis is further extended to test the hypothesis that similar market situ-

ations are similar in the vector space, assuming that future stock movements can

be inferred from current market conditions. As the results in [223] show, this as-

sumption is probably not correct or only holds for a few cases. For the NNA the

SMC labels are {−1, 1}.

Under the assumption that a small ∥ e (i) − e (j) ∥2 indicates similarity, X(i) and

X(j) are considered similar, than I(i) and I(j) are expected to show similar behavior.

Conversely, when ∥ e (i)−e (j) ∥2 is large, it suggests limited directional similarity,

indicating a relationship where I(i) ≈ I(j) · (−1) holds.

Based on these observations, the prediction of movements for t + 1 is defined as

follows:

ŷ = sign
 1
|K|
·
∑

d̆i∈K

(1 + d̆i)−1 · I(i)

 (6.32)

where K = topk(E, k) and E = {∥ e (j) − e (t) ∥2}. Alternatively, E = {− ∥

e (j) − e (t) ∥2} can be used to predict I · (−1).

In another application scenario, there exists a potential for data reduction by en-

coding ∆t with a subset of e vectors. These vectors constitute a dense, condensed,

and unweighted aggregation of information, spanning extended temporal intervals,
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thereby encapsulating all essential information. The informational equivalence

between e and X should be maintained, provided they correspond to identical

temporal segments ∆t. This would reduce input size and dimensionality, which is

particularly interisting for resource-intensive transformers. This proposed concep-

tualization stands in contrast to the patching methodology employed by Zerveas

et al. [263] and Nie et al. [165], as discussed in Section 3.0.4. Empirical tests in

[223] showed degraded performance, so the strategy was not pursued further.

6.8 Proposed Recurrent Transformer

This section is mainly based on the authors publications [220] and [224].

Recent advancements in the field of ML, particularly in NLP, have been profoundly

influenced by the development of transformer models and the attention mechanism.

This architecture forms the basis for models such as GPT-3 [9], GPT-4 [173],

LLaMA [216], and BERT [40], which have demonstrated remarkable capabilities.

Given these developments, the transformer architecture is examined as an initial

focus of this research.

As outlined in Section 6.3, a conceptual parallel is drawn between market snap-

shots and NLP tokens. This analogy aligns with the temporal orientation of the

attention mechanism within transformer models, as highlighted by Li et al. [124].

This temporal aspect facilitates an enhanced understanding of sequential data,

underscoring the transformative impact of attention mechanisms.

Zhao et al. [274] use a time-weighted function that gives greater importance to

values close to the current or predicted data points. This method of time-weighting

is implicitly integrated within all proposed transformer models that utilize the

market axis for embedding representations. The attention mechanism within these

models is exclusively oriented towards capturing temporal dependencies. This

approach helps to ‘discovered the non-linear relation between the importance and

time point of stock data’ [274].

To pivot the focus of the attention mechanism towards inter-stock dependencies,

ASMs have been developed, which are detailed in Section 6.11. These models aim
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to incorporate relational dynamics between different stocks, thereby extending

the utility of the attention mechanism beyond temporal analysis to include spatial

stock interactions.

As delineated in Chapter 1, the utilization of recurrent transformer models to

process extended temporal sequences is proposed in the research. The goal is to

improve detection of non-stationary patterns in time series. Using longer intervals

is expected to reveal dynamics that are otherwise treated as noise in short win-

dows. It is also expected to expose long-term trends that are not visible in short

sequences.

The processing of extended sequences in transformer architectures is computation-

ally challenging, due to a time complexity of O(n2 · ξ) and a space complexity of

O(n2 + n · ξ) of transformers [178]. This issue is notably pertinent in the domain

of NLP, where the processing of lengthy inputs via transformers represents a sig-

nificant area of ongoing research [8]. To address these computational constraints,

the integration of recurrent transformers for SPP/SMP has been pioneered, as

introduced in [224]. This adaptation iteratively processes long time series across

multiple iterations κ.

The attention mechanism is implemented locally within discrete chunks, and a

recurrent approach is employed across segments of the series to optimize compu-

tational resource utilization. To preserve and leverage information from preceding

chunks, inspiration is drawn from RNNs and LSTM networks, incorporating a

context Π in the model. This proposed context enables the storage and retrieval

of information from previous iterations, enhancing the model’s temporal coher-

ence. The rationale for introducing Π is to enable the model to retain compressed

representations of earlier chunks without directly carrying forward the raw data.

In this way, Π functions as a recurrent state, analogous to the hidden or cell states

in RNNs and LSTMs, and ensures that long-range dependencies are not lost when

processing extended sequences in a chunk-wise fashion. This design allows the re-

current transformer to maintain temporal coherence across segments and to incor-

porate information from distant past observations in a computationally tractable

manner. Conceptually, Π can be seen as a history embedding that parallels the
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role of context windows in CLM or MLM training (providing additional text as

context), but specifically adapted to quantitative stock data. Abstracting prior

information into Π is intended to capture slowly evolving dynamics (i.e. long-term

dependencies) that are missed when attention is limited to a single chunk.

Incorporating distant time steps into the model through Π, rather than directly in-

putting the raw time series, can mitigate the challenges posed by non-stationarity.

This approach minimizes potential numerical instabilities arising from the evolving

characteristics of time series data, as the model processes the derived context

rather than the time series itself. Nevertheless, the learning dynamics of the con-

textual representation remain susceptible to the underlying variability in the data.

In the MLM framework, as elucidated in Section 6.9, the task entails pre-

dicting a subsequent token, as P(X = w̃(t)|w̃(t−1), . . . , w̃(t−ϖ̃), Π̃) with Π̃ =

{w̃(t+1), . . . , w̃(t+ϖ̃)}. In the context of employing a recurrent transformer architec-

ture, Π̃ is redefined to encompass Π̃ = {w̃(t−ϖ̃), . . . , w̃(t−∆̃t)}, thus incorporating

tokens from a more extended historical context into the predictive model. This pro-

posed adaptation contrasts markedly with an MLM adaption (using future stock

price information), wherein access to context from the distant past is available

within practical applications of the model. This design is intended to integrate

long-range temporal dependencies and improve predictive accuracy. Chunk-wise

processing is also expected to improve robustness to noise, consistent with [186],

where permutation is used as an auxiliary task. The recurrent transformer, de-

noted as F ⟨T⟩(.), incorporates ρ encoder layers (F ⟨E⟩
1 (.), . . . , F ⟨E⟩

ρ (.)) where each

layer is defined according to the specifications in [219].

In the given model, Π, which encapsulates recurrence by incorporating input from

the preceding iteration κ−1, can be implemented in one of two distinct methodolo-

gies. One option is to supply the context once at the start, F ⟨T⟩(Π(κ),X(κ)), which

sets a shared context for the sequence. Alternatively, the context can be iteratively

outputted and utilized within each individual transformer encoder block, denoted

as F ⟨E⟩
n (Π(κ)

n , Zn−1), where Z serves as a generalized placeholder representing the

output from the previous encoder stage of the respective model. ‘N’ is used for

models adopting this procedural approach.
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The context is initialized with a uniform Xavier [77] distribution as

Π[i, j] ∼ U
−

√
θ

nin + nout
,

√
θ

nin + nout

ξ×ϕΠ

with θ = 6 . (6.33)

The stock data input X(κ) is defined as

X(κ)[i, j] = X[i, (κ− 1) · θκ + j] (6.34)

for each κ respectively, where θκ is the chunk size. The input is recursively fed into

F ⟨T⟩(.) for max(κ) iterations until the termination condition κ > ∆t
θκ

is satisfied.

During each iteration, F ⟨T⟩(.) receives Π(κ), from the preceding iteration.

It is indicated by the experimental results that the most effective normalization

strategy for the chunk X(κ) is the one proposed by [141]. This observation stands

in contrast to the optimal normalization approach for ASMs which work best with

the one from Appendix A.1.

Furthermore, the incorporation of F ⟨LL⟩ proves to be essential for processing X(κ).

Specifically, a latent transformation with a tanh(.) activation function, or the one

described in Section 6.8, is employed in the authors implementation. Without this

preprocessing step, the model exhibits significant difficulty in learning meaningful

representations. The instability observed when omitting F ⟨LL⟩ is consistent with

the findings of [253], which previously demonstrated that multi-view data can

exhibit instability in subsequent modeling stages when not subjected to adequate

preprocessing. Analogous to this in the NLP area, one would probably not create

a language model without a (learnable) word embedding matrix.

Attention-Mechanism In modern NLP architectures, self-attention mechan-

isms conventionally employ multiple attention heads, each selectively attending to

distinct subregions of the input sequence. This design promotes a decomposition

of representations into multiple latent subspaces, resulting in a more detailed en-

coding. However, a fundamental deviation from conventional NLP methodologies

is present in the proposed models due to the structural composition of its input

representation. Specifically, whereas information in standard tokenized sequences
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is distributed across multiple discrete tokens, a stacked input paradigm is em-

ployed, wherein all spatial and indicator-related information corresponding to a

single timestep is encapsulated within a singular token.

Consequently, this structural distinction, combined with the empirical findings

in this thesis (cf. Section 7.5.1) during pretraining, suggests that a single-head

attention mechanism—similar to the approach proposed in [115]—is more appro-

priate in this context. This departs from findings such as [134] (Chapter 2),

which report benefits of multi-head attention for stock data. An alternative de-

veloped approach proposed is to modify F ⟨LL⟩ as F ⟨L⟩ using the weight parameter

WL ∈ Rρheads+1×⌊ ξ
ρheads

⌋×ξ (assuming η = |C| · F holds). This is used to calculate

Ẋh = XT · (WL[h])T (6.35)

and

X̄[j, t] = tanh((Ẋh)T [i, t]) (6.36)

with j = (h− 1) + i1.

This method ensures that the semantic information embedded within a market

snapshot is redundantly encoded in two ways: First, as in conventional multi-head

attention, the same input is projected into multiple distinct subspaces—one per at-

tention head—where each head processes the information independently. Second,

prior to the attention operation itself, a head-specific latent transformation is ap-

plied. Together, these two stages ensure that each market snapshot is represented

multiple times across both latent and attention layers.

The context Π with length ϕΠ may be integrated in one of two fashions: it can

either be concatenated, in what is referred to as merged-attention (abbreviated

with ‘M’), with the input, or employed as queries in cross attention (abbreviated

with ‘C’) mechanisms within F ⟨E⟩
n . In the scenario utilizing cross attention, it is

infeasible to establish a distinct context that can be updated in relation to the

data from the preceding iteration κ.
1For the ρheads-th head, not all latent representations may be present to fit with the dimension

number.
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For the merged attention based models the inputs are fed in the attention-head

headρhead in the layer F ⟨E-M⟩
n (.) (as defined in [219] with slight modifications in the

notation) as

F ⟨Attention⟩
([(

Π(κ)
)T
⊙
(
X(κ)

)T
]
·WQ,

[(
Π(κ)

)T
⊙
(
X(κ)

)T
]
·WK ,

[(
Π(κ)

)T
⊙
(
X(κ)

)T
]
·WV

)
(6.37)

where Π(κ) is defined according to the respective model version.

For cross attention based models the definition simplifies to

headρhead = F ⟨Attention⟩
((

Π(κ)
)T
·WQ,

(
Π(κ)

)T
·WK ,

(
X(κ)

)T
·W V

)
. (6.38)

The final output of both merged attention approaches and cross attention

approaches is transposed again so F ⟨E-M⟩
n (Z) ∈ Rξ×(ϕΠ+θκ) and consequently

F ⟨E-C⟩
n (Z) ∈ Rξ×θκ holds true.

In examining the architectural variations of the proposed recurrent transformer

models, the primary distinction (next to the cross attention, merged attention

and multi context) lies in the mechanisms employed for context generation. Three

distinct models from the domain of RNNs are proposed to illustrate these vari-

ations. The most rudimentary of these models derive from adaptations of the

Jordan models [105], denoted hereafter with ‘J’. These models exhibit conceptual

similarities with the methodologies employed in TransformerXL [31]. Other models

adapt techniques from Elman RNNs [58] (denoted ‘R’). These bear resemblance

to the Recurrent Memory Transformer model [10]. Additionally, models based

on LSTMs [87], indicated by ‘L’, parallel the structure found in Block-Recurrent

Transformers [94]. Position encodings listed in Section 6.4 are employed. This

observation aligns with the reasoning presented in [169], which emphasizes the

efficacy of such encodings in capturing structural dependencies within the data.

Π(κ) Definition The architectures presented in the following are illustrated in

Figure 6.6; 1) are the models from Section 6.8, 2) those from section 6.8 and 3)

those from section 6.8.
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Figure 6.6: Schematic illustration of the recurrent transformer architectures.
The illustration is taken from the authors publication [224].

Jordan based Π Assignment The ‘J’ in F ⟨J⟩ denotes the Jordan Network

inspired models [105], which are precursors to RNNs. In these networks, the

entirety of the output is fed back into the model as an exact copy during the

subsequent iteration, concurrently with the input of the new iteration step.

For F ⟨J-M⟩ models

Π(κ)
J-M[i, j] = F ⟨J-M⟩

ρ (Π(κ−1)
J-M , Z)[i, j] (6.39)

with j ≥ θκ and Z ∈ Rξ×θκ is defined. This extracts for F ⟨J-M⟩(.) the positions

generated by X(κ) as part of the output for Π in iteration κ+1. For F ⟨N⟩ approaches

this translates to

Π(κ)
J-M-N[n, i, j] = F ⟨J-M-N⟩

n (Π(κ−1)
J-M-N[n], Z)[i, j] . (6.40)

In the context of these models, employing cross attention involves feeding the entire

output of F ⟨E⟩
ρ from iteration step κ into the system, as delineated in Section 6.8.

This output is then utilized as the queries within the attention mechanism.

Therefore

Π(κ)
J-C = F ⟨J-C⟩

ρ (Z(κ−1)) (6.41)

holds true and for F ⟨J-C-N⟩, Π ∈ Rρ×ϕΠ×ξ is defined as

Π(κ)[n]J-C-N = F ⟨J-C-N⟩
n (Z(κ−1)) . (6.42)

Elman RNN based Π Assignment In the F ⟨R⟩-models the latent representa-

tion of the previous κ is fed in the model. This contrasts to the Jordan Networks,
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where the entirety of the output is reintroduced into the model, potentially lead-

ing to noise carousels and error feedback loops. Cross attention is not possible

for these models. This limitation occurs because no contextual learning can take

place if the model simply reproduces the modified input, preventing the use of

cross-attention mechanisms.

The F ⟨R-M⟩ models define Π(κ) as

Π(κ)
R-M[i, j] = F ⟨R-M⟩

ρ (Π(κ−1)
R-M , Z)[i, j] (6.43)

for j ≤ ϕΠ. For F ⟨R-M-N⟩ models

Π(κ)
R-M-N[n, i, j] = F ⟨R-M-N⟩

n (Π(κ−1)
R-M-N[n], Z)[i, j] (6.44)

(again with j ≤ ϕΠ) is defined.

LSTM based Π Assignment The final model class draws on the LSTM ar-

chitecture [86]. While it does not include all aspects of the traditional LSTM

framework, it selectively incorporates key components that are useful for gener-

ating Π. Of particular interest is the adoption of the ‘error carousel’ mechanism,

a pivotal feature of LSTM models that facilitates effective error propagation and

learning stability.

Π(κ) is defined at iteration step κ as

Π(κ) = tanh(Π̈ ·W T
O + bO) (6.45)

with WO ∈ Rξ×ξ.

This calculation is inspired by the ‘Output-Gate’ of LSTM models. Thus, Π takes

the role of the long term memory or ‘cell-state’. The intermediate result after

processing the transformer encoder layer is defined as Π́ = F ⟨E-L⟩
ρ (Z) to improve

readability in the following.

To update this cell state Π́(κ) and the ‘forget-gate’ is used. This calculates as

F (κ) = σ(Π́(κ−1) ·W T
F + bF ) (6.46)
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with WF ∈ Rξ×ξ.

Also inspired by the LSTM model the mechanisms

I(κ) = σ(Π́(κ) ·W T
I + bI) (6.47)

with WI ∈ Rξ×ξ and

G(κ) = tanh(Π́(κ) ·W T
G + bG) (6.48)

with WG ∈ Rξ×ξ are used to represent the input gate. With all these auxiliary

variables the update function for the cell state of the next iteration κ + 1 can be

defined as

Π̈(κ) = F (κ) ⊗ Π́(κ) +G(κ) ⊗ I(κ) . (6.49)

The proposed use of a forget gate, inspired by the LSTM model, allows the model

to selectively remove parts of the previous cell state, making room for new con-

textual information as controlled by the input gate. This mechanism improves

the model’s ability to adapt to changing data patterns by balancing information

retention and removal.

Non-recurrent Transformer / Baseline Transformer For the F ⟨M⟩ models,

the parameters can be assigned such that θκ = ∆t and ϕΠ = 0, thereby establishing

a non-recurrent architecture (i.e. F ⟨BM-T⟩). This configuration allows the impact of

recurrence on performance to be evaluated. Comparing this non-recurrent model

with its recurrent counterparts enables a quantitative assessment of recurrence.
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6.9 Proposed Pretrained Transformer

This section is mainly based on the authors publications [220] and [224].

6.9.1 Masking Tasks

Arguably the most prevalent pretraining task for language models is MLM. Here,

individual word tokens IMLM = {i ∈ N, i < l̃,M [i] i.i.d.∼ B(νMLM)} are masked

and the new tokenized input text (ẽ(i))l̃
i=0 : ∀i ∈ IMLM : ẽ(i) ← ẽ[MASK] is then

processed through F̃ ⟨SM⟩(.). Subsequently, all indices i ∈ IMLM are analyzed by an

MLM head designed to predict the original word token at each masked position.

Similar to the proposed S2V model, an adapted masking task can be applied along

both the temporal and the spatial/market axes.

As outlined in Chapter 1, masking on the market axis is intended to help the model

capture delayed cross-asset correlations by reconstructing masked prices from other

ci. Temporal masking and the inclusion of future prices as context are motivated

by CLM, of which MLM is a variant. Here P(X = w̃(t)|w̃(t−1), . . . , w̃(t−ϖ̃), Π̃) with

Π̃ = {w̃(t+1), . . . , w̃(t+ϖ̃)} is calculated.

The approach can be adapted by adding Π = {X(t+1), . . . , X(t+ϖ)} as an additional

contextual element. Although future stock values cannot be obtained in real-world

applications, this proposed modification is designed to enhance the model’s capab-

ilities in several areas. Firstly, by incorporating additional information, the model

is expected to identify and represent market dynamics and patterns that might

otherwise be treated as noise. Secondly, the inclusion of future values as a teaching

mechanism introduces the model to concepts of randomness and stochastic pro-

cesses, thus fostering an understanding that some elements remain unpredictable.

Thirdly, the model is trained to recognize the market’s behavior in response to

unforeseen events. While it is not expected to predict these events, the model can

generate informed predictions about subsequent market behavior and learn about

the interdependencies among variables [263].
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This approach also permits retrospective analysis of temporal dynamics that would

otherwise remain unexplained. The insights derived from such retrospective ana-

lysis can subsequently be encoded into the model as abstract knowledge, poten-

tially enhancing its capacity to predict and interpret future movements at other

temporal points within the context of SMP/SPP. Transferred to the NLP area,

one would not simply perform next token prediction (only SPP/SMP without

knowledge of future stock trends) as a training task, but also MLM to generate

generalized knowledge.

Furthermore, the application of masking facilitates an increase in the quantity of

available training samples. This is achieved by passing the same X̀ξ×∆t multiple

times through the model, each time representing a distinct data sample. Such an

approach is highlighted in [249], where masking nodes serves as a foundational

motivation for the implementation within their GNN-based model. As noted in

Chapter 1, the strategy is particularly useful when only limited data are available

(e.g. for interday). For all masking tasks, a mask M ∈ {0, 1}dim(X) is employed.

The input to the model is defined as Ḿ⊗X+M̂ , with M̂ = m·M and Ḿ = 1−M ,

where m denotes a learnable embedding parameter representing masked values.

The overarching aim of all masking tasks is to facilitate the reconstruction of

masked inputs. This objective is pursued through the optimization process defined

by the minimization of the loss function

LM = 1
1T M1(∑ξ

i=1
∑∆t

j=1(F ⟨T⟩(X) ⊗M)[i, j] − (X ⊗M)[i, j])2 for SME (the BCE

is used for SMC accordingly). For certain masking tasks, additional heads can be

added; details are given where relevant. A suite of masking tasks is introduced in

this research:

The task of Masked Feature Modeling (MFM) is defined as ∀i, j : M [i, j] i.i.d.∼

B(νMFM) with i ∈ N ≤ ξ, j ∈ N ≤ ∆t. In this setting, the model receives both

past and future points for the target stock and the same features of other stocks

within the sliding window. This dataset not only includes the target stock’s price

features but also extends to the analogous features of other stocks within the

sliding window.

For MFM and the subsequently introduced Masked Price Modeling (MPM), a head
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is proposed to enhance the model’s expressiveness for prediction. H ∈ Rdim(X) is

fed into an RNN followed by a linear layer, yielding Ḣ ∈ Rdim(H). A learnable

parameter WM ∈ Rξ×∆t×∆t is introduced and used to compute

Ḧ[i] = tanh(Ḣ[i]) ·WM [i])T . (6.50)

This allows each sliding window of each feature and each stock to be embedded sep-

arately by a dedicated head, rather than relying solely on the transformer’s output.

This is particularly beneficial since the proposed transformer’s output—especially

after passing through the ReLU and dropout layers—may struggle to accurately

represent the results.

Masked Timestep Modeling (MTM) is defined (i.e. the cloze typ masking [263])

as ∀i ∈ N < ∆t : b[i] i.i.d.∼ B(νMTM) with dim(b) = ∆t and M [i, j] = b[j].

For MTM, an optional linear layer is defined with an initial σ(.) activation function

processing batch wise inputs as F ⟨MTM⟩(.) having a weight WMTM ∈ Rξ×ξ. Here

RMTM is the input, which is defined as

IMTM = {j|b[j] = 1}, ∀i ∈ IMT M : RMTM[k, i] = F ⟨T⟩(X)[k, i] (6.51)

and redefine

∀i ∈ IMT M : F ⟨T⟩(X)[k, i]← F ⟨MTM⟩(RMTM)[k, i] . (6.52)

Next, Masked Stock Modeling (MSM) is defined as ∀i, j : BMSM[i, j] i.i.d.∼ B(νMSM)

with dim(BMSM) = (ξ,max(κ)) and

∀i ∈ N < ξ,∀j ∈ N < max(κ),∀k ∈ N < θκ : M [i, (j − 1) · θκ + k] = BMSM[i, j] .

(6.53)
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Again a batch wise linear layer F ⟨MSM⟩(RMSM) is defined and this time

IMSM = {(i, j)|BMSM[i, j] = 1}

(ik, jk)← ϕ(k)

∀k ∈ N ≤ |IMSM|,∀w ∈ N < θκ : RMSM[k, w] =

F ⟨T⟩(X)[ϕ(k)[1], (ϕ(k)[2]− 1) · θκ + w]

holds. The outputs of F ⟨MSM⟩(RMSM) are assigned in the models output as before.

Conceptually, MSM can be compared to the masking of longer sentence fragments

in NLP, as described in [106]. Due to the poor performance of stock masking,

a head per stock is proposed, as in MPM/MFM, and the entire time series was

embedded, but without success.

Further Masked Price Modeling (MPM) is defined as ∀i, j : BMPM[i, j] i.i.d.∼

B(νMPM) with dim(BMPM) = (|C|,∆t) and

∀f ∈ N < F + 1 : M [|C| · (f − 1) + i, j] = BMPM[i, j] . (6.54)

Moreover Patch Masked Modeling (PMM) is defined as

LPMM ⊆ (N0 ∩ [0, ξ)) ⋏⋊⋉ (N0 ∩ [0,∆t)) ⋏⋊⋉ {i ∈ R|0 ≤ i ≤ 1} (6.55)

and

∀lk ∈ LPMM :

BPMM,k[i, j] i.i.d.∼ B(lk[3]) with i ∈ N0 <
ξ

lk[1] , j ∈ N0 <
∆t
lk[2]

∀w ∈ N ≤ lk[1],∀v ∈ N ≤ lk[2] : Mk[i · lk[1] + w, j · lk[2] + v] = BPMM,k[i, j]

(6.56)

with

M = sign(
|LPMM|∑

k=1
Mk) . (6.57)

For lk where lk[1] = lk[2] holds, a linear layer F ⟨PMM⟩(.) can be defined.
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Figure 6.7: Conceptual mapping of the various masking tasks. One color
represents the price performance of a stock over a period of time. Black implies

the respective masking.

A graphical representation of all these methodologies is provided in Figure 6.7.

6.9.2 Trend-Matching

For training many language models in the NLP domain, the NSP task is used.

Two sequences of word-tokens
(
w̃(1), w̃(2), . . . , w̃(l̃)

)
and

(
w̃(l̃+1), w̃(l̃+2), . . . , w̃(l̃+l̃2)

)
are entered into the model concatenated with a (separator) ‘[SEP]’ token

˜F ⟨SM⟩
(
w̃1, w̃2, . . . , w̃l̃ ⊙ h̃[SEP] ⊙ w̃l̃+1, w̃l̃+2, . . . , w̃

l̃+l̃2
)

(following the notation of

Section 6.1).

The position of the [SEP]-token is subsequently extracted from the computational

output. This extracted position is then inputted into a NSP module. A binary

decision is made by the NSP module on whether the two sequences are contiguous

parts of the same text.
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Formally

( ˜F ⟨SM⟩[i, l̃ + 1]) ·W T
NSP + bNSP (6.58)

with i ≤ ξ̃ and WNSP ∈ Rξ̃×2 is calculated.

The task can be adapted to the proposed transformer models to encourage learning

of macro-level market regularities (analogous to NSP in NLP). As noted earlier in

Chapter 1, the main goal of training this proposed TM task is to help the model

develop an understanding of macroeconomic principles, similar to how NSP in

NLP improves semantic understanding in language. The paradigm is intended to

support longer-range forecasting i.e. ω > t + 1. The approach is also intended to

improve robustness to stochastic variation by emphasizing stable regularities over

noise.

For the approach, a trend-matching token, denoted as hTM ∈ Rξ, is inserted within

the current training mini-batch between two sections of X. At each timestep the

model input is redefined as

X ←
[
Ẋ ⊙ hTM ⊙ Ẍ

]
. (6.59)

The two segments of the dataset are concatenated alongside the token, sub-

sequently forming the input for the model F ⟨T⟩. Following this integration, the

position of the [TM] token is ascertained and subsequently inputted into a lin-

ear layer. This layer is responsible for executing a binary decision, determining

whether the two stock trends under consideration sequentially follow each other.

By using (relative) returns or RLR, the model cannot recognize jumps in the data

and then make a ‘Clever Hans’ prediction [135], which would have been possible

on the absolute stock prices due to sudden large differences between the time steps

before and after hTM.

In the following let v be the timestep assigned for X wrt. to X̀. Also the length of

one segment is set to be θTM ≈ 1
2 ·∆t . Next the random predecessor trend start

index is set to

u = b · ( U((N < (T−∆t)) \ {v})) + (1− b) · (v + θTM) (6.60)
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where b i.i.d.∼ B(νTM) holds.

Further

Ẋ[i, k] = X̀[i, v + k] , (6.61)

Ẍ[i,+k] = X̀[i, u+ k] (6.62)

with ∀k ∈ N0 < θTM holds.

The underlying concept of the TM shares similarities with the approach in [169],

albeit in the reverse direction. In that work, historical time events are analyzed

for similarity, and those deemed dissimilar are suppressed in subsequent training.

Additional examples of contrastive learning tasks can be found in [177].

6.9.3 Finetuning

Fine-tuning is treated as an SF task with ω = 1 (SPP or SMP).

6.10 Clockwork RNN Models

In Chapter 1, the rationale for using models that operate at multiple temporal

frequencies in stock time series was outlined. Such an approach is exemplified by

the model proposed in [229]. Additionally, Ang and Lim’s introduction of ‘latent

cross-attention learning between modalities of different time-scales and sparsity’

[4] highlights the problem of sparsity, which is especially common in data with

finer temporal resolution, such as minute-level granularity. Support for multi-

frequency analysis is further provided by [43], where attention scores are analyzed

across weekly and daily frequencies. Based on this analysis, the timing intervals

for the computational model are experimentally determined and adjusted.

In this thesis, the CWRNN model, as described in [112], is employed. The im-

plementation utilized herein is sourced from Github 2; for implementation details,

the reader is directed to the link in the footnote. In the original publication the
2https://github.com/ToruOwO/clockwork-rnn-pytorch

https://github.com/ToruOwO/clockwork-rnn-pytorch
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Figure 6.8: Sketch of the Stock2Sentence and embedding based approaches.
The colors are also used in Listing 6.1.

CWRNN model, denoted as F̃ ⟨M⟩(.), ingests a tensor X̃ ∈ R∆̃t×ξ̃ representing audio

data and subsequently generates an output Ŷ ∈ R∆̃t×ξ̃.

Central to the architecture of the proposed CWRNN are its ‘modules’ P, each

of which is assigned a specific ‘clock period’. Each module pi ∈ P is set to its

own temporal frequency, enabling different processing rates across modules. For

the CWRNN experiments, the methodologies adopted from [141] are integrated as

discussed in Section 6.4. These methods address the challenges of non-stationarity

within the dataset, thereby stabilizing the training process and enhancing model

reliability.

6.11 Proposed Adapted Speech Models

This section is mainly based on the authors publication [222].

Chapter 6 sets the goal of adapting the LLM pipeline to time-series stock price

prediction, a central aim of this thesis. This builds on properties of contemporary

LLMs that suit SF problems, as outlined in Chapter 1. The authors prior research,
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including proposed methodologies outlined in [222] and detailed in Section 6.6,

demonstrates the feasibility of transforming multivariate time series data into a

format to be processed by LLMs.

Initially, F ⟨LLM⟩(.) is delineated as encapsulating one among a quintet of

prominent LLMs; specifically, BERT [40], LLaMA [216], GPT-2 [187], Trans-

formerXL [31], and T5 [188]. Most models comprises an encoder compon-

ent denoted as
(
F

⟨E⟩
1 (.), . . . , F ⟨E⟩

ρ (.)
)
, or a corresponding decoder component(

F
⟨D⟩
1 (.), . . . , F ⟨D⟩

ρ (.)
)
. The subsequent use of the decoders follow the methodolo-

gies described in [224]. Initial explorations and discussions of these decoder-based

approaches are deferred to Section 9.2.

As outlined in [222], refined methods are proposed to replace each of the three

coarse-grained processing stages within F ⟨LLM⟩: the speech model F ⟨SM⟩, the em-

bedding F ⟨E⟩, and the tokenization F ⟨TO⟩. In line with the definitions provided in

Section 6.9, pretraining is framed as a model-specific adaptation designed for the

ASMs. Regardless of the chosen approach, the model F ⟨LLM⟩(Z) = hCLS is defined

using the strategy described for the F ⟨BM-T⟩ in Section 6.5.

6.11.1 Embedding based Approach

In the initial approach, X̄ is employed, whereby ξ is defined such that for ξ ̸= |C|·F

can hold true. This definition enables the specification of ξ either as the original

model size for F ⟨LLM⟩ (for example, ξ = 768 for BERT) or as an optimized hy-

perparameter. The principal distinction between the standard transformer model

as reported in [219] and the variants discussed in Section 6.8—excluding those

with recurrent architectures—lies in the modifications tailored to LLMs. These

modifications encompass specific implementations such as the choice of activation

functions, the application of batch or layer normalization, and the utilization of

either cross attention or merged attention mechanisms.

6.11.2 Stock2Sentence Approach

In the proposed Stock2Sentence method, the stock embedding from the S2V model

is adapted in a way similar to how W2V embeddings may be used in LLMs in NLP.
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When applied to an NLP context, the dimensionality of an embedded word vector

dim(ẽ(t)) ∝ |C| holds in all approaches discussed before. Furthermore, the specific

temporal index of the word, ṽ(t), at which the vector ẽ(t) is positioned, aligns with

t from x
(t)
i , representing the discrete temporal step in the stock sequence.

In the models presented in Section 6.8, an attempt was made to predict the market

snapshot X(t+1). However, this analogy encounters limitations as the structural

composition of NLP models does not use stacking of embedded word tokens, as

observed in the proposed financial model.

Consequently, the proposed adopted methodology diverges from concatenating se-

quential market snapshots. Instead, each market state X(t) is treated as a sentence

in the NLP sense.

If each market snapshot is conceptualized as an individual component of a com-

prehensive ‘Text’ X, the ‘Sentence’ construct from the domain of NLP can be

adopted. To this end, a ‘Sentence’ A(t) ∈ RξS2V×l is defined, representing a market

snapshot such that A(t) ≡ X(t). Consequently, for the input

A =
[
A(t),hPUNC, . . . ,hPUNC, A

(t−∆t)
]

holds.

The exact meaning of ‘Sentence’ and the dimension of l depend on the chosen

methodological framework. In an effort to delineate distinct market snapshots,

which are analogous to disparate sentences in textual analysis, inspiration can

be drawn once again from NLP techniques. In NLP models, simple punctuation

marks, such as the period (‘.’), are commonly used to separate sentences.

In this context, a trainable token embedding hPUNC ∈ R1×ξS2V is introduced, util-

ized specifically to separate individual market snapshots within the analytical

model.

Untabulated experimental results suggest that the mere use of punctuation as de-

limiters is insufficient for generating a robust temporal structure in the analysis.

To address this limitation, the concept of position encoding employed in trans-

former architectures is drawn upon. The integration of a learnable Embedding

Matrix, Et ∈ R∆t×ξS2V , is proposed to enhance the temporal contextualization of

data points.

Therefore A(t)[i, l]← A(t)[i, l]+Et[t, i] is assigned. This adds a time-specific signal
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to each snapshot for temporal context. With the exception of TransformerXL

and T5, the model’s native position embeddings were used for all LLMs (meaning

for example Rotary Position Embeddings were implicitly used for LLaMA). For

TransformerXL/T5, they were implemented by the author. This means that all ci

in A(t)[j, i] have the same position embedding, as they are each semantically at the

same position, i.e. the same time step t. Classic position embeddings (each input

vector having a distinct embedding) were also tested, which led to performance

losses in all cases.

Numerous non-Euclidean methodologies discussed in Section 3.0.6 incorporate dy-

namic graph structures that evolve temporally, identifying this adaptability as a

critical factor for enhancing algorithmic prediction efficacy. In this approach, the

dynamic nature of relationships between stocks is carefully addressed through

three core mechanisms. First, the embeddings remain subject to continuous train-

ing rather than being statically frozen, as for example in [246]. Second, the tem-

poral structure is inherently encoded through both positional and feature vec-

tors, ensuring contextual coherence. Third, the embeddings undergo a proposed

pretraining phase within the MPM, where they are further refined through fine-

tuning, preserving contextual and temporal dependencies throughout the learning

process. The experiments have shown that for all proposed tasks in the ASMs it is

important to use the adapted normalization method of [168] from Appendix A.1.

Price Information Integration To systematically integrate spatial stock in-

formation with their corresponding temporal OHCLV features, the implementation

of three distinct methodological approaches was explored.

The first approach involved using each feature to independently scale a distinct

S2V vector. Empirical evaluations indicated that the addition of F-specific S2V

vectors and the significantly increased computational complexity subsequently de-

graded overall performance. Due to these limitations, this approach was deemed

suboptimal and was not pursued further.

The second approach, presented in [222], involved scaling each OHCLV feature

onto vectors of reduced dimensionality and subsequently stacking these vectors.

However, this strategy also demonstrated inferior performance compared to the
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approach detailed in the following, and thus, was similarly discarded in favor of

more effective methodologies.

The final approach proposed is based on having a learnable scaling vector based on

the (OHCLV)-features. For this a linear layer F ⟨FEW⟩(.) is defined with a learnable

matrix WFEW ∈ R|C|×ξS2V×F with an according bias bFEW and define the scaling

vector st
i at t for a stock ci as

st
i = x(t)

i · (WFEW[i])T + bFEW[i] . (6.63)

Further this ‘Sentence’ is defined as

A(t) =
[
st

i ⋆ E[i], . . . , st
|C| ⋆ E[|C|]

]
. (6.64)

One advantage of this proposed method is that default multi-head attention can

now be used effectively since not all price information is in one position of the

embedding dimension. In the investigations, an alternative representation of x(t)
i

or e in the form of a vector comprising various technical indicators was also con-

sidered. Specifically, beyond the standard OHLCV attributes, an extensive set

of 204 additional indicators derived from the AV dataset, corresponding to 52

indicators per OHLC feature, was incorporated3. Despite this expansion, results

were at best comparable—and often worse—than the OHLCV baseline, so it was

not pursued further. This suboptimal performance is plausibly attributable to the

substandard quality of the supplementary dataset, which exhibited a high preval-

ence of missing values. The Stock2Sentence transformation likely already captures

the relevant market dynamics, leaving little gain from adding technical indicators

mostly grounded in the OHCLV features.

S2V Order In a given instance A(t), the sequence in which the scaled S2V em-

beddings are arranged is hypothesized to be irrelevant, as these embeddings corres-

pond to identical time steps. The order of the scaled S2V embeddings within one

A(t) is systematically permuted in the experiments. Additionally, the introduction
3Indicators can be found in https://www.alphavantage.co/documentation/

#technical-indicators

https://www.alphavantage.co/documentation/##technical-indicators
https://www.alphavantage.co/documentation/##technical-indicators
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of a pretraining task described in the design is intended to improve the model’s

ability to identify semantically equivalent representations. Since the model shows

no difficulty in recognizing that the pure order within t is irrelevant, and the

pretraining task can be solved almost perfectly, no further investigations on this

aspect are listed.

Prediction Heads Different prediction heads for SMP/SPP were also exper-

imented with, following the idea of [79], where a distinct predictor is used for

each stock. Instead of passing the (flattened) CLS embedding into the head, the

learnable weigh WASM-TP ∈ R|C|×1×ξ is proposed with the corresponding bias to

compute

ŷ[i] =
(

1
|Ji|

)
·
∑
j∈Ji

A(j) ·WASM-TP[i]T + bASM-TP (6.65)

with Ji = {i+ (|C|+ 1) · l|∀l ∈ N0 < ∆t}. This gives each stock a dedicated pre-

diction head with enough capacity to model its temporal and structural dynamics

while using the processed spatial information of each stock.

6.11.3 Tokenization Approach

The final proposed methodology, as delineated in [222], involves the tokenization

of numerical price data, i.e. the tokenization of regression values. This approach

replaces the complete LLM pipeline by using the tokenization model F ⟨TO⟩ and a

defined vocabulary R. A fundamental distinction exists between NLP and SF; the

former fundamentally addresses regression data, whereas the latter is a classifica-

tion problem. All required tokens are included in R. Therefore

R = C ∪ {‘-’, ‘:’, ‘[PUNC]’} ∪ {x|x ∈ N0, x ≤ 10} ∪ F (6.66)

encompass all company identifiers as stock ticker, all numerical digits, interval

feature identifiers denoted by F, and other characters. Formally, f : R 7→ V ⊂ N

is performed through F ⟨T⟩. With these tokens, the stock input can be tokenized,

with A defined as the concatenation of A(t). Moreover, this tokenization allows
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any speech model to be applied directly, removing the need to skip the embedding

phase, since the input is already provided in tokenized form.

The input A(t) is represented as a sentence by

A(t) =
[
c1 q1 x(t)

1 [1], c1 q2 x(t)
1 [F], , . . . , c|C| qF x(t)

|C|[F]
]

(6.67)

with q ∈ F ⊂ N0 e.g. ‘Open = 0’.

This input can now be tokenized. Each xt
i is represented as

xt
i[j]← freverse(xt

i[j] · 10, 000) . (6.68)

The multiplication factor of 10, 000 is employed due to the database’s convention

of storing each price value with four decimal places. Volume values are max-min

normalized for the other features the unscaled original values are used. This spe-

cific scaling ensures that each numerical value retains its precision post storage and

retrieval. Furthermore, the reversal process delineated in Appendix A.8 serves to

stabilize the training process. It standardizes the representation of price across

different stocks by ensuring uniformity in digit placement: the first digit corres-

ponds to the fourth decimal place, the second to the third, and so forth. This

methodical reordering mitigates discrepancies in data handling and enhances the

consistency of input features for subsequent analytical processes.

Larger numbers in the vocabulary are also experimented with to decrease the input

length, i.e.

R(θV ) = C ∪ {‘:’, ‘-’, ‘[PUNC]’} ∪ {x|x ∈ N0, x ≤ θV } ∪ F (6.69)

as well as using the respective speech model default vocabulary set R̃(<SM>) (e.g.

the BERT Vocabulary and Tokenizer). Both approaches were discarded: the first

due to unsatisfactory results, and the second owing to excessively large inputs and

poor performance, as also noted in [222].
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[CLS]

ITW 0: 0396 SRE 0: 0942 BAC 0: 0426 HUM 0: 4511 #...# Open

# ...

ITW 4: 0610 SRE 4: 0300 BAC 4: 0130 HUM 4: 0420 #...# Volume

[PUNC] # Separator Token

# ...

ITW 0: 0696 SRE 0: 0742 BAC 0: 0226 HUM 0: 4511 # ...# Open

# ...

ITW 4: 0810 SRE 4: 0270 BAC 4: 0110 HUM 4: 0069 #...# Volume

[PUNC] # Separator Token

[EOS]

Listing 6.1: Text representation of the tokenization based approach.

A summary of all approaches can be seen in Figure 6.8 (Stock2Sentence and Em-

bedding based) and in Listing 6.1 (Tokenization based).

6.11.4 Expandability and Generalization

The latter two methodologies facilitate a notable enhancement in the expandability

of the model. This adaptability is crucial given the dynamic nature of stock

markets, where companies may either enter by listing/IPOs or exit due to delisting

or bankruptcy.

Particularly with datasets of higher temporal resolution, such as those measured

at minute intervals, it is frequently observed that data may not be consistently

available for each t for all companies i.e. ∃i ∈ N : ∃t ∈ N : ∄xt
i. To address these

instances of incomplete data, various padding methodologies have been previously

delineated.

In the context of SF models, employing inputs such as X or X̄, particularly in

scenarios devoid of a S2V embedding, presents certain limitations. These models

lack extensibility primarily because ξ, which is directly derived from C, depends

on the position of each ci within the model structure. Unlike the Stock2Sentence

and Tokenization, the conventional methods do not facilitate the straightforward
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integration or exclusion of companies based on the availability of data during each

training step.

Furthermore, as outlined in Chapter 1, the models’ ability to expand and generalize

is of importance. The adoption of the proposed S2V representations enhances the

model’s ability to incorporate new stocks. This characteristic not only addresses

the mentioned limitations but also supports faster learning of interrelations among

data points, thereby improving the model’s overall effectiveness and adaptability.

The correlation and relationship learning is further motivated by many studies,

including [258], have argued against the use of fixed correlation information.

6.11.5 Pretraining

As noted in Section 6.9, most language models are pretrained with MLM and NSP.

These methodologies are applicable to the training of ASMs as well, albeit with

requisite modifications to better suit the specifics of the Stock2Sentence frame-

work.

Next-Sequence-Prediction as Trend-Matching The methodology outlined

in Section 6.9 can, in principle, be directly extended to the NSP task in the fol-

lowing manner: Within A, a designated marker token [TM] embedding is inserted

at predefined positions. Subsequently, segments of stock price histories are con-

catenated before and after this marker token.

To enable the model to effectively differentiate between these segments, a learnable

embedding matrix ETM ∈ R2×ξS2V is used, which is added to each e based on

whether it belongs to the sequence preceding or succeeding the [TM] token. This

proposed approach parallels the segment embedding mechanism employed in many

LLMs, such as BERT [40]. Finally, the model is tasked with performing a binary

classification to determine whether the two adjacent stock price history segments

exhibit sequential continuity.

As illustrated in Section 7.5.2, this task presents significant challenges, necessitat-

ing the exploration of various implementation strategies, normalization modules,

loss functions, and activation functions. These strategies include processing the
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folded sequences, or incorporating the processed positional information of the CLS

token within the prediction head.

An alternative task is designed to move beyond a binary decision task, wherein,

during each training step, the entire trend is not simply replaced with another

trend from the mini-batch. Instead, a specific ci ∈ C is selected per batch and

swapped with the trend positioned after the CLS token, requiring the model to

classify the corresponding stocks identity. Partially flattening each sequence into

a separate head with a 2 dimensional output and a cross-entropy/softmax decision

head was also tested, but this design was abandoned.

Masked-Language Modeling as Masked Price Matching In Section 6.9,

the MLM task has been previously modified by selectively masking the temporal

or the spatial/market axis. However using Stock2Sentence and A, the horizontal

dimension is comprised solely of embeddings, rather than actual price data as in

Section 6.9.1, where the representation of prices varies. This configuration allows

the use of methodologies that are more closely aligned with those applied in NLP.

Again a mask is defined (this time only cloze type masking as done in all the

LLMs) as M ∈ {0, 1}dim(A). As in timestep masking in Section 6.9.1 ∀i ∈ N <

∆t : b[i] i.i.d.∼ B(νM) with dim(b) = dim(A)[1] and M [i, j] = b[j] holds.

This procedure can be adapted for SMC without requiring significant modifications

to the LLM architecture. First, it remains debatable whether using a uniform

[MASK] token embedding across all stocks is appropriate, given that the model

lacks any specific indicator of the stock to predict.

If the same C is used for each training step, the same ci consistently appears in the

same location within A(t), enabling the model to potentially learn that all ci ∈ C

occur between two [PUNC] token embeddings once but this structural knowledge

does not benefit SF problems. As mentioned in Section 6.11.2 and shown in the

experiments in Section 7.7, the model has no problems mapping the position of

the vector in the input sentence to the stock.

As the position of a scaled embedding within A(t) lacks inherent semantic meaning

a different procedure is required if C changes in each time step. Following Sec-

tion 6.9.1, a token ci is masked by using its unscaled embedding E[i] (or −1·E[i] to
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indicate a masked variant). Subsequently, these obfuscated tokens are assimilated

into a linear layer analogous in functionality to the MLM.

This layer is denoted as Masked Company Price Modeling (F ⟨MCPM⟩), a linear

map with weights WMCPM ∈ RξStock2Vec×(|C|·2). The main goal of this layer is to

perform SMC on the masked price x(t)
i . This approach bears similarity to the

S2V-vocabulary-based methodology discussed in Section 6.6.

Experiments were conducted to explore alternative architectures, employing a

dual-layer design: one layer dedicated to predicting the SMP label and another

for ci (i.e. utilizing WMCM ∈ RξS2V ×|C|). However, this design had challenges when

attempting to jointly train the two objectives. Furthermore, some uncertainty

remains about whether the model fully understands the underlying task require-

ments, calling into question its ability to handle both prediction goals at once. The

disadvantage of the vocabulary based approach is that no SME can be carried out

in this way.

Text Corpus Adaption Due to the quadratically escalating computational

time and memory complexity inherent in the ASMs, it is not possible to incor-

porate the complete set of stocks C, into the pretraining phase. This limitation

holds true not only for C = S&P-500 , but also for more extensive datasets

like All(2010:) . An alternative methodology was explored to address this, wherein a

varying subset Ċ(i) ⊂ C is sequentially integrated at each training step i for both

MPM and TM. A conceptually similar approach is introduced in [189] with the

multi-transformer model, which, at each training step, selects a distinct random

subset of the training data to enhance learning dynamics.

Given the architectural extensibility of ASMs and the transmission of spatial in-

formation via S2V representations, it was conjectured that ASMs could be effect-

ively trained using different cj ∈ Ċ(i) at successive intervals. Such an approach

allows for the incorporation of more granular representations of both S2V and

broader market dynamics into the model. As a result, the learned representations

extend beyond cj ∈ Ċ to cj ∈ C.

Implementing this approach involves several key requirements. To maintain gener-

alizability across different datasets, the output dimension of the MPM head must
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necessarily align with the cardinality of the complete stock set |C|. Furthermore,

experiments showed that the computation of loss for positions not under consid-

eration requires a masking strategy. The loss calculation must be modified as

fsoftmax(H̆(ŷ[i],y[i])),∀ci ∈ Ċ(t) (6.70)

to prevent the overestimation of loss from unutilized positions, which could oth-

erwise lead to training instabilities.

In addition to these modifications, experiments were conducted with hierarch-

ical softmax, negative sampling, and adaptive softmax techniques. Unfortunately,

these methods did not yield successful outcomes in enhancing the training efficacy

or model performance.

It was observed that training slows markedly when all elements of C can be se-

lected at each timestep t. This observation will be elucidated further in Sections

Chapter 7 and Chapter 8. The findings suggest that the critical factor is not

merely the number of potential elements ci, but rather the combinatorial possibil-

ities
(

|C|
|Ċ|

)
(or

(
|C|
|Ċ|

)
· T ) for the creation of the subset Ċ i.e. represent the number

of relationships between ci that the model has to learn.

Two methodological approaches have been explored to address this limitation.

Firstly, C is redefined such that |C| − ϵ = |Ċ|. Secondly, to incorporate more ci

within the training process, Ć = {Ċ(j)}ζ
j=1 is defined, with ζ being a pre-specified

hyperparameter. Consequently, for each training step j, Ċ(j) ∼ U(Ć) applies.

Other experiments have been carried out, including partial masking and company

masking as in Section 6.9.1. However, these were not pursued further due to

the poor performance in the experiments. Since ∆t and |C| must be relatively

restricted for training due to the size of the ASMs, the problem here probably lies

in the insufficient context data.

Another masking approach that had to be discarded was the classic MLM of

tokenization-based approaches with the original LLM tokenizer on the raw .json

data of the AV dataset. This achieved an MLM performance around 50% and

hardly helped in finetuing.
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As already mentioned in [217], the embeddings trained in MPM are context-

sensitive due to their adaptation of LLM MLM and the omission of frozen model

parts. To the authors knowledge, these proposed embeddings are the first context-

sensitive stock embeddings.
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Results

For the discussion of the results, the structure outlined in Figure 1.2 and how it

will be discussed in Chapter 8 is followed. This chapter presents the empirical

findings following the structure in Figure 1.2, aligned with the methodology of the

preceding chapters. It starts with establishing baselines, then moves to embedding-

based and (recurrent) transformer-based methods, and finally explores pretraining

and contextualized representations.

The first Section 7.1 reports the baseline results. Naive models and optimized grid-

search configurations are evaluated across different temporal resolutions and data-

sets. These results provide essential benchmarks against which the subsequent,

more complex models can be compared.

Section 7.2 introduces the results of the Stock2Vec models, which adapt the

Word2Vec paradigm to financial time series. The analysis is divided into two

parts: first, the extrinsic performance of the embeddings in SMC, SPE is assessed;

second, the intrinsic quality of the embeddings is examined through similarity

analysis, concept categorization, outlier detection, and visualization. This section

shows how embedding-based representations capture structural information in the

data.

Building on this, Section 7.3 investigates the CWRNN architecture, representing a

recurrent approach to temporal modeling. The results highlight the strengths and

limitations of hierarchical mechanisms in comparison to both baseline and later

discussed models, particularly with respect to temporal granularity.

165



Chapter 7. Results 166

Section 7.4 presents the results of the QMSEs, an adaptation of the Doc2Vec

framework. Here, the focus is on both reconstructive and representative perform-

ance, with special attention given to the ability of QMSEs to encode complex

market dynamics and identify anomalies. Intrinsic evaluation further illustrates

their representational capacity and limitations.

Section 7.5 examines the transformer-based architectures. The experiments fo-

cus on different pretraining strategies, sequence lengths, masking approaches, and

context configurations. The analysis investigates whether pretraining improves

downstream performance and stability and how transformers handle long tem-

poral sequences.

The chapter concludes with the presentation of results from the ASMs in Sec-

tion 7.6 (Embedding Based Approach), Section 7.7 (Stock2Sentence), (Tokeniz-

ation Based Approach) Section 7.8. These models integrate contextualized em-

beddings and transformer mechanisms into a unified framework and are evaluated

with respect to both pretraining and downstream tasks. The section evaluates

how ASMs support pretraining, finetuning, and expandability across datasets,

and relates the results to the research questions.

7.1 Baseline Results

After the required hyperparameters were found via try-and-error, a grid search

was conducted to further optimize them. The parameters examined were, ∆t =

{7, 14, 21}; EK = {True,False}; EC/EF = {True,False}. For interday evaluations,

ETFs were also considered as supplementary data. The results for each dataset

are tabulated in Table 7.2 for the SPP model and in Table 7.3 for the SMP model.

The performance metrics of the naive SPP model (Section 6.2), evaluated across

the training, validation, and test datasets, are documented in Table 7.1.

For all experiments, three temporal resolutions were considered, each derived from

OHLCV features aggregated at the respective interval. Temporal resolution is

defined as the granularity of the time series, from long intervals that smooth fluc-

tuations (interday) to short intervals that capture rapid dynamics (1min). Stock
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Table 7.1: Overview of the expected values for SPP according to naive models
for each dataset.

Model Interval sMAPE ↓ MAPE ↓
Naive Interday 2.033/2.245/2.004 2.034/2.248/2.003
Naive 60min 0.841/0.847/0.669 0.876/0.763/0.628
Naive 1min 0.093/0.092/0.095 0.089/0.088/0.091

market data at multiple granularities are provided by the AV API, enabling sys-

tematic evaluation under different temporal conditions. Among the available op-

tions, three representative resolutions were selected: the interday setting (e.g. end-

of-day values for the closing price), which emphasizes long-term market movements

while smoothing short-term fluctuations; the 60-minute interval, which reflects

intraday trading patterns with a balanced trade-off between noise and broader

signals; and the 1-minute interval, which captures high-frequency dynamics with

maximal granularity, albeit at the cost of increased stochasticity and noise.

Table 7.2: SPP performance of the best baseline models on each dataset.

Model Interval sMAPE ↓ MAPE ↓ Acc ↑ MCC ↑ F1 ↑
F

⟨BM-R⟩
+EK

Interday 1.655/1.401 1.657/1.403 0.504/0.501 0.005/0.000 0.490/0.496

F ⟨BM-R⟩ 60min 0.422/0.369 0.423/0.369 0.503/0.503 0.005/0.005 0.490/0.489
F ⟨BM-R⟩ 1min 0.062/0.062 0.062/0.062 0.501/0.501 0.002/0.002 0.462/0.465
F ⟨BM-T⟩ Interday 1.658/1.398 1.659/1.400 0.497/0.501 -0.005/0.003 0.510/0.503
F ⟨BM-T⟩ 60min 0.446/0.388 0.446/0.388 0.507/0.505 0.015/0.010 0.498/0.498
F ⟨BM-T⟩ 1min 0.073/0.070 0.073/0.070 0.502/0.502 0.003/0.003 0.482/0.483
F

⟨BM-L⟩
+C/F+EK

Interday 1.660/1.402 1.662/1.404 0.504/0.501 0.002/0.001 0.541/0.531

F ⟨BM-L⟩ 60min 0.412/0.361 0.413/0.361 0.503/0.503 0.005/0.005 0.488/0.492
F ⟨BM-L⟩ 1min 0.0816/0.365 0.0816/0.365 0.503/0.502 0.006/0.003 0.491/0.493

Table 7.3: SMP performance of the best baseline models on each dataset.

Model Interval Acc ↑ MCC ↑ F1 ↑
F

⟨BM-R⟩
+C/F

60min 0.520/0.521 0.007/0.012 0.362/0.358

F
⟨BM-R⟩
+C/F

1min 0.508/0.513 0.014/0.017 0.465/0.459

F ⟨BM-T⟩ Interday 0.500/0.502 -0.000/0.003 0.517/0.520
F ⟨BM-T⟩ + F ⟨R⟩ 60min 0.527/0.527 0.006/0.006 0.250/0.256
F ⟨BM-T⟩ 1min 0.540/0.543 0.046/0.050 0.428/0.423
F ⟨BM-L⟩ Interday 0.504/0.501 0.008/0.002 0.493/0.496
F ⟨BM-L⟩ 60min 0.514/0.511 0.020/0.025 0.469/0.499
F ⟨BM-L⟩ 1min 0.516/0.532 0.040/0.051 0.488/0.467

7.2 Stock2Vec Results

The S2V results are listed in the following. All experiments were done on the

interday datasets due to hardware limitations and the long training time of the

S2V models. The runs of models F ⟨C-*-{SG, CBOS }⟩ as defined in Section 6.6 are

repeated five times.
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Evaluation Embeddings are evaluated along two dimensions. The first dimen-

sion of this analysis, termed ‘model evaluation’, compares model performance on

the SMC/SPE tasks. Detailed discussion at this results is rather uncommon in

NLP. The second dimension is concerned with the embeddings’ intrinsic properties,

including semantic content and usefulness as representations. Several evaluation

methods are available in NLP for this second dimension.

Nevertheless, the scholarly community continues to grapple with establishing a

unified set of quality criteria for the assessment of word embeddings, as high-

lighted in [227]. Adhering to the methodologies delineated in [196], the evalu-

ation of embeddings can be segmented into two distinct approaches. The first

approach involves ‘Extrinsic Evaluators’ [196], where the embeddings are applied

to downstream tasks, as exemplified in Section 7.7. This application facilitates

performance comparisons via empirical metrics. [167] criticizes the common prac-

tice of evaluating relationship graphs (in this case embedding based relationship

representation) based on their performance in downstream tasks, as this can be

misleading since robust models may mask deficiencies in the graph, and the res-

ulting graphs often exhibit limited generalizability.

The second approach utilizes ‘Intrinsic Evaluators’ [196], which concentrate on

analyzing the inherent characteristics of the embeddings themselves. According

to Wang et al. [227], intrinsic evaluations fall into two categories. The first

category encompasses ‘absolute’ scores, which are quantitatively computed and

subsequently compared across various embeddings. The second category com-

prises comparative evaluations, which rely on subjective human assessments of

the embeddings’ quality. These methodologies are illustrated in Figure 7.1.

In the following, the framework of Wang et al. is followed. The focus in this

section will predominantly be on model evaluation and the intrinsic analysis of

embeddings. Extrinsic evaluations are presented with the respective models in

Section 6.11.
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Embedding
Evaluation

Extrinsic Evaluators Intrinsic Evaluators

Absolute ScoresUsage in SPP/SMP
models Expert-opinion

Clustering Distance
Vectors

Concept
Categorization Outlier Detection

Model Evaluation

Figure 7.1: Schematic representation of embedding/S2V evaluation methods.

7.2.1 Model Evaluation

The performance of the S2V models in classification and regression tasks does not

necessarily serve as a definitive indicator of embedding quality. However, the eval-

uation of these tasks remains the primary focus. Enhanced performance in these

tasks suggests the successful identification of a method capable of representing

stocks as high-dimensional vectors. The efficacy of this method is predicated upon

the discriminative capacity of the spatial features within the stock vector repres-

entation. These features must accurately identify individual stocks, encapsulate

the current market dynamics through the integration of temporal price inform-

ation, and delineate the interrelations among stocks by leveraging their spatial

characteristics. As delineated in Section 6.6, the option to incorporate either the

market axis or the temporal axis into the S2V task is presented. The former is
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of particular interest as it facilitates the creation of embeddings that can be ana-

lyzed in relation to other stocks. Next to the S2V models, the context-sensitive

embedding derived from a (T5-based) ASM model in Section 7.7 ([6]) is used.

Market Axis Following Section 6.6, SMC and SPE are used to generate em-

beddings. The CBOS-C models conceptually address the classification of stock

movements and prices. This differs fundamentally from the predictive models

SMP/SPP in that

F
⟨C-CBOS⟩
Θ : M(t)→ x

(t)
i (7.1)

is calculated where the current market M(t) = x(t)
j : ∀cj ∈ C \ {ci} is mapped to

the features of a specific stock at the same time step.

Despite the domain’s intrinsic difficulty (e.g. in SMP/SPP), S2V models demon-

strate strong performance on the closely related SMC task. The outcomes for the

CBOS-C models are presented in Table 7.4. The models exhibit variable perform-

ance, with accuracy metrics for movement classification attaining levels up to 80%,

contingent upon both the specific features employed and the prevailing market.

Further discussion of SPE is omitted because little learning was observed. The

SPE models were not effective enough to warrant detailed analysis.

An adaptation was made to the CBOS-C predictive setup to compare SMC with

SMP. Specifically, the target was modified to y = x
(t+1)
i , diverging from the con-

ventional y = x
(t)
i . A schematic representation of this predictive S2V model is

depicted in Figure 7.2. As expected, performance of the simple model was poor.

Notably, the performance was not above a naive or random baseline. Given that

the prediction task is constrained to forecasting t + 1 returns based solely on

returns at t, the observed outcomes are not entirely unexpected. The SMC res-

ults are particularly noteworthy when considering the inherent simplicity of the

CBOS-C models and their minimal parameterization. These models are comprised

of a single computational layer and one activation function, supplemented only by

scaled embeddings.

Performance may improve with more complex architectures. Specifically, the trend

indicating that larger values of ξ correspond to slightly improved accuracy suggests
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avenues for further optimization. This line of investigation is extended in the ASMs

in Section 7.7.

Information on price levels and temporal fluctuations is incorporated by using re-

turns. As shown in Table 7.4, using SMP labels to represent price information

performs comparably to, and sometimes slightly better than, logarithmic returns.

Vocabulary-based methods are comparable to, and in some cases exceed, altern-

ative approaches. Two main points can be drawn. Firstly, the S2V models exhibit

a robust capability to discern and classify movements of individual stocks, as op-

posed to merely analyzing aggregate market dynamics. This suggests that the spa-

tial representations are sufficiently discriminative to encode inter-stock relations.

Secondly, the effectiveness of the NLP-W2V approach is shown, highlighting its

suitability for analyzing stock market dynamics.

In the context of the SPE task within the C-CBOS framework, no hyperparameter

configuration was identified that enabled effective learning. Even attempts to

deliberately overfit the training data proved unsuccessful, despite an extensive

search over different learning rate values and ξ ∈ {48, 128, 768, 1024}. The model

exhibited a brief reduction in MSE loss during the initial epochs, after which it

became trapped in a suboptimal solution. This stagnation was consistent across all

configurations tested. Furthermore, the RMSE and MSE metrics showed minimal

variation across models, with the RMSE experiencing a maximum reduction of

approximately 35% relative to its initial value.

The observed limitations are likely attributable to the model’s simplicity, which

appears insufficient to accurately map returns to precise regression values. Never-

theless, these findings should not be interpreted as undermining the overall suit-

ability of the S2V model. On the contrary, the model demonstrated highly sat-

isfactory performance in the SMC task, underscoring its potential in alternative

applications.

For C-SG approaches employing SPE as the target, the results exhibit a similar

trend. Further details are omitted because the results follow the same pattern.

The SG approach presents significantly greater challenges, as evidenced by its com-

paratively weaker performance. Conceptually, this approach attempts to classify
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the collective behavior of the entire market based on the returns of a single stock,

i.e.

F
⟨C-SG⟩
Θ : x(t)

i → M(t) . (7.2)

Performance is limited, likely because insufficient information is available from a

single stock to predict the entire market. Efforts to improve this framework by

targeting a subset of the market, M′ ⊂ M, were explored through alternative model

configurations. However, these attempts did not yield satisfactory results, further

highlighting the limitations of the SG approach in this context.

Table 7.4: Performance of the C-CBOS SMC models.

Model ξ Target C Acc ↑

CBOS + RLR 128 [1] / [2] Close S&P500 0.701/0.710

CBOS + SMC labels 128 Close S&P500 0.702/0.721

CBOS + RLR 128 Volume S&P500 0.650/0.641

CBOS + RLR 128 OHCLV S&P500 0.686/0.696

CBOS + SMC labels 128 OHCLV S&P500 0.690/0.702

CBOS + RLR 768 Close S&P500 0.701/0.717

CBOS + RLR 768 OHCLV S&P500 0.680/0.697

CBOS + Vocab based [3] 128 OHCLV S&P500 0.687/0.698

CBOS + RLR 128 Close All(2010:) 0.655/0.658

CBOS + SMC labels 128 Close All(2010:) 0.656/0.670

CBOS + RLR 128 OHCLV All(2010:) 0.716/0.703

CBOS + SMC labels 128 OHCLV All(2010:) 0.724/0.723

CBOS + RLR 128 Close All 0.644/0.682

CBOS + Vocab based [4] 128 OHCLV All 0.755/0.698

Predictive + RLR 128 Close S&P500 0.521/0.490

Figure 7.2: Schematic illustration of the comparison of SMP/SPP (predictive)
and SMC/SME (classification/estimation) models. The X axis represents the
different stocks on the market axis, the Y axis the time slice on the temporary

axis and the Z axis the stock prices.
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Table 7.5: Performance of the X-CBOS SMC models.

Model ξ Target ϖ C Acc ↑

CBOS + RLR 128 Closing Price 20 S&P500 0.526/0.506

CBOS + SMC Labels 128 Closing Price 20 S&P500 0.516/0.503

CBOS + SMC Labels 128 All Features 20 S&P500 0.564/0.565

CBOS + RLR 128 Closing Price 40 S&P500 0.527/0.506

CBOS + RLR 128 Closing Price 100 S&P500 0.522/0.503

CBOS + RLR 128 Volume 20 S&P500 0.605/0.598

CBOS + RLR 128 All Features 20 S&P500 0.697/0.714

CBOS + RLR 768 Closing Price 20 S&P500 0.526/0.508

CBOS + RLR 128 Closing Price 20 All(2010:) 0.637/0.763

Temporal Axis On the temporal axis, CBOS performance is substantially lower

than for market-axis variants (see Table 7.5). This observation substantiates the

significance of considering intercorrelations among stocks, a notion consistently

emphasized by various researchers in Chapter 2. Consequently, this casts doubts

on the feasibility of univariate time series forecasting within the stock domain.

An approximation of CBOS-C performance is obtained only when all OHCLV

features are used. Although performance drops noticeably when using SMC labels

instead of RLR data, it still surpasses that of other methods. This underscores

the importance of indicator correlation, previously highlighted in [62], and sets

the expectations for the performance in the masking task. An exception is noted

in the prediction of trading Volume, which was identified in [223] as markedly

more predictable. Additionally, the model convergence is notably quicker in this

instance. Successful learning is generally not achieved with smaller ϖ values,

which is relevant for the later masking tasks. As with other CBOS-C trials, no

feasible method was identified to successfully execute an SME task or to train an

SG-X model. These results are likely due to the limited expressive power of simple

models and the low informativeness of individual returns.

C/X-Models In Table 7.6 it can be seen that training on both axes improves

the overall performance.

Table 7.6: Performance of the X/C-CBOS SMC model.

Model ξ Target ϖ C Acc ↑

CBOS + RLR + X/C [5] 128 All Features 20 S&P500 0.800/0.802

The following conclusions can be drawn from the analysis presented:
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• Scaled embeddings are effectively suited for representing market scenarios,

affirming their applicability in capturing the essence of market dynamics.

• The classification of stock price movements, based primarily on market data,

is feasible with a relative simplicity, provided that sufficient information

about price fluctuations is available. This indicates that basic market-driven

factors play a significant role in stock price classification.

• A considerable level of confidence in the quality of these embeddings is war-

ranted. Although these embeddings may not provide strong insights into

industry clusters, country clusters, or intuitive stock similarities—as previ-

ously reported in other studies—they help in understanding relationships

between stocks.

The ease of learning these relationships suggests potential gains in predictive tasks.

By leveraging relationship data, the model may extend the predictability observed

in certain stocks to others, thereby improving overall predictive accuracy (as dis-

cussed in Figure 8.1).

7.2.2 Embedding Evaluation

In subsequent chapters, the application of models in downstream tasks, such as

ASMs, as extrinsic evaluators, will be examined. The following sections focus on

intrinsic evaluation. To this end, five plus one distinct embeddings have been

selected for detailed analysis (with the T5 ASM embeddings):

• [1] CBOS-C-SMC run for Closing Price ( S&P-500 )

• [2] CBOS-C-SMC run for Closing Price scaled at random timestep and with

random missing stock ( ROST at (2016-06-28)) ( S&P-500 )

• [3] CBOS-C-SMC run with all OHCLV features ( S&P-500 )

• [4] CBOS-C-SMC run with all OHCLV features on (All(2010:) dataset)

• [5] CBOS-X/C-SMC ( S&P-500 )

• [6] Context sensitive ASM embeddings
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7.2.3 Absolute evaluation methods

Absolute evaluation methods from W2V and their adaptation to SF are summar-

ized below. Modifications to the metrics/approaches needed for stock data are

outlined. Mikolov et al. have developed the Semantic Syntactic Word Relation-

ship test, as documented in [156]. This method relies on a basic property of the

embedding technique, which assumes that if ṽ(i) and ṽ(j), as well as ṽ(u) and ṽ(w),

are related in a certain way, then a similar relationship ẽ(i) − ẽ(j) ≈ ẽ(u) − ẽ(w)

should appear. Now (ẽ(i) − ẽ(j)) + ẽ(u) is calculated, hoping that ∄ẽ(t) : ẽ(t) ̸=

ẽ(w) : (ẽ(i)− ẽ(j)) + ẽ(u)− ẽ(t) < (ẽ(i)− ẽ(j)) + ẽ(u)− ẽ(w) holds true. The utility of

a similar evaluative approach is also reported in [227] and [195]. The efficacy of

these methodologies is assessed through the preparation of sets comprising word

pairs that are either semantically or syntactically associated.

Adapting NLP evaluation methods to SF is challenging because there is no stand-

ard, objective evaluation set criteria exists. Notably, prevalent techniques such as

the Word Analogy Task delineated in [227] and the Word Similarity Task, in [227]

and [63], prove problematic for adaptation. This difficulty primarily arises due

to the indeterminate relational dynamics between stocks and the lack of distinct

properties by which they can be systematically categorized and assessed. However

in [196], a stock similarity task is demonstrated using JPM as a reference entity.

This example produces a result in which other finance-related stocks are identified

as similar entities, illustrating a possible approach for sector-specific evaluation.

Analogical inference is also used in [196], combining embedding properties with

expert opinions. The similarity analysis was repeated as a test using JPM and

[1] for evaluation. The results are presented in Table 7.7, which details the most

similar companies based on maximum-minimum normalized distances. Addition-

ally, Table 7.8 provides an assessment of the companies exhibiting the highest

cosine similarity values. The findings indicate that the entities identified through

distance-based metrics predominantly belong to the financial sector; however, the

distinction is less pronounced compared to the results obtained in [196]. Notably,

many of the identified financial companies are concentrated within the insurance
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sector, diverging from the outcomes in [196], where the most similar entities in-

cluded ‘classic’ financial institutions such as GS , C , and MS .

In Table 7.9, a different test on SCHW is presented with [6]. Overall, the

distances are significantly different from one another compared with the S2V em-

beddings. On the other hand, stocks from the financial sector mainly appear in

the top 10. It is interesting to see that there are also more indicative relationships,

such as the proximity to PAYX . SCHW is currently (as of 25.3.2025) with

2.79% one of the largest institutional shareholders of PAYX which establishes

a relationship between the two1.

Table 7.7: Stock similarity example using smallest embedding distances.

ci Distance

HBAN 0.744

AON 0.746

REGN 0.754

BRK.B 0.765

IT 0.766

UDR 0.767

TER 0.768

F 0.774

EQT 0.778

Table 7.8: Stock similarity example using cosine similarity.

ci Cosine similarity

TAP 0.287

WHR 0.211

RSG 0.210

BA 0.203

ADSK 0.199

PCAR 0.196

GILD 0.195

MCD 0.188

ADP 0.188

Table 7.9: Stock similarity using cosine similarity for context sensitive em-
beddings trained using [6].

ci Cosine similarity

PAYX 0.218

PNC 0.212

HBAN 0.192

ROL 0.190

AFL 0.161

FITB 0.150

EFX 0.148

UNH 0.127

ADSK 0.124

1http://bit.ly/41ZR9U5

http://bit.ly/41ZR9U5
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More intuitive results are sometimes obtained with scaled spatio-temporal embed-

dings ([2]). For instance, on a randomly selected day, the most similar stocks to

MSFT , as identified by the approach, were EBAY , AMD , and AFL .

This outcome fits better with one would expect.

It is noteworthy that the majority of existing research on stock embeddings pre-

dominantly employs methodologies that incorporate industry and sector classifica-

tions as integral components of the evaluation process. Furthermore, many of these

approaches are explicitly designed to map stocks based on such classifications from

the outset (i.e. work top-down), presumably because these criteria represent the

most accessible and objective benchmarks within the domain of financial markets.

This work is based on performance observed in model and auxiliary-task evalu-

ations. Intrinsic evaluation is included for completeness and comparability. Unlike

traditional approaches that prioritize the structured organization of stocks, the fo-

cus is directed towards the development of spatial embeddings with the possibility

to integrate temporal (i.e. price) features.

A significant challenge inherent to the authors approach, particularly in its applica-

tion ASMs, is the high dimensionality of the embeddings. This issue is accentuated

when compared to methodologies such as those described in [196] [49]. The high

dimensionality leads to the so-called curse of dimensionality, creating a situation

in which all clusters appear almost equally distant from one another. Despite these

challenges, the embeddings are intended to undergo thorough testing in later eval-

uations. Additional tasks that leverage sector and industry classifications have

been incorporated. Specifically, these tasks entail Concept Categorization and

Outlier Detection, as well as the idea to cluster distance vectors.

Concept Categorization The concept underlying the categorization strategy

delineated in [227] [6] posits that two word clusters, when categorized (whether

semantically, syntactically, or on other bases), should consistently replicate the

same categorical structures upon clustering their embeddings. When this principle

is applied to the S2V Model, a stock ci can be aligned with a specific category k,

such as an industry or sector (K/K̇).
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Upon the application of a clustering algorithm, such as k-means, to these embed-

dings, the ideal outcome would be ∀ci, cj : K[i] = K[j] ⇒ i, j ∈ U (with U being

a K-means cluster). As indicated in the referenced literature ( [227] [6]), it is not

necessary for all c ∈ C to be precisely categorized in the initial pass. Instead,

pairwise comparisons between two categories (for example, comparing two differ-

ent industries or sectors) can be conducted. Although a higher number of clusters

is less typical in the literature, it remains a feasible approach and will be tested

here.

The results of the respective binary cluster analysis and all clusters at once are

shown in Table 7.10. A comparison of the markets for the [5] run has also been

included. For the industries, the dataset D with D ⊂ K̇ ⋏⋊⋉ K̇ with |D| = 100 and

at least two stocks being in each sampled industry was used. Due to the concerns

listed in Section 6.2 when using industries, the good performance here could be

somewhat misleading. K-means was used for clustering, and each run was repeated

10 times. The purity metric from [152] is used as an evaluation metric.

Table 7.10: Comparison of the purity in the concept categorization task of
different runs on different categories.

Approach Sector Industry Country

Evaluation All Binary All Binary All Binary

[1] 0.228 0.690 0.550 0.864

[2] 0.193 0.682 0.560 0.881

[3] 0.233 0.686 0.553 0.882

[4] 0.418 0.772

[5] 0.264 0.725 0.559 0.878

[6] 0.000 0.714 0.000 0.958

Certain regressive company metrics, such as market capitalization, EBITDA,

PERatio, cash, Volume, and debt, reflect a firm’s status over extended periods

while still having a temporal component. Yi et al. [255] have already proposed

the prediction of country or company size using the embeddings. The exploratory

analysis involved clustering based on these real-valued metrics to categorize stocks

(e.g. clustering the ten most indebted ci and of the ten least indebted ci). Clus-

tering purity was attempted to be enhanced by adapting the purity measure from

[6], modifying it to penalize clusters with high deviations from the cluster mean.

The adjusted purity formula, extending the original definition from [152]. Despite

these adjustments, the approach did not yield significant insights, likely due to
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the coarse granularity of the metrics (EBITDA or EPS) and the insufficiency of

the embeddings to capture nuances in financial attributes like debt or cash as they

might can not be learned from daily returns. The clustering by real-numbered

values proved ineffective in the experiments, also for the [2] run, and thus, was not

pursued further.

Outlier Detection The outlier-detection method of Camacho-Collados and

Navigli [11] is directly applicable to SF using sectors and industries. In their

work, the model is tasked with identifying an incongruent element within a set of

words, based on semantic, syntactic, or other disparities. The procedure involves

the computation of what is termed the ‘compactness score’ for the corresponding

embeddings, which quantifies the pairwise semantic similarity among the elements

of the set. The element characterized by the minimal compactness score is posited

as the outlier. The Outlier Position Percentage (OPP) score can be adapted from

[11]. The results can be seen in Table 7.11. For [6] |C| was to small for meaningful

results.

Table 7.11: Comparison of the OOP of different runs on outlier detection on
different categories.

Approach Sector Industry Country

[1] 0.295 0.319

[2] 0.283 0.245

[3] 0.384 0.441

[4] 0.374

[5] 0.203 0.431

Some cross-sector clusters selected by hand with run [1] have also been checked.

Here the results are sometimes much better. The finance sector is still particularly

difficult, presumably because the embeddings are far out anyway.

Table 7.12: Comparison of the OOP of different runs on outlier detection on
self-selected datasets.

Cluster Outlier OOP

SCHW , C , GS , MS , BAC MSFT 0.66

MSFT , IBM , AMZN , GOOG , AAPL , NVDA , EA , GOOGL , EBAY PEP 1

AMT , EQIX , MAR , PSA , CCI C 0.8
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Table 7.13: Comparison of the OOP of different runs on outlier detection on
self-selected datasets for [6].

Cluster Outlier OOP

SCHW , C , HBAN , UNH NKE 1

AAPL , ADSK , JNPR PH 1

Additional outlier tests on self-selected data (Table 7.12, Table 7.13) were also

unsuccessful.

Clustering Distance Vectors In the study, the author experimented with com-

puting distance vectors ei − ej and subsequently clustering these vectors using

Mean Shift and DBSCAN [59] to identify potential recurrent patterns. This pro-

cedure was motivated by the observation discussed in Section 2.1, where Word2Vec

embeddings often exhibit the phenomenon that semantically or syntactically re-

lated word pairs correspond to vectors with similar directions or magnitudes.

Transferring this intuition to the financial domain, it was hypothesized that stock

pairs might exhibit analogous relational patterns in the embedding space, despite

the lack of fixed or explicitly defined relationships between them. To explore this

possibility, distance vectors ei−ej were computed and clustered, with the expect-

ation that recurrent patterns—if present—could be detected in the form of groups

of similar relation i.e. distance vectors. Such clusters would then have provided a

basis for interpreting and categorizing latent inter-stock relationships. However, as

described, the clustering algorithms did not reveal meaningful groupings, suggest-

ing that this approach may not be effective in capturing structured relationships

among stocks. To the best of the author’s knowledge, this approach is not used in

NLP, likely because relationships are predefined there. However, neither clustering

algorithm revealed obvious clusters within the vector space, leading to the conclu-

sion that this method may not be effective for uncovering semantic or syntactic

patterns in this context.



Chapter 7. Results 181

7.2.4 Embedding-Analysis

The following presents PCA visualizations of different runs. PCA is a dimensional-

ity reduction technique that transforms a set of possibly correlated variables into a

smaller number of uncorrelated variables called principal components. These com-

ponents are obtained by projecting the data onto directions of maximal variance,

which are determined through an eigenvalue decomposition of the covariance mat-

rix (or equivalently, via singular value decomposition). In practice, PCA is used to

reduce redundancy and aid visualization while preserving variance. In this work,

PCA is applied to map high-dimensional vector representations into two or three

dimensions, enabling interpretable visualization of the latent structures.

Figure 7.3: 2D PCA visualization of the embeddings of the [4] runs with
coloring of the embeddings according to different markets.
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Figure 7.4: 3D PCA representation of the S2V embeddings of the [1] run.
The sectors are shown in the respective colors and the five nearest neighbors

are connected. The areas of the observations are marked.

Figure 7.6: Section of 2D PCA representation of embeddings from [1] run.
Observation 5) can also be seen here for international markets. The ticker

names of the other stocks have been removed for presentation purposes.
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Figure 7.7: Section of 2D PCA representation of embeddings from [6] run
i.e. the T5 based context sensitive embeddings. The ticker names of the other

stocks have been removed for presentation purposes.

The following discussion presents various phenomena observed in the C-CBOS

SMC runs, with a specific focus on the example as depicted in [1] for the S&P-500

dataset. Despite the lack of clear clustering by industry, sector, or country in

the S2V algorithms, as highlighted in the previous Section 7.2.3 and the high

accuracy of the C-CBOS SMC models remains convincing. Notable patterns and

clustering behaviors in the data are summarized. Generally, the (AV database)

sector assignments for certain stocks are questionable. For instance, the computer

hardware producer AMD is classified within the manufacturing cluster, and

the online retailer Amazon AMZN is categorized under trade & services . Other

examples include UNH and AFL , primarily known for their operations in life

science and health insurance , yet they are grouped under the finance sector .
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In Figure 7.5 an overview of certain phenomena is marked which will be discussed

in the following:

1) Sector Clusters: Although not distinctly segregated, certain cluster structures

can be recognized for individual industries. Noteworthy are the two finance, two

manufacturing clusters and the trade and services clusters, each showing internal

coherence yet overlapping with adjacent clusters to some extent. This can also be

seen in the 3D representation in Figure 7.4.

2) Finance Outliers: Companies in the finance sector, such as JPM , BEN ,

LNC , USB , UNH , BRK.B , and AFL , tend to exhibit higher dis-

tances from other stocks. Using BRK.B as an example, its average correlation

with other stocks is notably low at -0.383, compared to the average correlation

across all S&P-500 stocks of 0.44407 with a standard deviation of 0.3994. This

indicates that BRK.B operates atypically relative to the market. The underly-

ing reasons for these observations may stem from the resilience of the mentioned

stocks to broader economic fluctuations. Financial institutions such as JPM

are structured to generate profits across diverse market conditions. Additionally,

holdings like BRK.B have a big set of business sectors—from insurance, invest-

ment, and real estate to manufacturing, transportation, and natural gas utilities2.

This diversification might enable them to operate with a degree of independence

from typical market correlations, potentially insulating them from sector-specific

downturns and enhancing their stability in volatile markets. In Figure 7.7 a finance

cluster can be seen as well.

3) Sector Proximity Phenomenon: There is a noticeable proximity between elec-

tronics/tech companies and life science/bio research firms. Examples include the

alignments of HSIC with AAPL , IBM with AMGN , and MSFT

with TECH and ABC . This pattern also extends to international markets,

as seen in the [4] run represented in Figure 7.6, where AAPL and FUJIY

are close to the life science company BEI.FRK . Otherwise, As can be seen in

Figure 7.3, there is no obvious structure across international markets.
2https://www.berkshirehathaway.com/subs/sublinks.html

https://www.berkshirehathaway.com/subs/sublinks.html
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4) Electronics and Semiconductor Cluster: There is a distinct cluster compris-

ing semiconductor and electronics manufacturers, indicating a specific industry

concentration within the dataset.

5) Tech Giants Cohesion: A broad cluster includes tech giants like AAPL , MFST

, and EBAY , demonstrating close proximity amongst these major players.

These observations provide a preliminary view of clustering and relational dynam-

ics within the S&P-500 . This is a preliminary analysis highlighting phenom-

ena for further study.

7.3 CWRNN Results

The results for the CWRNN are in Table 7.14 and Table 7.15.

Table 7.14: SPP results for CWRNN.
P Interval sMAPE ↓ MAPE ↓ Acc ↑ MCC ↑ F1 ↑
[1, 2, 3, 4, 5] Interday 1.665/1.398 1.667/1.400 0.493/0.519 0.038/0.034 0.565/0.594
[1, 2, 2, 1] Interday 1.469/1.392 1.468/1.394 0.517/0.505 0.008/0.002 0.623/0.607
[1, 2, 3, 5, 10, 5, 3, 2, 1] Interday 1.469/1.392 1.468/1.394 0.520/0.507 0.001/0.007 0.654/0.634
[1, 2, 2, 1] 60min 0.395/0.344 0.396/0.344 0.505/0.504 0.011/0.009 0.506/0.502
[1, 2, 3, 4, 5] 60min 0.395/0.344 0.396/0.344 0.503/0.504 0.007/0.008 0.497/0.498
[1, 2, 3, 5, 10, 5, 3, 2, 1] 60min 0.394/0.343 0.394/0.343 0.502/0.503 0.005/0.007 0.499/0.499
[1, 2, 2, 1] 1min 0.064/0.062 0.064/0.062 0.502/0.503 0.004/0.005 0.482/0.483
[1, 2, 3, 4, 5] 1min 0.064/0.062 0.064/0.062 0.502/0.503 0.004/0.005 0.482/0.482
[1, 2, 3, 5, 10, 5, 3, 2, 1] 1min 0.064/0.062 0.064/0.062 0.502/0.502 0.003/0.003 0.481/0.481

Table 7.15: SMP results for CWRNN.
P Interval Acc ↑ MCC ↑ F1 ↑
[1, 2, 3, 5, 10, 5, 3, 2, 1] Interday 0.502/0.500 0.003/-0.000 0.509/0.505
[1, 2, 2, 1] 60min 0.518/0.518 0.025/0.034 0.455/0.496
[1, 2, 3, 8, 10] 60min 0.520/0.523 0.025/0.033 0.427/0.447
[1, 2, 3, 5, 10, 5, 3, 2, 1] 60min 0.516/0.527 0.008/0.036 0.390/0.412
[1, 2, 2, 1] 1min 0.508/0.508 0.007/0.010 0.459/0.468
[1, 2, 3, 8, 10] 1min 0.503/0.503 0.006/0.005 0.481/0.477
[1, 2, 3, 5, 10, 5, 3, 2, 1] 1min 0.503/0.502 0.003/0.003 0.476/0.478

7.4 QMSE Results

This section is mainly based on the authors publication [223] with new results for

additional measurements.

As previously elucidated in Section 7.2, the Doc2Vec adaption QMSE can be

assessed through two distinct methodologies. The evaluation of the regressive

SPE task has been described in [223]; details can be found there. The SPE results
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can be seen in Table 7.17. For the additional datasets in this thesis and the SMC

inspired reconstructions, the results have been listed in Section 7.4.

In the authors study in [223], various configurations of ρ and the layer dimen-

sions were explored. Additional experiments were conducted with models distinct

from the previously utilized simple neural networks, incorporating architectures

such as RNNs, LSTMs, and transformers. The findings suggest that models of

increased complexity enable more effective reconstruction of inputs, attributable

to their enhanced capacity for information encoding. Conversely, increased model

complexity has been observed to reduce abstraction and degrade the quality of

the encoded representation e. This approach is set apart from the multi-layer

architectures commonly used in related work such as [5].

The QMSEs produced by F ⟨A⟩ effectively capture complex market dynamics. This

effect has been observed in the identification of infrequent market anomalies, such

as financial downturns, using e or d. However, models using transformer architec-

tures have not consistently produced stable results, as shown by the large variation

in loss during unreported training sessions, which is especially noticeable at lower

values of ξ. Remarkably, the pairwise mean distances among embeddings pro-

duced by transformer models, quantified at 1.41 when ξ = 64, are significantly

lower compared to the mean distance of 2.46 characteristic of F ⟨A⟩-derived em-

beddings. Moreover, the application of clustering algorithms like DBSCAN [59]

to organize transformer-generated QMSEs into coherent structures has met with

limited success. Notably, DBSCAN frequently fails to delineate distinct clusters,

often relegating all vectors e to the category of noise. Although RNN-based models

produce relatively stable loss values, the issues of small distances and the absence

of clear clustering structures remain unresolved. Despite strong reconstruction

performance, as measured by sMAPE and accuracy, the learned embeddings do

not fully capture the complexity of market dynamics. During the author’s invest-

igation, it was found that a detailed analysis of each market scenario must be

placed in a temporal context using κ or ∆t. Employing a flattening function f(.)

was essential for learning robust embeddings.
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Table 7.16: QMSE SMC results.

C Feature dim(e) Acc ↑ MCC ↑ F1 ↑
S&P 500 OHCLV 64 0.667/0.682 0.330/0.364 0.635/0.673
S&P 500 OHCLV 256 0.679/0.694 0.355/0.387 0.649/0.686
S&P 500 OHCLV 1024 0.659/0.672 0.314/0.343 0.627/0.663
S&P 500 Close 64 0.694/0.720 0.384/0.440 0.659/0.711
S&P 500 Close 256 0.718/0.742 0.432/0.484 0.687/0.734
S&P 500 Close 1024 0.694/0.718 0.382/0.436 0.658/0.710
S&P 500 Volume 64 0.653/0.641 0.305/0.280 0.673/0.665
S&P 500 Volume 256 0.669/0.659 0.338/0.317 0.687/0.679
S&P 500 Volume 1024 0.691/0.682 0.381/0.363 0.705/0.698

All(2010:) OHCLV 64 0.625/0.644 0.250/0.287 0.609/0.629
All(2010:) OHCLV 256 0.598/0.619 0.196/0.236 0.579/0.598
All(2010:) OHCLV 1024 0.637/0.654 0.274/0.307 0.625/0.640
All(2010:) Close 64 0.671/0.690 0.342/0.378 0.648/0.673
All(2010:) Close 256 0.696/0.709 0.392/0.417 0.679/0.695
All(2010:) Close 1024 0.705/0.716 0.409/0.432 0.688/0.704
All(2010:) Volume 64 0.610/0.610 0.218/0.220 0.629/0.628
All(2010:) Volume 256 0.614/0.615 0.226/0.229 0.631/0.631
All(2010:) Volume 1024 0.610/0.613 0.220/0.225 0.628/0.629

Table 7.17: QMSE SPE results.

C Feature dim(e) sMAPE ↓ MAPE ↓ Acc ↑ MCC ↑ F1 ↑
S&P 500 OHCLV 64 0.006/0.005 0.006/0.005 0.555/0.553 0.108/0.106 0.574/0.567
S&P 500 OHCLV 256 0.006/0.005 0.006/0.005 0.638/0.647 0.274/0.295 0.656/0.652
S&P 500 OHCLV 1024 0.006/0.005 0.006/0.005 0.637/0.643 0.273/0.285 0.652/0.646
S&P 500 Close 64 0.002/0.002 0.002/0.002 0.705/0.725 0.408/0.450 0.726/0.728
S&P 500 Close 256 0.002/0.002 0.002/0.002 0.712/0.733 0.422/0.467 0.733/0.738
S&P 500 Close 1024 0.002/0.002 0.002/0.002 0.731/0.749 0.459/0.499 0.748/0.753
S&P 500 Volume 64 0.017/0.017 0.017/0.017 0.628/0.613 0.257/0.227 0.625/0.610
S&P 500 Volume 256 0.017/0.017 0.017/0.017 0.624/0.609 0.249/0.219 0.623/0.609
S&P 500 Volume 1024 0.017/0.016 0.017/0.016 0.637/0.624 0.275/0.248 0.635/0.619

All(2010:) OHCLV 64 0.018/0.020 0.018/0.020 0.508/0.512 0.018/0.027 0.522/0.528
All(2010:) OHCLV 256 0.020/0.021 0.020/0.021 0.528/0.539 0.056/0.078 0.527/0.537
All(2010:) OHCLV 1024 0.028/0.027 0.028/0.027 0.524/0.530 0.048/0.060 0.520/0.526
All(2010:) Close 64 0.004/0.004 0.004/0.004 0.513/0.519 0.027/0.038 0.518/0.524
All(2010:) Close 256 0.003/0.003 0.003/0.003 0.612/0.634 0.225/0.268 0.615/0.636
All(2010:) Close 1024 0.003/0.002 0.003/0.002 0.688/0.702 0.376/0.405 0.689/0.701
All(2010:) Volume 64 0.072/0.069 0.071/0.069 0.523/0.535 0.049/0.073 0.527/0.538
All(2010:) Volume 256 0.071/0.070 0.070/0.070 0.512/0.522 0.027/0.047 0.516/0.524
All(2010:) Volume 1024 0.076/0.079 0.075/0.078 0.512/0.518 0.027/0.039 0.519/0.525

Figure 7.8: Temporal variation of d during critical economic incidents over
the past twenty-four years. The vertical axis, depicting d, remains unlabeled
to accommodate the considerable fluctuation in values across different events,
favoring a relative over an absolute representation for enhanced clarity in visu-

alization. The figure is taken from [223].

Regarding the intrinsic evaluation, the findings from [223] are briefly mentioned

as outlined in Section 7.4.

Intrinsic Evaluation As an initial check, the ability of QMSE embeddings to

identify anomalies in stock price trajectories was evaluated. This examination

focused on five significant market downturns subsequent to the year 2000. The

embeddings e, corresponding to periods immediately preceding and following each

downturn, are delineated in Figure 7.14. Additionally, the distances d between
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Figure 7.14: 3D PCA visualization illustrating the trajectory of e through
five significant events that induced notable stock market volatility. Red markers
represent the state of e prior to each event, whereas blue markers denote the
dynamics of e following the occurrence of these events. The figure is taken from

[223].

consecutive embeddings are depicted in Figure 7.8. Apart from a few exceptions,

these downturns can be seen clearly in the figures.

The graphical depictions associated with the Subprime Crisis and the market

downturn induced by the Iraq war demonstrate a comparatively reduced level of

clarity relative to other events. For the Subprime Crisis, the lower clarity may

result from events leading up to the Lehman Brothers bankruptcy, which acted as

a trigger rather than a single event. Similarly, market fluctuations during the Iraq

war may be linked to rising political tensions before the conflict [161].

The next intrinsic method considered in [223] was the NNA, which can be inter-

preted as an absolute scoring method. However, this interpretation relies on the

assumption that similar market situations result in similar future developments—a

premise that many economists are likely to question. Similar findings are presented

in Section 7.7.4.

This method, discussed in [223], is used to evaluate intrinsic properties of the

embeddings. While the NNA generally performs poorly for most price features

(e.g. Close Price, Open Price etc.), it yields relatively strong results for trading

Volume. Specifically, the NNA achieves accuracy values of up to 0.63 ± 0.03 and

0.56± 0.02 for the inverted distance approach.
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7.5 F ⟨T⟩ Results

The results for experiments on the F ⟨T⟩ models are listed in the following. If not

indicated differently ∆t = 128 is set for all experiments in this section. For all

models, θκ = 32 was chosen.

7.5.1 Pre-Training

An overview of pretraining results for F ⟨T⟩-based architectures is presented below.

For clarity, runs of recurrent transformer models with suboptimal performance

were excluded.

Pre-training with ρheads = 1 For the approach where ρheads = 1, the corres-

ponding results for the SMC method are presented in Table 7.18 and Table 7.19.

The approach with ρheads = 1 poses several challenges. Firstly, it requires substan-

tial computational resources to compute the softmax over (θκ)2 vectors. Secondly,

the advantages of multi-head attention are eliminated. Most importantly, signific-

antly worse SMP/SPP performance results were achieved.

One advantage of this configuration is its improved performance during pretrain-

ing, which can only be matched by F ⟨L⟩ in the F ⟨J-M⟩ model. Selected intra-

day results are provided below for completeness. Due to limited performance

variation—such as the similar 60min MFM SMC results between F ⟨BM-T⟩ and

F ⟨E-M⟩—and resource constraints, the intraday analysis is restricted to a few ex-

ample results. The additional results for SMC are summarized in Table 7.22, and

those for SPE can be found in Table 7.23. Due to resource limits, intraday runs

were not trained for the same duration as interday runs, which might explain the

performance differences. The multi-context model in Table 7.23 can be taken as

an example of how the F ⟨N⟩ and the additional contexts often only confuse the

model and lead to poorer performance.
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Table 7.19: Results for SMC - MFM Interday runs with ρheads = 1.

Model Acc ↑ F1 ↑ MCC ↑
Baseline 0.701/0.697 0.707/0.704 0.402/0.394
E-M 0.549/0.545 0.605/0.607 0.100/0.091
J-M 0.693/0.685 0.694/0.692 0.387/0.369
E-M-N 0.660/0.653 0.673/0.671 0.322/0.305
J-C 0.672/0.672 0.667/0.673 0.345/0.345
L-M 0.708/0.699 0.709/0.704 0.416/0.398
L-C-N 0.510/0.509 0.554/0.562 0.020/0.016

Table 7.18: Results for SMC - MPM Interday runs with ρheads = 1.

Model Acc ↑ F1 ↑ MCC ↑
Baseline 0.672/0.671 0.669/0.674 0.346/0.343
E-M 0.673/0.660 0.669/0.663 0.347/0.319
J-M 0.523/0.522 0.504/0.567 0.046/0.043
E-M-N 0.656/0.650 0.653/0.658 0.312/0.300
J-M-N 0.661/0.654 0.650/0.651 0.323/0.308
J-C 0.680/0.677 0.678/0.685 0.360/0.354
J-C-N 0.507/0.513 0.612/0.620 0.015/0.021
L-C 0.658/0.655 0.649/0.655 0.316/0.311
L-M-N 0.676/0.675 0.668/0.673 0.352/0.349
L-C-N 0.510/0.511 0.553/0.567 0.021/0.019

Table 7.20: Results for SPE - MPM Interday runs with ρheads = 1.

Model sMAPE ↓ MAPE ↓ Acc ↑ F1 ↑ MCC ↑
Baseline 0.418/0.408 0.419/0.408 0.674/0.671 0.670/0.678 0.349/0.342
E-M 0.419/0.409 0.420/0.408 0.672/0.670 0.670/0.676 0.347/0.341
J-M 0.467/0.447 0.467/0.447 0.594/0.574 0.600/0.583 0.188/0.147
E-M-N 0.425/0.409 0.425/0.409 0.676/0.669 0.672/0.664 0.352/0.338
J-M-N 0.423/0.406 0.423/0.406 0.668/0.665 0.672/0.680 0.336/0.331
J-C 0.420/0.406 0.420/0.406 0.676/0.670 0.675/0.681 0.352/0.340
L-M 0.420/0.406 0.420/0.406 0.675/0.667 0.670/0.672 0.351/0.334
L-C 0.421/0.406 0.421/0.406 0.674/0.666 0.676/0.680 0.348/0.331
L-M-N 0.426/0.409 0.426/0.409 0.673/0.668 0.658/0.667 0.347/0.337
L-C-N 0.420/0.405 0.420/0.405 0.679/0.668 0.673/0.674 0.357/0.336

Table 7.21: Results for SPE - MFM Interday runs with ρheads = 1.

Model sMAPE ↓ MAPE ↓ Acc ↑ F1 ↑ MCC ↑
Baseline 0.412/0.402 0.412/0.402 0.676/0.668 0.685/0.681 0.351/0.334
E-M 0.451/0.431 0.451/0.431 0.547/0.533 0.553/0.546 0.094/0.065
J-M 0.447/0.429 0.447/0.429 0.583/0.579 0.636/0.632 0.173/0.160
E-M-N 0.451/0.432 0.451/0.432 0.558/0.538 0.544/0.534 0.116/0.076
J-M-N 0.424/0.410 0.424/0.410 0.660/0.648 0.668/0.666 0.320/0.296
J-C 0.452/0.432 0.452/0.432 0.546/0.532 0.574/0.565 0.092/0.063
J-C-N 0.421/0.409 0.421/0.409 0.669/0.663 0.666/0.668 0.338/0.325
L-C 0.422/0.407 0.422/0.407 0.662/0.664 0.669/0.678 0.324/0.328
L-M-N 0.423/0.408 0.423/0.408 0.672/0.669 0.665/0.674 0.344/0.337

Table 7.22: Summary of SMC results for MPM and MFM at 60min interval
with ρheads = 1.

Model Task Acc ↑ F1 ↑ MCC ↑

Baseline MFM 0.532/0.533 0.480/0.477 0.067/0.066

E-M MFM 0.533/0.534 0.473/0.471 0.068/0.067

E-M-N MFM 0.507/0.506 0.484/0.486 0.012/0.010

J-M +F ⟨R⟩ MFM 0.508/0.506 0.494/0.496 0.016/0.012

Baseline MPM 0.532/0.533 0.478/0.475 0.065/0.065
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Table 7.23: Summary of SPE results for MPM and MFM at 60min and 1min
intervals with ρheads = 1.

Model Task Interval sMAPE ↓ MAPE ↓ Acc ↑ MCC ↑ F1 ↑

Baseline MFM 60min 0.177/0.171 0.177/0.171 0.598/0.595 0.197/0.191 0.613/0.609

Baseline MFM 1min 0.131/0.131 0.131/0.131 0.531/0.525 0.522/0.514 0.062/0.051

Baseline MPM 60min 0.179/0.173 0.179/0.173 0.593/0.589 0.606/0.600 0.187/0.180

E-M MPM 60min 0.179/0.174 0.179/0.174 0.583/0.579 0.592/0.586 0.166/0.160

Baseline MPM 1min 0.131/0.130 0.131/0.130 0.532/0.527 0.521/0.514 0.064/0.053

Pre-training with F ⟨L⟩ For the interday runs employing the F ⟨L⟩ approach,

stable and satisfactory results were often not obtained, with exception of the MFM

F ⟨J-M⟩ configuration. The corresponding results for this setup are presented in

Table 7.24. All other MFM runs yielded suboptimal performance, with accuracy

levels falling below 53.5% and MPM accuracy remaining below 52.0%.

Table 7.24: Results for SMC - MFM Interday runs with F ⟨L⟩.

Model Acc ↑ F1 ↑ MCC ↑
J-M 0.673/0.654 0.671/0.659 0.346/0.308

Table 7.25: Results for SMC - MPM 60min runs with F ⟨L⟩.

Model Acc ↑ F1 ↑ MCC ↑
E-M 0.571/0.557 0.507/0.501 0.137/0.111
J-M 0.619/0.615 0.588/0.595 0.236/0.229
E-M-N 0.611/0.607 0.559/0.577 0.219/0.213

Table 7.26: Results for SMC - MFM 60min runs with F ⟨L⟩.

Model Acc ↑ F1 ↑ MCC ↑
E-M 0.560/0.553 0.481/0.478 0.114/0.103
J-M 0.534/0.534 0.475/0.472 0.069/0.067
J-M 0.568/0.555 0.501/0.496 0.131/0.107
E-M-N 0.576/0.559 0.507/0.504 0.148/0.115

Table 7.27: Results for SMC - MPM 1min runs with F ⟨L⟩.

Model Acc ↑ F1 ↑ MCC ↑
Baseline 0.545/0.544 0.277/0.265 0.081/0.071

Table 7.28: Results for SPE - MPM Interday runs with F ⟨L⟩.

Model sMAPE ↓ MAPE ↓ Acc ↑ F1 ↑ MCC ↑
E-M 0.453/0.428 0.454/0.428 0.571/0.587 0.567/0.593 0.141/0.174
J-C 0.462/0.439 0.462/0.439 0.504/0.509 0.603/0.609 0.009/0.013

Table 7.29: Results for SPE - MPM 60min runs with F ⟨L⟩.

Model sMAPE ↓ MAPE ↓ Acc ↑ F1 ↑ MCC ↑
Baseline 0.192/0.187 0.192/0.187 0.533/0.524 0.565/0.555 0.067/0.050
E-M 0.316/0.314 0.315/0.314 0.589/0.587 0.585/0.585 0.178/0.175
L-C 0.197/0.192 0.197/0.192 0.510/0.508 0.555/0.551 0.021/0.019
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The larger models like the F ⟨L-C⟩ model in Table 7.29 converge after a few epochs.

Table 7.30: Results for SPE - MFM 60min runs with F ⟨L⟩.

Model sMAPE ↓ MAPE ↓ Acc ↑ F1 ↑ MCC ↑
Baseline 0.419/0.412 0.419/0.411 0.505/0.504 0.532/0.527 0.010/0.010
J-M 0.252/0.249 0.252/0.249 0.521/0.515 0.583/0.583 0.045/0.036

In general, MPM was more difficult for the model than MFM, likely because in-

formation from other price features and step indicators is needed for accurate clas-

sification/estimation. The is supported by the results for F ⟨X-CBOS⟩ in Section 7.2.

This also holds for ASMs, which implicitly perform MPM and show stronger res-

ults. In Figure 7.15 a performance comparison in SMC of both masking approaches

is shown as an example, which also shows that there is a performance ‘jump’ in

MFM which can also be noticed it in the ASMs, but never in F ⟨T⟩ based MFM.

Also it can be seen how both approaches initially have a similar performance until

the model learns to use the other features of the same stock and time step to

achieve better MFM performance.

Figure 7.15: MPM vs. MPM visualization.

To analyze the transformer’s behavior on masking tasks, relevance was visualized

in Figure 7.16 using the approaches in Appendix A.9. The author has changed

the proportion of masked features so that it is different for the time steps and it

can be seen that the relevance increases with the number of masked prices in the

time step (for this ∀i, j : M [i, j] ∼ B( j
∆t
· νMFM) holds). The height indicates the

number of masked features in the time step and the heatmap the relevance.
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Figure 7.16: Relevance visualization for MFM.

Further insights derived from the masking tasks indicate that these tasks are gen-

erally easier for the models to generalize compared to trend prediction. However,

performance on the validation and test sets remained poor. This is in contrast

when compared with the ASMs discussed in the subsequent chapter. Both ap-

proaches utilize the same underlying information (with the exception of |C|), dif-

fering only in their representational format.

7.5.2 Finetuning

The results for TP are listed below.

∆t Comparison In all other experiments, ∆t was tuned as a hyperparameter.

To verify the thesis that the increased context length has a positive effect on

performance, as indicated in [224], the best performance of the F ⟨J-M⟩ has been

listed in Table 7.31 and Table 7.32 for SMP and SPP respectively. Due to the

enormous computing time, 1min runs were not possible and the 60min runs were

only repeated twice.

Table 7.31: Results for SMP for different ∆t.

Interval ∆t Acc ↑ F1 ↑ MCC ↑
Interday 64 0.503/0.502 0.440/0.433 0.008/0.000
Interday 196 0.512/0.495 0.355/0.393 -0.004/0.003
60min 64 0.515/0.510 0.335/0.331 0.005/0.006
60min 196 0.516/0.478 0.332/0.361 0.002/0.015
60min 256 0.515/0.477 0.331/0.360 0.002/0.015
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Table 7.32: Results for SPP for different ∆t.

Interval ∆t sMAPE ↓ MAPE ↓ Acc ↑ F1 ↑ MCC ↑
Interday 64 1.381/1.141 5.884/5.466 0.534/0.502 0.534/0.500 0.079/0.003
Interday 196 1.382/1.142 5.885/5.467 0.532/0.502 0.533/0.500 0.079/0.003
60min 196 0.293/0.266 0.782/0.254 0.571/0.521 0.466/0.469 0.108/0.037
60min 256 0.298/0.268 0.665/0.263 0.567/0.505 0.469/0.438 0.097/0.004

Without Additional Pre-Training The following presents the results of the

runs without additional pretraining. Table 7.33 displays the outcomes of the

SMP interday runs, Table 7.34 the SMP 60min runs, Table 7.35 the SMP 1min

runs, Table 7.36 the SPP interday runs, Table 7.37 the SPP 60min runs, and

Table 7.38 the SPP 1min runs. Models yielding particularly strong F1-scores in

the SMP interday setting include F ⟨J–C⟩ and F ⟨L–M⟩ (cf. Table 7.33); in the SMP

60min setting, notable models are F ⟨J–C⟩ + F ⟨R⟩ and F ⟨L–C⟩ (cf. Table 7.34); and

in the SPP Interday setting, all models perform comparably well (cf. Table 7.36).

Remarkably, F ⟨J–M⟩ fails to outperform the baseline in the SMP interday setting

despite pretraining, resulting in a particularly poor performance.

Table 7.33: SMP Interday runs.

Model Acc ↑ F1 ↑ MCC ↑
E-M 0.508/0.503 0.424/0.475 0.006/0.009
J-M 0.510/0.493 0.401/0.439 0.007/-0.009
E-M-N 0.504/0.504 0.302/0.313 0.003/0.005
J-C 0.503/0.506 0.505/0.517 0.006/0.010
L-M 0.505/0.503 0.504/0.512 0.009/0.004
L-C 0.501/0.499 0.491/0.500 0.002/-0.002

Table 7.34: SMP 60min runs.

Model Acc ↑ F1 ↑ MCC ↑
E-M 0.514/0.512 0.329/0.323 0.001/0.002
J-M 0.520/0.514 0.267/0.259 0.005/0.002
J-C +F ⟨R⟩ 0.507/0.505 0.416/0.412 0.003/0.001
L-C 0.511/0.506 0.407/0.400 0.008/0.003

Table 7.35: SMP 1min runs.

Model Acc ↑ F1 ↑ MCC ↑
J-M 0.517/0.516 0.319/0.312 0.003/0.004
E-M 0.518/0.516 0.306/0.304 0.004/0.004

Table 7.36: SPP Interday runs.

Model sMAPE ↓ MAPE Acc ↑ F1 ↑ MCC ↑
E-M +Lp 1.381/1.143 5.919/5.489 0.530/0.502 0.533/0.501 0.078/0.003
J-M +Lp 1.381/1.144 5.894/5.502 0.531/0.503 0.534/0.503 0.080/0.007
J-C 1.381/1.141 5.884/5.466 0.531/0.501 0.534/0.500 0.080/0.003
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Table 7.37: SPP 60min runs.

Model sMAPE ↓ MAPE ↓ Acc ↑ F1 ↑ MCC ↑
E-M 0.370/0.373 1.125/0.965 0.545/0.522 0.477/0.477 0.075/0.038
J-M +Lp 0.352/0.354 1.013/0.885 0.548/0.523 0.482/0.477 0.082/0.042

Table 7.38: SPP 1min runs.

Model sMAPE ↓ MAPE ↓ Acc ↑ F1 ↑ MCC ↑
J-M 0.064/0.056 0.017/0.008 0.527/0.526 0.502/0.501 0.052/0.050

Pre-trained on Masking Tasks The results for F ⟨T⟩ based models pretrained

on masking tasks can be seen in Tables 7.39 to 7.44. All models are pretrained on

MPM.

Table 7.39: SMP Interday runs pretrained.

Model Acc ↑ F1 ↑ MCC ↑
E-M +Lp+F ⟨R⟩ 0.501/0.503 0.454/0.453 0.003/0.004
J-M 0.507/0.502 0.334/0.363 0.003/-0.017

Table 7.40: SMP 60min runs pretrained.

Model Acc ↑ F1 ↑ MCC ↑
E-M +Lp 0.512/0.514 0.383/0.374 0.005/0.006

Table 7.41: SMP 1min runs pretrained.

Model Acc ↑ F1 ↑ MCC ↑
J-M +Lp+F ⟨R⟩ 0.516/0.515 0.344/0.334 0.005/0.005

Table 7.42: SPP Interday runs pretrained.

Model sMAPE ↓ MAPE ↓ Acc ↑ F1 ↑ MCC ↑
E-M +Lp 1.613/1.157 6.298/5.403 0.504/0.500 0.508/0.503 0.018/0.001
J-M +Lp+F ⟨R⟩ 1.619/1.162 5.862/5.569 0.507/0.506 0.504/0.504 0.029/0.010

Table 7.43: SPP 60min runs pretrained.

Model sMAPE ↓ MAPE ↓ Acc ↑ F1 ↑ MCC ↑
E-M 0.347/0.360 1.024/0.942 0.548/0.522 0.480/0.479 0.078/0.040

Table 7.44: SPP 1min runs pretrained.

Model sMAPE ↓ MAPE ↓ Acc ↑ F1 ↑ MCC ↑
J-M 0.065/0.056 0.017/0.008 0.527/0.527 0.501/0.501 0.051/0.051
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Further Masking Tasks The results for MTM, MSM, and PMM are not

presented in tabular form. For all these tasks, the models’ performance proved to

be extremely poor, especially when compared to MFM and MPM. Consequently,

they are unsuitable as pretraining tasks, and no fine-tuning was performed on

models that had been pretrained using these approaches. The worst performance

was observed with TSM.

For completeness, experiments with a vocabulary-based masking task (Section 6.6)

were conducted for MPM and MFM. However, this approach was ultimately dis-

carded, as the model exhibited significant instability when low-dimensional vectors

or even scalar values were mapped to the vocabulary. Furthermore, an alternative

strategy was explored that involved merging S2V representations with timestep

representations, followed by the application of a single masking operation per

timestep. This was intended to provide the model with explicit information which

stock was masked. In the end, the approach delivered no clear gains, is was not

pursued further.

Another unsuccessful masking task — or attempt to improve performance on

MTM, MSM, or PMM — involved predicting regression values by redefining

M̂ [i, j] = M ⊗ M̈ with M̈ [i, j] ∼ B(−1, 1) · α. This approach also failed to yield

meaningful improvements, as the model was unable to achieve stable performance.

Trend Matching As previously observed in [224] and discussed in Section 6.9.2,

TM also failed when applied to F ⟨T⟩ architectures. Because TM is a novel con-

trastive task, it remains unclear whether the poor performance is due to the task

or the architecture. However, based on the number of conducted experiments, the

former explanation is preferred. For completeness, an overview of the experiments

and architectural modifications is provided below:

Initially, it is advisable to use the mean or a dedicated TM token instead of feed-

ing all flattened tensor elements into a linear layer, as proposed in [263]. This

approach helps mitigate instability during backpropagation, which otherwise be-

comes challenging due to the binary single-class decision applied to the input of

size ξ ·∆t.



Chapter 7. Results 198

Furthermore, training requires a very low learning rate to ensure stability. Sev-

eral stabilization techniques were additionally experimented with, including the

introduction of extra layers and batch normalization, L2 regularization in the TM

layer, focal loss, entropy regularization (using entropy instead of BCE), and hinge

loss.

Test changes were also made to the architecture based on considering half of X

before and after the TM token separately, after processing by F ⟨T⟩. Specifically,

each half was put into a distinct LSTM, GRU, or RNN and then either summed up

the last hidden state and used the average as a decision or set the target variable

to Y ∈ {0, 1}ξ×∆t and Y [i, j] = y and entered H from F ⟨T⟩ or the outputs of

the LSTMs/RNNs/GRUs concatenated together into the loss function while the

model decision was measured by voting of the output tensor fields.

The last experiment was to use a QMSE (or LSTM) based AE to learn a repres-

entation e1/e2 for the left and right halves of the input which was reconstructed

by the AE and dense representation of the input and then given as e1 ⊗ e2 into

the linear TM layer. A similar approach was tried for seasonalities and trends in

[280], albeit for completely different tasks. In this thesis it was done to prevent

the model from making the same predictions for all inputs because it was forced

by the autoencoder to learn representations with enough unique features. All ex-

periments were unsuccessful; future work may clarify whether this can serve as a

pretraining task.

Integrating S2V Models An alternative method investigated involved integ-

rating S2V models by stacking scaled S2V representations, thereby decreasing

the embedding dimension of ξS2V. To prevent excessive model complexity, PCA

transformations were employed, and the S2V embedding was excluded from the

backpropagation process. This strategy was not effective and did not yield satis-

factory results.
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7.6 ASM Embedding Based Approach

In the following, the results for the embedding-based LLM adaptations are dis-

cussed. In general, GPT-2 or T5 were unable to be successfully optimized for any

of the evaluated approaches or datasets. Although these models sometimes per-

formed slightly better than the baseline, the high standard deviations made the

results unreliable. Consequently, their results are not reported in tabular form,

and further investigation of these models is refrained from.

For interday data, embedding-based approaches proved largely ineffective. Neither

BERT, TransformerXL, nor LLaMA could be successfully optimized for the SMP

task. For the SPP task, only LLaMA demonstrated consistent optimization capab-

ility. The corresponding average performance metrics are presented in Table 7.45.

Table 7.45: SPP Interday for LLaMA.

Model sMAPE ↓ MAPE ↓ Acc ↑ MCC ↑ F1 ↑

LLaMA 1.521/1.284 1.523/1.285 0.502/0.499 0.003/-0.002 0.504/0.502

As in the ASM MPM setting (see Section 7.7.1), the low number of data points

is presumably the main limiting factor, as better results were obtained for the

intraday runs, as shown in Table 7.46 and Table 7.47.

Table 7.46: Results for SMP 60min runs.

Model Acc ↑ MCC ↑ F1 ↑

BERT 0.524/0.519 0.020/0.018 0.404/0.408

TransformerXL 0.523/0.518 0.021/0.017 0.413/0.415

LLaMA 0.515/0.515 0.008/0.007 0.572/0.575

Table 7.47: Results for SPP 60min runs.

Model sMAPE ↓ MAPE ↓ Acc ↑ MCC ↑ F1 ↑

BERT 0.359/0.327 0.359/0.327 0.518/0.510 0.040/0.023 0.511/0.507

TransformerXL 0.359/0.327 0.359/0.327 0.515/0.505 0.051/0.033 0.571/0.568

LLaMA 0.359/0.327 0.359/0.327 0.518/0.510 0.038/0.023 0.507/0.503
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7.7 ASM Stock2Sentence Results

In the following, all results for the Stock2Sentence ASMs are listed.

7.7.1 Pretraining

The ASM pretraining runs for intraday data have only been performed two times

due to hardware constraints. Unless stated otherwise, |C| = 80 was used for

BERT, T5, and GPT-2, and |C| = 60 for TransformerXL and LLaMA. These

values were chosen to allow for the largest possible selection of stocks within the

constraints imposed by hardware limitations.

MPM The results of the MPM coincide with those of the S2V and the assump-

tions made there that SMC is a very simple task. MPM is similar to SMC in that it

also uses information about future (or past) stock movements to classify the stock

under consideration. The expectations of the ASMs are, therefore, higher than the

very simple S2V models. As can be seen in Table 7.50, Table 7.49, Table 7.48, the

models do not show difficulties in achieving at least the S2V performance. The

training shows a similar progression to the S2V models, namely that the model

first learns to identify the masked stock (reaches a 50 % plateau in accuracy) and

then the correct movement. However, this happens much faster in the ASMs and

is usually achieved after the first epoch.

Table 7.49: MPM 1min results. For C all stocks can be samples, i.e. |Ċ| =
|C| = 309 and ϵ = 0

Model Acc ↑

BERT 0.996/0.995

GPT-2 0.995/0.995

T5 0.988/0.988

TransformerXL 0.991/0.991

LLaMA 0.991/0.991

Table 7.50: MPM 60min results. For C all stocks can be samples, i.e. |C| =
309 and ϵ = 0

Model Acc ↑

BERT 0.883/0.878

GPT-2 0.972/0.971

T5 0.985/0.988

TransformerXL 0.981/0.984

LLaMA 0.972/0.978



Chapter 7. Results 201

Table 7.48: MPM Interday results.

Model C Approach Acc ↑
BERT [6] S&P-500 Fixed Ċ 0.975/0.975
GPT-2 S&P-500 Fixed Ċ 0.749/0.756
TransformerXL S&P-500 Fixed Ċ 0.750/0.737
LLaMA S&P-500 Fixed Ċ 0.761/0.753
T5 [5] S&P-500 Fixed Ċ 0.962/0.962
BERT S&P-500 ϵ = 1 0.699/0.703
GPT-2 S&P-500 ϵ = 1 0.738/0.792
TransformerXL S&P-500 ϵ = 1 0.742/0.751
LLaMA S&P-500 ϵ = 1 0.759/0.739
T5 S&P-500 ϵ = 1 0.946/0.949
BERT S&P-500 ζ = 10 0.713/0.719
GPT-2 S&P-500 ζ = 10 0.775/0.778
TransformerXL S&P-500 ζ = 10 0.646/0.636
LLaMA S&P-500 ζ = 10 0.748/0.754
T5 S&P-500 ζ = 10 0.969/0.962
BERT S&P-500 ζ = 20 0.513/0.495
GPT-2 S&P-500 ζ = 20 0.783/0.779
TransformerXL S&P-500 ζ = 20 0.751/0.747
LLaMA S&P-500 ζ = 20 0.762/0.752
T5 S&P-500 ζ = 20 0.723/0.724
BERT All(2010:) Fixed Ċ 0.823/0.821
GPT-2 All(2010:) Fixed Ċ 0.716/0.717
TransformerXL All(2010:) Fixed Ċ 0.688/0.680
LLaMA All(2010:) Fixed Ċ 0.718/0.736
T5 All(2010:) Fixed Ċ 0.823/0.824
BERT All(2010:) ϵ = 1 0.863/0.862
GPT-2 All(2010:) ϵ = 1 0.689/0.717
TransformerXL All(2010:) ϵ = 1 0.712/0.715
LLaMA All(2010:) ϵ = 1 0.745/0.749
T5 All(2010:) ϵ = 1 0.854/0.858
BERT All(2010:) ϵ = 5 0.786/0.765
GPT-2 All(2010:) ϵ = 5 0.506/0.521
TransformerXL All(2010:) ϵ = 5 0.722/0.715
LLaMA All(2010:) ϵ = 5 0.717/0.722
T5 All(2010:) ϵ = 5 0.707/0.726
BERT All(2010:) ζ = 10 0.502/0.536
GPT-2 All(2010:) ζ = 10 0.781/0.800
TransformerXL All(2010:) ζ = 10 0.703/0.708
LLaMA All(2010:) ζ = 10 0.693/0.686
T5 All(2010:) ζ = 10 0.777/0.790
BERT All(2010:) ζ = 20 0.534/0.506
GPT-2 All(2010:) ζ = 20 0.830/0.846
TransformerXL All(2010:) ζ = 20 0.680/0.677
LLaMA All(2010:) ζ = 20 0.685/0.685
T5 All(2010:) ζ = 20 0.523/0.544

Additional runs were conducted on All(2010:) for all LLM backbones with |C| = 898

and an increase above baseline accuracy was achieved. In order to determine

the range in which accuracy gains first emerged, ζ was systematically increased

in exponential steps to narrow down the approximate region of interest. Once

this interval was identified, a linear progression of values was tested to pinpoint

the threshold more precisely. This procedure revealed that improvements above

baseline consistently emerged at ζ ≈ 100.

By using the ζ approach, all relationships of the stocks cannot be trained at the

same time, but at least every stock can be brought into the training set 3.
3The condition that each stock occurs in the code was not directly implemented, but sampled

randomly. However, it can be stated with
[
1−

(
|C|−|Ċ|

|C|

)ζ
]|C|

probability that each stock occurs

at least once in the set.
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Figure 7.17: MPM Relevance visualization of the TMO stock on T5.

The Figure 7.17 was visualized with the Grad-CAM inspired method of [17] and

[221] explained in Appendix A.9. Here, however, only one line of the relevance

matrix of a randomly chose stock ( TMO ) on the corresponding day is visual-

ized, as the relevance was extremely low everywhere else and the display would

no longer have worked well. In this layout, the horizontal axis lists the combined

company–time pairs, while the vertical axis does not represent another dimension

but only serves as the color scale for the relevance values. The visualization shows

that only a few localized company–time pairs contribute significantly to the pre-

diction, while most remain near zero relevance. This indicates that the model

relies on highly selective signals within the input, reflecting both the sparsity of

informative patterns and the noisy nature of financial time series.

Another aspect that was investigated was the impact of pretraining on differ-

ent time intervals, which appears to provide only limited benefits. Training on

higher-frequency intervals generally proves to be sufficient and yields the best

performance.

If a model has been pretrained on a 1min dataset, additional training on interday

or 60min data does not result in large further performance improvements (espe-

cially in downstream performance). Conversely, a model that has been trained on

1min data typically achieves near-perfect performance, making subsequent train-

ing on interday or 60min data redundant. It remains uncertain whether this effect

is attributable to the larger volume of data in the 1min dataset or the higher

temporal resolution. The strong performance observed in the 1min runs with all

c ∈ C supports the former hypothesis. An illustrative example can be found in the

BERT run discussed in the following. The BERT run from [6] is utilized. This run

achieves an accuracy of 0.997/0.998 in the first epoch, even when further training

is conducted on 60min data. Additionally, a triangulated interday run using 1min
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data was performed, reaching a performance of 0.997/0.998 in the first epoch.

However, since this performance is consistently attained by both the 1min and

60min runs and is consistently near-perfect, pretraining across different time in-

tervals was forgone in subsequent experiments. Instead, focus is placed exclusively

on the consistently near-perfect intraday runs. Although these results deviate by

approximately 5-10% from perfect performance, it was observed in non-tabulated

experiments that further pretraining does not yield additional improvements in

downstream tasks (SMP/SPP) if the MPM accuracy exceeds 90%. Consequently,

further training for these runs was not conducted.

7.7.2 Fine-tuning with SMP as Downstream Task

In the following, the results of the SMP/SPP downstream task will be listed.

Without Additional Pretraining In Table 7.51, Table 7.53, and Table 7.55,

the results of the runs conducted on newly initialized models, i.e., without prior

pretraining, are presented. The TransformerXL model in Table 7.53 could not

create valid results.

In Table 7.52, an approach was explored where 10 stocks were used as prediction

targets while 60/80 stocks served as input. For T5, LLaMA, and TransformerXL,

results that consistently exceeded baseline performance were not achieved, even

when selecting the same set of stocks that performed well in the BERT and GPT-2

runs. It is noteworthy that there was considerable standard deviation, with some

runs clearly outperforming the baseline accuracy. The experiment was repeated

in Table 7.54 for 60min data.

The interday runs were trained for approximately 500 epochs. Many of these

runs exhibit the convergence behavior described in Figure 8.2, typically reaching a

local optimum around epoch 150. Notably, the GPT-2 interday model attains its

peak performance considerably earlier, around epoch 40. In contrast, the 60min

runs generally converge much more rapidly, particularly in the case of runs with

|C| = 10, which often converge within approximately 10 epochs. Models with

larger values of |C| are trained for up to 100 epochs. It is hypothesized that the
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increased number of stock data per epoch in the intraday runs is responsible for

the faster convergence. The 1min runs support this hypothesis, as they typically

require only a few epochs to converge. However, this is also influenced by hardware

constraints, which render excessively long training times—such as those observed

in the interday runs—impractical.

Table 7.51: SMP Interday runs.

Model |C| Acc ↑ MCC ↑ F1 ↑

BERT
80 0.508/0.504 0.017/0.011 0.500/0.499

10 0.517/0.507 0.030/0.017 0.491/0.504

GPT-2
80 0.503/0.504 0.007/0.007 0.498/0.505

10 0.520/0.512 0.034/0.017 0.619/0.611

TransformerXL
80 0.501/0.504 0.002/0.009 0.467/0.473

10 0.501/0.503 0.011/0.015 0.433/0.411

T5 10 0.526/0.528 0.044/0.046 0.585/0.585

LLaMA
60 0.503/0.501 0.007/-0.002 0.486/0.485

10 0.509/0.510 0.011/0.021 0.546/0.551

Table 7.52: Interday SMP runs with 10 stocks as target and 80 as input.

Model Acc ↑ MCC ↑ F1 ↑

BERT 0.505/0.510 0.007/0.012 0.440/0.448

GPT-2 0.506/0.502 0.014/0.005 0.482/0.471

Table 7.53: 60min SMP runs.

Model |C| Acc ↑ MCC ↑ F1 ↑

BERT
80 0.524/0.522 0.009/0.007 0.335/0.332

80 0.516/0.512 0.002/0.002 0.375/0.378

BERT +Lp 10 0.508/0.500 0.012/0.004 0.539/0.532

GPT-2
80 0.517/0.512 0.005/-0.001 0.366/0.361

10 0.519/0.526 -0.009/0.013 0.286/0.276

TransformerXL
60 0.524/0.522 0.002/0.002 0.273/0.265

10 0.530/0.524 0.019/0.011 0.250/0.215

T5
80 0.528/0.526 -0.000/-0.002 0.177/0.165

10 0.522/0.516 0.012/0.003 0.300/0.281

T5 +Lp 80 0.531/0.538 0.005/0.010 0.623/0.632

T5 +Lp 10 0.539/0.550 0.002/0.001 0.650/0.667

LLaMA
60 0.518/0.514 0.007/0.002 0.364/0.369

10 0.561/0.581 0.001/0.020 0.699/0.719

Table 7.54: 60min SMP runs with 10 stocks as target and 60 as input.

Model Acc ↑ MCC ↑ F1 ↑

BERT 0.503/0.502 0.007/0.002 0.451/0.447

GPT-2 0.514/0.517 0.004/0.004 0.575/0.585

T5 0.512/0.513 0.003/0.003 0.572/0.580

TransformerXL 0.506/0.504 0.004/0.004 0.560/0.571

LLaMA 0.508/0.506 0.004/0.005 0.563/0.574

For the 1min runs, experiments were again conducted with |C| = 60/80 and

10 target stocks, but it was found that this significantly reduces performance and
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decreases stability, resulting in high standard deviation, strong gradient/activation

fluctuations, and negative MCC. An example is a BERT run with the result (Acc,

MCC, F1-Score) 0.502/0.503 , −0.003/ − 0.002, 0.540/0.545. The presence of a

negative MCC strongly suggests that this approach is not viable.

The primary issue with the high-frequency runs is that they frequently result

in returns of zero. To address this, experiments were done where the loss was

computed exclusively for non-zero returns, i.e., focusing solely on these values

during the learning process. For this purpose, a BERT run was conducted

(with |C| = 80), which produced the following results: 0.552/0.559, 0.011/0.014,

0.684/0.693 (accuracy, MCC, F1). The accuracy for the moving stocks was found

to be 0.453/0.448. Consequently, this approach was not pursued further, although

it cannot be entirely ruled out that some of the zero returns may have indeed

occurred in actual trading. The same experiment was repeated with |C| = 10.

This yielded similarly strong results, achieving 1 ≈
(∑|C|

i=1 I(ŷi>0.5)∑|C|
i=1 I(ŷi≤0.5)

)
and having

accuracy, MCC an F1-score of 0.523/0.529, 0.002/− 0.002, 0.614/0.623. However,

the accuracy for the non-zero elements remained relatively low at 0.441/0.419.

Table 7.55: 1min SMP runs.

Model Acc ↑ MCC ↑ F1 ↑

BERT 0.564/0.574 0.030/0.036 0.693/0.706

GPT-2 0.546/0.552 0.006/0.008 0.249/0.247

T5 0.565/0.573 0.004/0.005 0.211/0.221

TransformerXL 0.523/0.526 0.006/0.006 0.387/0.383

LLaMA 0.547/0.553 0.015/0.019 0.290/0.288

ASMs Using S2V Embeddings SMP runs that use S2V embeddings are listed

in Table 7.57. The convergence times of the S2V embedding-based runs exhibit a

similar pattern to the one described in Section 7.7.2. While these runs generally

converge faster—typically within 100 to 200 epochs or fewer for interday data—and

in the case of All(2010:) -based S2V embeddings usually between 50 and 100 epochs

(with exceptions where training continued beyond the local optimum), they are

more frequently affected by class imbalance issues. This pattern continues for the

intraday runs: the 60min runs usually converge within approximately 30 epochs,

whereas the 1min runs, once again, complete training after only a few epochs.
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Table 7.56: SMP Interday on S2V embeddings.

Model C |C| Acc ↑ MCC ↑ F1 ↑

BERT
S&P-500 80 0.500/0.509 0.001/0.021 0.481/0.496

S&P-500 10 0.513/0.504 0.026/0.011 0.509/0.508

GPT-2 +F ⟨R⟩ S&P-500 80 0.503/0.507 0.004/0.011 0.494/0.495

S&P-500 10 0.507/0.497 0.012/-0.005 0.501/0.491

TransformerXL
S&P-500 80 0.507/0.501 0.014/0.006 0.482/0.478

S&P-500 10 0.511/0.512 0.034/0.030 0.591/0.592

T5
S&P-500 80 0.510/0.510 0.017/0.020 0.534/0.530

S&P-500 10 0.509/0.506 0.015/0.015 0.554/0.526

LLaMA
S&P-500 60 0.502/0.507 0.006/0.010 0.483/0.482

S&P-500 10 0.513/0.518 0.014/0.026 0.543/0.549

BERT
All(2010:) 80 0.506/0.504 0.012/0.005 0.531/0.526

All(2010:) 10 0.512/0.509 -0.002/0.023 0.578/0.559

GPT-2
All(2010:) 80 0.509/0.511 0.026/0.024 0.485/0.483

All(2010:) 10 0.504/0.522 0.018/0.049 0.455/0.466

TransformerXL
All(2010:) 80 0.505/0.505 0.011/0.012 0.515/0.510

All(2010:) 10 0.507/0.512 0.011/0.022 0.511/0.509

T5
All(2010:) 80 0.504/0.504 0.010/0.008 0.495/0.491

All(2010:) 10 0.522/0.503 0.047/0.007 0.454/0.463

LLaMA
All(2010:) 60 0.531/0.504 0.049/0.018 0.526/0.494

All(2010:) 10 0.528/0.503 0.048/0.017 0.525/0.492

Table 7.57: SMP 60min on S2V embeddings.

Model C |C| Acc ↑ MCC ↑ F1 ↑

BERT
S&P-500 80 0.519/0.518 0.004/0.009 0.351/0.351

S&P-500 10 0.520/0.521 0.002/0.019 0.332/0.327

GPT-2 +F ⟨R⟩ S&P-500 80 0.528/0.523 0.015/0.015 0.321/0.326

S&P-500 10 0.516/0.517 0.000/0.007 0.346/0.377

TransformerXL S&P-500 80 0.539/0.527 0.016/0.006 0.246/0.240

TransformerXL +Lp+F ⟨R⟩ S&P-500 10 0.519/0.512 0.018/0.008 0.399/0.393

T5
S&P-500 80 0.513/0.510 0.005/-0.000 0.394/0.394

S&P-500 10 0.519/0.522 0.010/0.015 0.371/0.369

LLaMA +F ⟨R⟩ S&P-500 60 0.511/0.509 0.004/-0.000 0.392/0.391

LLaMA +Lp+F ⟨R⟩ S&P-500 10 0.521/0.520 0.011/0.014 0.373/0.367

BERT
All(2010:) 80 0.517/0.514 0.001/-0.001 0.344/0.344

All(2010:) 10 0.526/0.525 0.020/0.008 0.315/0.294

GPT-2
All(2010:) 80 0.520/0.517 0.006/0.005 0.338/0.341

All(2010:) 10 0.521/0.524 -0.007/0.015 0.257/0.250

TransformerXL
All(2010:) 80 0.529/0.526 0.005/0.005 0.210/0.195

All(2010:) 10 0.525/0.528 0.003/0.008 0.216/0.195

T5 +Lp+F ⟨R⟩ All(2010:) 10 0.515/0.510 0.010/0.009 0.416/0.438

All(2010:) 60 0.519/0.514 0.006/0.001 0.357/0.361

LLaMA All(2010:) 60 0.518/0.517 0.007/0.009 0.357/0.369

LLaMA +Lp+F ⟨R⟩ All(2010:) 60 0.509/0.505 0.013/0.008 0.454/0.476

A noteworthy phenomenon was observed when utilizing S2V embeddings, which

does not occur when using randomly initialized embeddings. Specifically, for cer-

tain models 1≪
(∑|C|

i=1 I(ŷi>0.5)∑|C|
i=1 I(ŷi≤0.5)

)
can manifest rapidly. Notably, this effect occurs

consistently for the same models and hyperparameter, particularly when employ-

ing pretrained S2V embeddings derived from the S&P-500 index, in contrast

to embeddings trained on All(2010:) . Furthermore, it was found that even small

values for λp can mitigate this process.
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ASMs Pretrained on MPM The results for models pretrained on MPM

can be found in Table 7.58, Table 7.59, Table 7.60, Table 7.61, Table 7.62 and

Table 7.63.

Convergence time is again difficult to assess in this context. Although all interday

runs were trained for between 100 and 1000 epochs, many reached a local optimum

after only a few dozen epochs. Models pretrained on All(2010:) using the MPM

approach typically converge significantly faster—often within just a few epochs,

and in some cases, such as with the GPT-2 model, in under 10 epochs. However,

this is primarily because these models fail to reach the (assumed) global optimum

fast. Otherwise, the ASMs trained on S&P-500 data would converge just

as quickly. Interday runs initialized with pretrained intraday weights tend to be

much more stable and usually achieve peak performance after only a few epochs,

typically around epoch 10. An exception is the GPT-2 model pretrained on 1min

data and fine-tuned for interday and 60min tasks, which was trained for up to 1000

epochs and continued to show performance improvements throughout. A similar

phenomenon can be observed for intraday runs initialized with models pretrained

on All(2010:) using MPM. The fastest convergence time is again shown by the 1min

runs. For GPT-2, a configuration for |C| > 10 with stable results could not be

found.

Table 7.58: SMP interday runs pretrained on MPM interday runs.

Model C |C| Acc ↑ MCC ↑ F1 ↑

BERT S&P-500 80 0.511/0.501 0.007/0.007 0.583/0.564

GPT-2 S&P-500 80 0.507/0.507 0.001/0.018 0.561/0.541

TransformerXL S&P-500 80 0.522/0.505 0.036/0.002 0.516/0.476

T5 S&P-500 80 0.507/0.506 0.008/0.010 0.558/0.550

LLaMA S&P-500 60 0.508/0.502 0.011/0.003 0.545/0.541

BERT
All(2010:) 80 0.509/0.509 0.030/0.015 0.428/0.457

All(2010:) 10 0.513/0.541 0.023/0.083 0.507/0.538

GPT-2 All(2010:) 10 0.522/0.517 0.059/0.019 0.235/0.208

TransformerXL All(2010:) 10 0.513/0.512 0.024/0.021 0.539/0.525

T5
All(2010:) 60 0.506/0.514 0.014/0.017 0.414/0.405

All(2010:) 10 0.525/0.518 0.044/0.041 0.537/0.506

LLaMA
All(2010:) 60 0.503/0.503 0.007/0.010 0.499/0.499

All(2010:) 10 0.502/0.509 0.006/0.022 0.501/0.522
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Table 7.59: SMP interday runs pretrained on MPM intraday runs.

Model Acc ↑ MCC ↑ F1 ↑

BERT (on 1min weights) 0.501/0.504 -0.002/0.010 0.518/0.503

GPT-2 (on 60min weights) 0.503/0.502 0.007/0.006 0.497/0.495

GPT-2 (on 1min weights) 0.498/0.526 -0.009/0.054 0.496/0.529

TransformerXL (on 60min weights) 0.504/0.515 0.010/0.032 0.498/0.506

T5 (on 1min weights) 0.507/0.496 0.014/-0.008 0.498/0.503

LLaMA (on 60min weights) 0.501/0.497 0.003/-0.013 0.464/0.476

Table 7.60: SMP 60min runs pretrained on MPM 1min runs.

Model Acc ↑ MCC ↑ F1 ↑

BERT 0.560/0.571 0.009/0.013 0.693/0.708

GPT-2 +F ⟨R⟩ 0.520/0.519 0.012/0.017 0.371/0.370

T5 0.562/0.580 0.014/0.021 0.696/0.712

TransformerXL 0.515/0.514 0.010/0.014 0.365/0.367

LLaMA 0.512/0.511 0.009/0.013 0.362/0.364

Table 7.61: SMP 60min runs pretrained on All(2010:) .

Model |C| Acc ↑ MCC ↑ F1 ↑

BERT
80 0.521/0.519 0.002/0.005 0.348/0.344

10 0.510/0.512 0.001/0.004 0.343/0.340

GPT-2
80 0.519/0.518 0.002/0.005 0.346/0.342

10 0.526/0.522 -0.003/0.002 0.268/0.262

T5
60 0.521/0.518 0.003/0.001 0.304/0.307

10 0.515/0.519 0.004/0.013 0.371/0.386

LLaMA +F ⟨R⟩ 60 0.519/0.514 0.002/0.001 0.302/0.302

10 0.520/0.517 0.003/0.001 0.303/0.306

Table 7.62: SMP 1min runs pretrained on All(2010:) .

Model |C| Acc ↑ MCC ↑ F1 ↑

BERT 80 0.530/0.534 0.001/0.003 0.335/0.333

GPT-2 80 0.547/0.553 0.005/0.004 0.223/0.224

TransformerXL +F ⟨R⟩ 80 0.545/0.551 0.005/0.004 0.221/0.221

T5 60 0.543/0.549 0.004/0.005 0.257/0.257

LLaMA 60 0.546/0.552 0.005/0.004 0.222/0.222

Table 7.63: SMP 1min runs pretrained on 1min.

Model Acc ↑ MCC ↑ F1 ↑

BERT +F ⟨R⟩ 0.563/0.573 0.041/0.049 0.681/0.697

T5 0.520/0.523 0.007/0.007 0.332/0.330

7.7.3 Fine-tuning with SPP as Downstream Task

Without Additional Pretraining The ASM baseline results without pretrain-

ing are shown in Table 7.64, Table 7.65 and Table 7.66.
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SPP runs converge significantly faster than SMP runs and tend to be much more

stable in terms of
(

|{i|ŷ[i]=0}|
|{i|ŷ[i]=1}|

)
or hyperparameter sensitivity. Here, the 100 epoch

mark is rarely exceeded even without pretraining.

Table 7.64: SPP Interday runs.

Model sMAPE ↓ MAPE ↓ Acc ↑ MCC ↑ F1 ↑

BERT 1.460/1.274 1.860/0.593 0.507/0.504 0.012/0.007 0.503/0.490

GPT-2 1.464/1.239 1.361/1.547 0.510/0.499 0.021/-0.001 0.505/0.491

T5 1.529/1.303 1.639/0.691 0.501/0.520 0.007/0.040 0.502/0.514

TransformerXL 1.498/1.340 1.274/1.027 0.510/0.512 0.022/0.021 0.506/0.504

LLaMA +F ⟨R⟩ 1.531/1.274 1.485/0.725 0.499/0.516 0.001/0.031 0.496/0.502

Table 7.65: SPP 60min runs.

Model sMAPE ↓ MAPE ↓ Acc ↑ MCC ↑ F1 ↑

BERT 0.447/0.390 0.119/0.069 0.531/0.528 0.055/0.048 0.480/0.479

GPT-2 +F ⟨R⟩ 0.411/0.349 0.092/0.063 0.528/0.525 0.048/0.044 0.477/0.479

T5 0.358/0.296 0.087/0.039 0.529/0.530 0.051/0.053 0.480/0.480

TransformerXL 0.385/0.335 0.141/0.086 0.530/0.529 0.051/0.049 0.477/0.477

LLaMA 0.486/0.439 0.074/0.074 0.528/0.524 0.047/0.040 0.476/0.475

Table 7.66: SPP 1min runs.

Model sMAPE ↓ MAPE ↓ Acc ↑ MCC ↑ F1 ↑

BERT 0.056/0.047 0.003/0.002 0.572/0.582 0.122/0.136 0.488/0.488

GPT-2 0.057/0.049 0.003/0.002 0.572/0.581 0.123/0.137 0.492/0.493

T5 0.056/0.047 0.002/0.001 0.566/0.575 0.114/0.128 0.492/0.493

TransformerXL 0.055/0.046 0.002/0.001 0.567/0.576 0.116/0.129 0.493/0.494

LLaMA 0.050/0.041 0.002/0.001 0.572/0.580 0.119/0.131 0.496/0.497

ASMs Using S2V Embeddings SMP runs that use S2V embeddings are listed

in Table 7.67 and Table 7.68.

For the S2V embeddings, the SPP-ASMs exhibit an interesting pattern: they

converge after more than 100 epochs but also achieve superior performance (in

terms of F1-score). In this case, the embeddings likely contributed to avoiding

convergence to a local optimum. The intraday runs converge within the expected

time frame—typically between 10 and 30 epochs for the 60min setting, and within

only a few epochs for the 1min setting.
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Table 7.67: SPP interday S2V runs.

Model C sMAPE ↓ MAPE ↓ Acc ↑ MCC ↑ F1 ↑

BERT S&P-500 1.503/1.282 1.287/2.159 0.510/0.509 0.018/0.018 0.516/0.500

GPT-2 S&P-500 1.500/1.279 1.283/2.154 0.511/0.509 0.019/0.019 0.514/0.498

T5 S&P-500 1.453/1.257 1.228/1.482 0.511/0.507 0.026/0.014 0.517/0.504

TransformerXL S&P-500 1.437/1.259 2.342/0.681 0.500/0.511 0.003/0.021 0.498/0.500

LLaMA S&P-500 1.523/1.291 1.814/3.305 0.507/0.518 0.014/0.034 0.498/0.498

BERT All(2010:) 1.474/1.269 1.770/2.186 0.496/0.504 -0.006/0.008 0.494/0.497

GPT-2 +F ⟨R⟩ All(2010:) 1.533/1.326 2.203/0.842 0.500/0.511 0.003/0.019 0.502/0.499

T5 All(2010:) 1.512/1.230 1.193/0.589 0.508/0.511 0.019/0.020 0.505/0.489

TransformerXL All(2010:) 1.495/1.192 1.676/0.630 0.511/0.516 0.022/0.035 0.511/0.504

LLaMA All(2010:) 1.507/1.217 1.789/2.208 0.512/0.521 0.023/0.037 0.503/0.499

Table 7.68: SPP 60min S2V runs.

Model C sMAPE ↓ MAPE ↓ Acc ↑ MCC ↑ F1 ↑

BERT All(2010:) 0.398/0.340 0.095/0.065 0.542/0.538 0.072/0.066 0.479/0.480

GPT-2 All(2010:) 0.386/0.326 0.171/0.060 0.533/0.530 0.058/0.053 0.477/0.482

T5 All(2010:) 0.356/0.303 0.112/0.085 0.548/0.543 0.083/0.074 0.482/0.483

TransformerXL All(2010:) 0.354/0.314 0.096/0.052 0.544/0.536 0.076/0.062 0.477/0.478

LLaMA All(2010:) 0.450/0.391 0.107/0.077 0.528/0.525 0.047/0.041 0.475/0.474

BERT S&P-500 0.380/0.327 0.121/0.058 0.541/0.533 0.069/0.057 0.476/0.480

GPT-2 S&P-500 0.380/0.338 0.169/0.061 0.549/0.537 0.084/0.061 0.480/0.474

T5 S&P-500 0.360/0.304 0.085/0.056 0.529/0.526 0.052/0.044 0.481/0.479

TransformerXL S&P-500 0.356/0.302 0.081/0.049 0.538/0.533 0.065/0.058 0.477/0.481

LLaMA S&P-500 0.449/0.398 0.089/0.051 0.525/0.525 0.043/0.043 0.476/0.479

Table 7.69: SPP 1min S2V runs.

Model C sMAPE ↓ MAPE ↓ Acc ↑ MCC ↑ F1 ↑

BERT All(2010:) 0.059/0.050 0.003/0.002 0.568/0.576 0.116/0.127 0.489/0.489

GPT-2 All(2010:) 0.065/0.056 0.004/0.002 0.566/0.576 0.114/0.129 0.493/0.494

T5 All(2010:) 0.068/0.058 0.005/0.002 0.563/0.572 0.111/0.127 0.492/0.492

TransformerXL All(2010:) 0.061/0.052 0.004/0.002 0.566/0.574 0.112/0.128 0.495/0.496

LLaMA All(2010:) 0.068/0.057 0.006/0.003 0.560/0.589 0.113/0.129 0.497/0.499

BERT S&P-500 0.057/0.048 0.003/0.001 0.564/0.573 0.114/0.127 0.499/0.499

GPT-2 S&P-500 0.068/0.060 0.003/0.002 0.569/0.578 0.119/0.133 0.495/0.495

T5 S&P-500 0.062/0.055 0.004/0.002 0.563/0.570 0.114/0.128 0.465/0.498

TransformerXL S&P-500 0.061/0.053 0.004/0.002 0.566/0.572 0.113/0.127 0.495/0.497

LLaMA S&P-500 0.061/0.052 0.004/0.002 0.564/0.594 0.115/0.132 0.499/0.499

ASMs Pretrained on MPM The results for the MPM pretrained SPP runs

are in Table 7.74, Table 7.73, Table 7.72, Table 7.71, Table 7.70. The models

pretrained on MPM exhibit highly volatile convergence behavior. For MPM runs,

a wide range of convergence times is observed, with epoch counts varying from

just a few to up to 150. Only the 1min runs consistently show rapid convergence

within a few epochs.
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Table 7.70: SPP Interday pretrained on Interday.

Model C sMAPE ↓ MAPE ↓ Acc ↑ MCC ↑ F1 ↑

BERT S&P-500 1.541/1.250 1.327/3.309 0.495/0.499 -0.009/-0.000 0.492/0.485

GPT-2 +F ⟨R⟩ S&P-500 1.507/1.231 0.807/0.483 0.523/0.523 0.047/0.047 0.510/0.515

T5 S&P-500 1.568/1.395 1.342/0.963 0.506/0.504 0.010/0.008 0.501/0.493

TransformerXL S&P-500 1.377/1.137 1.129/0.785 0.511/0.492 0.023/-0.013 0.497/0.474

BERT All(2010:) 1.483/1.196 0.980/1.019 0.497/0.505 -0.009/0.008 0.494/0.481

GPT-2 All(2010:) 1.447/1.265 1.502/0.634 0.509/0.509 0.021/0.018 0.510/0.502

T5 All(2010:) 1.504/1.345 1.952/0.798 0.514/0.503 0.028/0.007 0.510/0.501

TransformerXL All(2010:) 1.579/1.362 1.521/1.319 0.505/0.507 0.011/0.013 0.505/0.500

LLaMA All(2010:) 1.543/1.310 1.111/0.490 0.485/0.518 -0.030/0.036 0.459/0.478

In the experimental runs presented in Table 7.70, it is noteworthy how rapidly the

maximum SMP accuracy is attained. The accuracy exhibits minimal improvement

with continued training, and peak performance is achieved within a few epochs.

This observation suggests that the pretraining effectively optimizes the model’s

convergence time.

Table 7.71: SPP 60min pretrained on 1min.

Model sMAPE ↓ MAPE ↓ Acc ↑ MCC ↑ F1 ↑

BERT 0.431/0.378 0.120/0.061 0.532/0.526 0.056/0.045 0.478/0.479

GPT-2 0.394/0.361 0.071/0.061 0.524/0.523 0.044/0.040 0.486/0.483

T5 0.418/0.409 0.049/0.046 0.522/0.521 0.036/0.036 0.469/0.477

TransformerXL 0.347/0.296 0.083/0.061 0.523/0.523 0.038/0.039 0.475/0.477

LLaMA 0.351/0.296 0.093/0.062 0.523/0.523 0.037/0.038 0.473/0.475

Table 7.72: SPP 60min pretrained on All(2010:) .

Model sMAPE ↓ MAPE ↓ Acc ↑ MCC ↑ F1 ↑

BERT 0.468/0.416 0.080/0.043 0.528/0.527 0.047/0.045 0.472/0.476

GPT-2 0.404/0.351 0.118/0.075 0.525/0.522 0.042/0.038 0.475/0.477

T5 0.393/0.348 0.117/0.058 0.527/0.526 0.046/0.045 0.477/0.479

TransformerXL 0.375/0.325 0.091/0.059 0.527/0.523 0.047/0.041 0.478/0.479

LLaMA 0.453/0.384 0.156/0.070 0.527/0.521 0.048/0.033 0.468/0.467

Table 7.73: SPP 1min pretrained on All(2010:) .

Model sMAPE ↓ MAPE ↓ Acc ↑ MCC ↑ F1 ↑

BERT +F ⟨R⟩ 0.431/0.378 0.120/0.061 0.532/0.526 0.056/0.045 0.478/0.479

T5 0.055/0.047 0.002/0.001 0.569/0.578 0.118/0.132 0.491/0.492

Table 7.74: SPP 1min pretrained on 1min.

Model sMAPE ↓ MAPE ↓ Acc ↑ MCC ↑ F1 ↑

BERT 0.057/0.052 0.005/0.002 0.560/0.570 0.110/0.123 0.493/0.493

GPT-2 0.058/0.050 0.004/0.002 0.564/0.573 0.112/0.125 0.495/0.496

T5 0.053/0.044 0.001/0.001 0.567/0.577 0.118/0.135 0.498/0.499

LLaMA 0.056/0.048 0.002/0.001 0.563/0.574 0.116/0.133 0.495/0.495
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7.7.4 Further Experiments

The author also tried to integrate EK into the model by assigning it to A(t)[j, i]←

A(t)[j, i] + EK [k[i mod |C|], j], without any performance advantage. This is seen

positive, as sector information appears implicit in the context-sensitive MPM/S2V

embeddings. Given the exploratory nature of the models, future work should

investigate eigenvalue-based representations of the time series to mitigate noise.

No performance improvement could be achieved here. As already mentioned,

experiments with the COMP-head and [COMP]-token to learn the representations

were discarded, as the model achieved almost perfect performance in this respect

and showed no weaknesses with the S2V representations. This can also be seen

very clearly from the fact that the MPM can identify the masked company after

just a few training steps, i.e. a plateau of 50% performance is achieved.

Trend Matching Trend matching proved to be a challenging task as in Sec-

tion 7.5. As this is a new task that has not yet been tested, it is difficult to say

whether this is due to the difficulty of the task, the selected hyperparameters or

the model architecture. The results/learning are very poor in all implementations,

although a learning progress can be seen in the reduction of the loss. For the bin-

ary classifications, the accuracy is in the range of 51% to 52% and for the use

and prediction of a switched ci at about 2
|C| . In this last task, the top-k (k = 3)

accuracy is also about 5
|C| which once again underlines that the model learns at

least something. A method was also tested in which the test and validation set

were not taken from the time steps following the training set, but from those in

the middle of [1,T], so that the model should theoretically have much easier work,

since the complete trend was known except for one time step. Due to the poor

results, extensive investigations on TM pretrained models for SMP or SPP were

not carried out, as the purpose of pretraining is to perform a simpler task before

the actual, complex one. Obviously TM is not a simple task, the model fails on it

and it is therefore not useful as pretraining. For the sake of completeness, some

test runs were done, and the SMP/SPP performance hardly changed compared to

models not pretrained with TM.
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Figure 7.18: ASM Simulation Graphs.

QMSE Integration As mentioned in [223], an attempt was made to integrate

the QMSEs e⃗. This approach proved largely unsuccessful in the F ⟨BM-R⟩ and

F ⟨BM-L⟩ models employed in that work. For the present experiments, in addition

to the transformation e← eQMSE⋆e, the input A(t)⊙F ⟨QMSE⟩(f(X(t))) was also ex-

plored. Both attempts did not bring any visible performance gain and also weight

regularization of the self-attention mechanism to focus on the QMSE embeddings

more has led to unstable and worse results. Thus, a meaningful integration for

Π = eQMSE and a CLM approach adapted for the ASMs with the QMSEs was not

found.



Chapter 7. Results 214

7.7.5 Simulation

The results for the simulation can be found in Table 7.75 and in Figure 7.18.

The discussion of the implications of the results can be found in Figure 8.2 and

Section 8.3.

Table 7.75: ASM simulation Results.

Interval Dataset CR Sharp Ratio IRR IR MDD

1min Val −4.524 -0.0007 -0.0000 -0.0007 0.2085

1min Test 13.232 0.0034 0.0000 0.0034 0.1084

60min Val 21.118 0.0313 0.0001 0.0313 0.1010

60min Test 15.966 0.0303 0.0001 0.0303 0.0880

Interday Val 3.320 0.0249 0.0002 0.0249 0.1198

Interday Test 2.510 0.0172 0.0001 0.0172 0.0603

7.8 ASM Tokenization Based Approach

The results for the ASM tokenization based approach are listed in the following.

7.8.1 MLM

In Table 7.76 are the results for MLM. Due to resource constraints, small ∆t and

|C| values, i.e., 7 and 5 respectively, were used (as in [222]).

Table 7.76: MLM results.

Model Interval Acc ↑ Top-5 accuracy ↑

Naive ∼ 0.000114 ∼

BERT Interday 0.455/0.392 0.626/0.563

GPT-2 Interday 0.471/0.429 0.621/0.593

T5 Interday 0.723/0.733 0.819/0.826

TransformerXL Interday 0.641/0.647 0.768/0.774

LLaMA Interday 0.629/0.620 0.762/0.763

BERT 60min 0.305/0.290 0.502/0.480

7.8.2 Fine-Tuning with SMP as a Downstream Task

Experiments with SPP were not conducted due to its poor performance, as already

discussed in [222]. It is suspected that the tokenization-based approach is simply

not suitable for regression data. The results for the SMP task are presented in the

following.
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Without Additional Pretraining The SMP results without any additional

pretraining can be found in Table 7.78. Intraday runs were not included, as the

standard deviation between individual runs was very high, preventing the genera-

tion of meaningful or reliable results. Additionally, the resource requirements for

such experiments are substantial, making it infeasible to repeat them frequently

enough to achieve statistical significance. It is also important to note that, in many

cases, baseline performance could not be achieved on one or both evaluation sets,

or there were significant discrepancies between the two sets. Overall, as further

discussed in Chapter 8, this approach in its current form is not yet sufficiently

mature.

Table 7.77: SMP Interday runs.

Model Acc ↑ MCC ↑ F1 ↑

BERT 0.516/0.501 0.026/-0.005 0.560/0.549

GPT2 0.518/0.496 0.037/-0.008 0.594/0.573

T5 0.507/0.506 -0.001/0.034 0.417/0.408

TransformerXL 0.526/0.486 0.031/-0.010 0.604/0.545

LLaMA 0.514/0.493 0.031/-0.010 0.336/0.316

ASMs Pretrained on MPM Results exceeding the baseline were unable to be

achieved for the LLaMA model pretrained using MLM. Notably, the pretrained

models converge significantly faster, typically within 3 to 10 epochs. In contrast,

the non-pretrained models require substantially more training time, with LLaMA

needing a minimum of 20 epochs and T5 requiring up to 96 epochs.

Table 7.78: SMP Interday runs pretrained.

Model Acc ↑ MCC ↑ F1 ↑

BERT 0.494/0.501 -0.011/0.002 0.446/0.492

GPT2 0.515/0.507 -0.005/0.015 0.653/0.642

T5 0.490/0.494 -0.015/-0.011 0.528/0.493

TransformerXL 0.520/0.502 0.041/0.003 0.503/0.490
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Discussion

The results are discussed in the following.

8.1 Baseline Results and Implications

The baseline models are first evaluated to establish expectations for downstream

tasks, as well as to examine certain challenges and phenomena inherent in stock

data (see Section 7.1). The performance of the baseline models highlights the

difficulty of SF. For instance, in the case of the F ⟨BM-R⟩ models, no configuration

could be identified that achieved any notable learning on the SMP interday data.

These phenomena are examples of results that will be observed often in the rest of

this chapter. Firstly, a notable difference is observed between the performance on

the validation set and the test set. The non-stationary nature of financial markets

and the continuously evolving market dynamics result in each dataset—training,

validation, and test—exhibiting unique distributions. In such contexts, optimizing

hyperparameters solely based on the validation set performance before evaluating

the final model on the test set may not accurately reflect the expected performance.

Notably, the datasets cover periods such as the COVID-19 crisis, a time charac-

terized by highly unusual market conditions. The limited utility of traditional

validation set/test set approach in volatile periods is thereby supported. Given

these conditions, it is pragmatic to treat the validation and test sets not merely

as sequential temporal datasets but rather as two OOD evaluation sets. This

216
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perspective is consistent with evaluation practices for (compositional) generaliz-

ation across datasets in domains such as vision-and-language, as exemplified by

the CLEVR dataset [104], where models are assessed on their ability to generalize

beyond the training distribution to OOD evaluation sets. Earlier convergence is

often observed on one dataset (e.g., validation set) than on the other (e.g., test

set).

The integration of sector, feature, or stock information (EC and EF) into the

models typically failed to yield substantive enhancements, as evidenced by the

grid search outcomes in Section 7.1. Aside from ∆t, broadly similar results were

observed across configurations. This uniformity suggests that the method of in-

corporation into the baseline models—principally as a learnable scalar bias per

stock feature—is suboptimal. In contrast as demonstrated in Section 7.7, the

S2V/MPM embeddings already capture the intrinsic characteristics of individual

stocks and their intercorrelations to such an extent that the inclusion of sector-level

information offered no performance gain in the experiments.

From the intraday datasets (see Table 7.2, Table 7.3), it is indicated that F ⟨BM-T⟩

models benefit from larger data volume or (possibly) lower market efficiency at

faster intervals, improving Θ-stability and accuracy.

8.2 Evaluation of the Research Questions

The research questions posed in Section 1.2 are evaluated in the following, begin-

ning with Research Question 1.

Research Question 1

Which Strategies from the NLP Area can be Adapted for Quantitative Mul-

tivariate Stock Price Data and How Can We Use Them?

Figure 8.1: Research Question 1 as posed in Section 1.2.

Twofold Approach to the Research Question The first question can be

approached from two distinct perspectives: Firstly, there is the broader question

of how well adapted strategies can handle quantitative stock or time series data.



Chapter 8. Discussion 218

Secondly, there is the question of how these strategies can be effectively utilized

for SF.

The former question is relatively open-ended and can primarily be addressed

through model evaluation, as defined in Section 7.2. This aspect pertains not

only to the embeddings themselves but also to the performance observed during

the pretraining phase.

The latter question — concerning the practical utilization of these strategies — can

be explored through embedding evaluation (as defined in Figure 7.1) using both

intrinsic and extrinsic evaluation methods. Furthermore, these considerations can

be extended to conceptual frameworks discussed in the subsequent Section 9.2.

S2V and Context-Sensitive ASM Embeddings Following the structure of

the classical NLP pipeline, as illustrated in Figure 6.1 and introduced in Chapter 6,

the investigation commences with the proposed adapted S2V embeddings (see

Section 7.2). Suitability of the adapted W2V models for quantitative stock data

is indicated by the good SMC and SPE results.

This conclusion is supported by the outcomes observed during model evaluation

(see Section 7.2.1). Furthermore, these results provide a crucial insight: the SMC

and SPE tasks appear to be relatively easy, even for the proposed simple S2V

models, while remaining similarly unchallenging for more complex architectures

such as the ASMs (see Section 7.7.1).

These findings suggest that the core difficulty in stock price forecasting lies in pre-

dicting temporal correlations (as defined in [62]). Consequently, this challenge is

less concerned with understanding inter-stock correlations or correlations between

financial indicators. This observation carries significant implications for the de-

velopment of future SF models. On a conceptual level, such models should ideally

focus on identifying individual stocks for which future price movements can be

predicted with a relatively high degree of certainty. Subsequent price movements

of other stocks may then be inferred based on these primary predictions.

The markedly superior performance of multivariate models (in S2V) — particularly

those incorporating all OHCLV features — compared to univariate, purely time-

series-based models substantiates this hypothesis (cf. Table 7.5 and Table 7.4).
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Furthermore, this observation underscores the inherent difficulty of accurately pre-

dicting individual stock prices in isolation, without accounting for the influence of

other stocks. This insight is particularly relevant for the MTM tasks.

The usefulness of the S2V embeddings, on the other hand, is not as straightfor-

ward to assess. In most intrinsic evaluation procedures based on absolute scores,

their performance appears relatively volatile compared with approaches described

in the literature that employ a top-down methodology for embedding construc-

tion (see Section 3.0.2). Consequently, the S2V embeddings produce inconsistent

results, sometimes achieving strong outcomes while at other times yielding less

satisfactory performance. Non-trivial patterns are identifiable in the embeddings

via expert/manual analysis (see Section 7.2.4).

Although the identified patterns or clusters are not as distinctly pronounced as

those found in the previously mentioned top-down-based architectures (see Sec-

tion 3.0.2), discernible structures are nonetheless present. Useful patterns are

expected to be extractable by domain experts from these embeddings.

The proposed context-sensitive ASM embeddings, which were evaluated in Sec-

tion 7.2, demonstrate a considerably more stable performance in terms of intrinsic

evaluation. Of particular note is the evaluation presented in Table 7.9, which high-

lights the detection of complex relationships, such as the one identified between

SCHW and PAYX . This observation underscores the enhanced capability of

ASM embeddings to capture intricate interdependencies within financial data. As

observed in the field of NLP, it can be stated that the context-sensitive embed-

dings derived from ASMs — analogous to the context-sensitive embeddings from

LLMs in NLP (e.g. BERT embeddings [40]) — are likely preferable to the S2V

embeddings (or W2V embeddings in NLP) (cf. Section 7.7.3 and Section 7.7.2).

Superior—and especially more stable—performance in downstream extrinsic eval-

uation is generally observed for ASM embeddings (cf. Section 7.7.2, Section 7.7.2,

Section 7.7.3, Section 7.7.3).

Masking Strategies The successful adaptation of MLM within both the pro-

posed F ⟨T⟩ architectures (Section 7.5.2) and the proposed ASMs (Section 7.7.1)
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underscores the viability of MLM adaptions for quantitative stock time-series ana-

lysis. Focusing initially on F ⟨T⟩-based approaches, the empirical evaluation reveals

that MTM exhibits suboptimal performance (see Section 7.5.1). This outcome

corroborates findings from S2V experiments and SMC/SME tasks (Section 7.2),

wherein classification/estimation of P(X = x
(t)
i |Π = x

(t)
j ), ∀cj ̸=i ∈ C becomes

trivial, whereas inference of X(t) absent Π = x
(t)
j , ∀cj ̸=i ∈ C proves challenging.

Moreover, inclusion of future time steps Π = {X(t+1) . . . X(t+ϖ)} confers negligible

classification/estimation benefit for the F ⟨T⟩ models. This is in contrast to the

proposed CBOS-X models that benefit from future information (cf. Table 7.5).

Since these are significantly less complex, this is another argument against the

representations of the stock data in the F ⟨T⟩ models.

Quantitative results demonstrate that spatial dependencies substantially outper-

form temporal cues in classification/estimation relevance. Although this insight

does not improve forecasting, it supports model classes like ASMs that encode spa-

tial structures. F ⟨T⟩-based MTM attains only slight improvements (50.2–51.1% ac-

curacy) over the SMC baseline on intraday datasets, with no bigger advantage for

recurrent architectures. MTM’s limited performance indicates that pretraining ob-

jectives predicated on future-step masking are inappropriate for stock time-series

contexts.

MSM similarly underperforms, albeit marginally better than MTM. In contrast,

tasks involving the masking of individual price features, as well as S2V-SMC and

SPE, demonstrate robust performance. Given that MSM essentially concatenates

multiple C-CBOS tasks with supplementary masking—and that even single-feature

masking yields poor outcomes—F ⟨T⟩ architectures appear ill-suited for MSM and

analogous PPM tasks.

The X-CBOS models (in Section 7.2) employ a very simple architecture, yet they

serve as a solid baseline due to their ability to process univariate inputs. Depending

on the features used (e.g., "Close" only vs. full OHCLV feature sets), they can

already achieve moderately strong accuracies, reaching approximately 0.70 in some

configurations.

Pure F ⟨T⟩-based models generally outperform the weaker X-CBOS runs (e.g., those
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with 0.50–0.55 accuracy), but even in their best configurations, they only margin-

ally surpass the strongest X-CBOS results. Here, as in Section 7.5.1, the intraday

runs are disregarded, as they do not allow for a meaningful comparison due to

resource constraints and the limited duration of the training processes. In certain

settings and models—such as interday data with all OHCLV features and carefully

tuned hyperparameters—F ⟨T⟩-models can consistently exceed 0.65–0.70 accuracy

(e.g. the F ⟨J-M⟩ in Table 7.24 or most of the ρheads = 1 models in Section 7.5.1).

However, they still fall short of the exceptionally high performance achieved by

the ASM models. Due to the strong performance in Section 7.5.1, the multi head

attention mechanism or the unsuitability of the time series representation in F ⟨L⟩

is probably responsible for this.

The proposed ASM models in Section 7.7.1, utilizing MPM on OHCLV features,

consistently reach accuracies above 0.90 on comparable tasks, occasionally ap-

proaching values as high as 0.99 (among the restrictions that were mentioned an

Section 8.3). This performance leap clearly demonstrates the superior capability

of proposed LLM backbone pretrained models in solving masking tasks efficiently.

Overall, these results suggest that F ⟨T⟩-based models are indeed well-suited for

masking tasks and often outperform the X-CBOS baseline. However, their advant-

age is less pronounced than one might expect from high-capacity architectures.

Notably, the representation of stock data achieved within the ASM framework

remains unmatched by other model types. The hypothesis that the other architec-

tures are not well-suited for implementing pretraining paradigms or serving as the

foundation for the quantitative stock foundation models is further substantiated

by the observation that the MPM demonstrates near-perfect performance within

the ASMs, achieving almost 100% accuracy in numerous instances. This outcome

arises despite the fact that the task itself remains identical, and the underlying

data are the same, albeit presented in a different format. From this, it can be

inferred that while F ⟨T⟩ models are not inherently unsuitable for time series pro-

cessing, their effectiveness depends on proper alignment with the specific model

architecture and data structure (as done in the ASMs).

It is observed that masking is generally suitable for pretraining models in the
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context of quantitative stock data. However, it becomes evident that the models

— like the ASMs — must be specifically designed for this purpose; otherwise, the

task cannot be adequately fulfilled.

This finding partially corroborates the necessity of employing context-sensitive

embeddings within the proposed ASMs, as well as the internal representation of

stock prices and their intercorrelations within these models. As illustrated in

Figure 7.17, the mechanism and the relevant time steps and stocks can be seen

more clearly. The visualization demonstrates that data points from more distant

time steps are of limited relevance. Notably, the corresponding stock itself proves

highly influential in the evaluation process, while a particular time step — the

second from the left — appears to be especially significant. Furthermore, certain

stocks exhibit considerably greater importance than others.

The centrality of distribution shift in MPM pretraining is emphasized (see

Chapter 1). The model’s near-perfect results on both the validation and test

sets illustrate its strong ability to handle OOD data, at least in the pretraining

stage.

Trend Matching The TM approach has failed across all models and method-

ologies, which allows to conclude that NSP cannot be successfully transferred to

quantitative stock data — at least not with the current approaches. As outlined

in Section 7.7, it is difficult to determine whether this outcome is attributable to

the employed models or the task itself, given that this contrastive learning task is

novel in the context of stock data. Based on prior work, the difficulty of the task

itself is the more plausible cause.

In [223], it was previously observed that the performance of the NNA suggests that

similar macroeconomic conditions do not necessarily imply comparable future mar-

ket movements. In [169], dissimilar sliding windows were blocked during training

to prevent the model from being negatively affected by inconsistent patterns. The

similarity vector employed for this purpose spanned different time periods, which

implicitly indicates that structurally similar periods do not necessarily occur in

direct succession.
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Considering the persistent distribution shifts in the stock market as well as the

previously described observations, it can be inferred that the model, on an ab-

stract level, lacks the capability to identify structural similarities in Ẋ and Ẍ for

the purpose of solving the TM task. Instead, it has to compare

∆
({
F : Ẋ 7→ I(Ẋ(θTM) ≥ Ẍ(ω))

}θTM

ω=1
||
{
Ẍ(t)

}θTM

t=1

)
(following the notation in Sec-

tion 6.9.2). This essentially corresponds to a generative task, which has already

been identified as particularly challenging in Chapter 2.

Given the difficulties the models exhibit even when predicting X(t+1), it is reason-

able to assume that the quasi-predictive classification of longer sequences within

the context of contrastive learning poses an even greater challenge for the model.

As compensation for the absence of the macroeconomic states intended by the TM

approach, as outlined in Chapter 1, QMSEs were developed and integrated into

the models. Regarding the NLP perspective, NSP was unable to be successfully

adapted as a pretraining task.

All(2010:) Pretraining Dataset For the ASM, QMSEs, and S2V models, it was

possible to utilize the All(2010:) dataset as a pretraining dataset, analogous to the

large unlabeled text corpora typically employed for pretraining LLM models. This

is useful for two main reasons. First, due to its size compared to the S&P-500

dataset and the absence of the first ten years of data, it is more up-to-date. How-

ever, it therefore lacks insights into earlier market dynamics. For some S2V models,

the All dataset was additionally utilized, meaning data starting before 2010 was

included, resulting in a significantly smaller |C|. Second, the All(2010:) dataset is

noteworthy for its pronounced (national) market heterogeneity.

In the evaluation of the S2V C-CBOS models, no significant performance differ-

ences between the datasets are observed, as shown in Table 7.4. In the X-CBOS

models, the model appears to benefit from a differentiated and broader data het-

erogeneity for individual univariate stocks, as evidenced by the performance of the

All(2010:) run in Table 7.5. Of course, the model only benefits from heterogeneity in

the embedding representations and not at a spatial level. Regarding the evaluation

by country (Table 7.10 and Table 7.11), the S2V embeddings, as observed in all
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embedding evaluations, do not achieve strong absolute performance scores. How-

ever, as illustrated in Figure 7.6, S2V structures relevant to international markets

were able to be identified.

For the overall evaluation of the QMSEs presented in Section 7.4, significantly

poorer performance is observed for the models trained on the All(2010:) dataset,

with few exceptions. This may possibly be attributed to the higher complexity

inherent in this dataset, as here significantly more stocks need to be represented

in the low dimensional QMSE representations.

Regarding the ASM pretraining task, model performance on the All(2010:) dataset

improves particularly when |C| is limited (i.e., ϵ or ζ approaches). However, the

performance differences for larger |C| values, such as ζ = 20, reveal the dataset

size limitations inherent to the All(2010:) dataset. These limitations have already

been discussed in Section 8.3.

In terms of pretrained S2V embeddings (cf. Section 7.7.3 and Section 7.7.2), no

single pretraining dataset ( S&P-500 vs. All(2010:) ) consistently outperforms

the other across all models and metrics. Notably, BERT shows a slight tendency

to benefit from pretraining on the All(2010:) dataset, whereas T5, in contrast, ap-

pears to gain marginal improvements from pretraining on S&P-500 . For the

decoder-only models—GPT-2, TransformerXL, and LLaMA—the results vary by

metric and training setup, suggesting that while the choice of pretraining corpus

has an influence, it does not solely determine model performance. It is also worth

mentioning that the S2V embeddings, which were trained on interday data, exhib-

ited extreme fluctuations when applied to intraday data in SMP (see Table 7.57).

This, in particular, led to an escalation of the phenomena described in Section 8.3.

Mitigating these issues was only achievable through the use of λp and/or F ⟨R⟩. For

ASMs on the SMP task Section 7.7.2 and Section 7.7.2 can be compared. Trans-

formerXL shows the most consistent F1-score gains when using S2V, especially in

interday settings, while T5 can also achieve strong F1-score improvements, though

results depend heavily on hyperparameters. GPT-2 and LLaMA tend to improve

accuracy/MCC but often at the cost of F1-score, with GPT-2 showing frequent

F1-score drops. BERT shows moderate and mixed changes across all metrics. The
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All(2010:) embedding set produces more pronounced effects (positive and negative)

than S&P-500 , making S2V embeddings most useful when optimizing for F1,

particularly with TransformerXL or T5 under the right conditions.

In the SPP (cf. Section 7.7.3 and Section 7.7.3) experiments, All(2010:) and

S&P-500 show no clear overall winner, but their effects differ by model. T5

reacts more variably—sometimes favoring All(2010:) for error metrics, but often per-

forming better with S&P-500 for classification. GPT-2 and T5 generally show

more stable MCC/accuracy gains with S&P-500 , while LLaMA gains mod-

estly from All(2010:) , especially at 60 minutes, though it fluctuates more interday

with S&P-500 . Overall, All(2010:) induces stronger but more volatile effects,

whereas S&P-500 leads to steadier classification improvements, especially for

GPT-2 and T5. The comparative analysis indicates that the All(2010:) embeddings

tend to induce larger variations in F1-score performance while the S&P-500

embeddings yield more consistent gains in accuracy and MCC. Consequently, the

choice between these embedding sets should be guided by the specific perform-

ance metrics and model architectures of interest, rather than a one-size-fits-all

approach.

A key question concerns how much ASMs benefit from pretraining on heterogen-

eous markets. As discussed in Figure 8.2, the All(2010:) dataset leads to improved

performance in MPM pretraining only in a minority of cases, and even then, the

gains are marginal. This observation holds particularly true for intraday data

(see Table 7.61, Table 7.62, Table 7.72 and Table 7.74). This can presumably be

attributed to the limited amount of data in All(2010:) , which likely prevents the

model from learning stock relationships as comprehensively as in the S&P-500

-based MPM pretraining.

First, the SMP interday runs are examined in Table 7.58. It is initially noticeable

that some models only produced usable results with |C| = 10 when pretraining

was performed on All(2010:) (GPT-2, TransformerXL). In all cases where larger

values of |C| = 60/80 were used, performance dropped (sometimes significantly)

on All(2010:) compared to S&P-500 . However, the peak performance for all
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models pretrained on All(2010:) was achieved in runs with |C| = 10. For runs pre-

trained on S&P-500 , no usable performance could be achieved with |C| = 10.

Next, the intraday runs are compared, starting with the 60min runs (cf. Table 7.61

and Table 7.60). Except for LLaMA, a similar pattern is observed: performance

decreases slightly to significantly on larger |C| values when pretraining was per-

formed on All(2010:) . However, performance on the |C| = 10 runs does not surpass

the performance on larger |C| values or on the S&P-500 runs, with the ex-

ception of GPT-2. It is also striking how poor the F1-score becomes on the runs

pretrained on All(2010:) , especially when compared to the top-performing BERT

and T5 models. For the 1min runs, many of the S&P-500 models yielded no

usable results (see Table 7.63), and even T5 could not reach the performance of

the models pretrained on All(2010:) (see Table 7.62). However, the BERT model

pretrained on S&P-500 could not be outperformed by any of the All(2010:) runs

in Table 7.62.

Overall, pretraining on the All(2010:) dataset proved beneficial for SMP only in a

few cases and must therefore be considered rather risky. In the interday SPP in

Table 7.70, the results are mixed and it depends on the model which dataset is

more suitable. For the SPP intraday runs, the 60min runs are considered first,

comparing Table 7.71 with Table 7.72. Here, if performance differences exist, they

are marginal—significantly smaller than in the interday runs—and again model-

dependent. For the 1min runs in Table 7.73 and Table 7.74, a pattern similar

to the SMP runs is observed. Most models pretrained on S&P-500 perform

rather poorly, with the exception of the T5 model, which outperforms all others.

The relatively well-performing BERT model pretrained on S&P-500 could

not match the performance of the All(2010:) runs.

In conclusion, unfortunately, no strong advantage of the heterogeneous

All(2010:) dataset can be identified—at least under the given limitations. How-

ever, the use of the All(2010:) dataset significantly reduces the risk that models do

not produce usable results for intraday runs.

Notably, the models pretrained on the All(2010:) dataset exhibit significantly faster

convergence times in most cases, ranging between 9 and 70 epochs. In contrast,
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the models trained on the S&P-500 dataset required several hundred epochs.

Also the phenomenon described in Figure 8.2 more frequently occurred.

Doc2Vec Adaption The evaluation of the proposed Doc2Vec adaptation

strategy has been discussed in detail in [223] and in Section 7.4. This adapta-

tion can be regarded as a partially successful implementation of a NLP strategy.

Its success is particularly evident in the positive model evaluation as well as its

effective deployment in various other model architectures. Among other contribut-

ing factors, this can be attributed to the function of QMSEs, which—as discussed

in the preceding section—provide a structural foundation for integrating macroe-

conomic information. In this context, the integration of QMSEs as a learning

regularizer also plays a role, albeit with comparatively limited success.

The proposed adaptation from the NLP domain must be viewed self-critically as

relatively broad in scope, given that the use of established NLP models such as

Sentence-BERT [194] or Skip-Thought [109] proved unsuccessful, and the applic-

ation of AEs to generate dense vector representations of text passages is rather

uncommon in NLP.

The relevance of QMSEs, particularly their utility as indicators of unusual mar-

ket dynamics with parameter d, as discussed in Section 6.7, becomes more pro-

nounced in the context of downstream evaluation and simulation, as elaborated in

Figure 8.2.

The integration of QMSEs as a learning regularizer has, in some cases, improved

model training, as described in Section 7.7 and Section 7.5. However, as previously

noted in [223], this effect is more pronounced in terms of influencing the standard

deviation of training performance rather than enhancing overall model accuracy.

This effect appears particularly effective in ‘unstable’ models such as the S2V-

based ASMs in high-frequency time intervals, as demonstrated in Table 7.57.

Tokenization and Adapted LLM Models The proposed utilization of LLMs

has been analyzed from three distinct perspectives, as discussed in [222]. Among

the proposed approaches, embedding-based methods demonstrate characteristics
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closely resembling those of the F ⟨BM-T⟩ model, differing primarily in the specific

architectural and functional properties inherent to each respective LLM.

As shown in Section 7.6, it becomes evident that models designed for training

with extensive datasets and large text corpora exhibit significant limitations when

applied to interday stock data. These limitations suggest that the inherent struc-

ture and training paradigms of such models may not be well-suited for capturing

the temporal dependencies and volatility patterns characteristic of financial time

series data at this granularity.

Moreover, the decoder-only GPT-2 model has proven entirely unsuitable for this

particular application. This outcome may be attributed to GPT-2’s autoregressive

decoding strategy, which fails to effectively model the complex temporal relation-

ships required for accurate interday predictive tasks. Conversely, both the LLaMA

and TransformerXL models have demonstrated promising performance in this con-

text. Notably, LLaMA emerges as the only proposed adapted model that consist-

ently yields reliable results for interday stock data. This suggests that LLaMA’s

architecture and training objectives align more effectively with the characteristics

of financial time series data.

Using Stock2Sentence-ASMs, the most promising approach to adapting LLMs as

foundation models for time-series processing, specifically for quantitative stock

time series, is proposed.

The tokenization method proposed in Section 7.8 proves effective in several re-

spects. The MLM pretraining results, presented in Table 7.76, are noteworthy:

approximately 80% of input tokens represent numeric values (with the remaining

20% corresponding to ticker or feature symbols). Consequently, the model accur-

ately reproduces a substantial proportion of regression targets, which is all the

more impressive given that each digit has to be guest by the model.

However, the SMP token-based sequence modeling approach entails inherent risks

due to its substantial computational demands, limiting feasible values for the num-

ber of |C| and ∆t. As previously emphasized, incorporating a broad cross-section

of stocks is essential for capturing inter-stock correlations; a small C risks omitting

stocks that are crucial for predictive performance. This constraint explains the
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high variance across runs and indicates that performance differences may result

from stock set sample selection.

Overall, pretraining exerts minimal positive impact on forecasting accuracy. The

findings in Section 7.8.2 align with the authors previous one in [222].

The tokenization-based models achieve high F1-scores and show numerical stabil-

ity, suggesting robustness to non-stationarity.

Recurrent / Long Architectures as Cutting Edge NLP Research Direc-

tion As discussed in Chapter 1, the processing of long sequences remains a major

challenge in NLP, particularly in the context of transformer-based architectures.

To address this issue in the domain of financial time series, the use of recurrent

transformer architectures as a potential solution when applied to stock market

data was proposed (Section 6.8). This approach allows to formulate hypotheses

about the extent to which SF models may benefit from recent advances in NLP

research.

In [224], improved SPP performance associated with an increased context window

size ∆t for high-frequency (1min interval) stock data was observed. However, this

improvement could not be replicated in the experiments in Section 7.5.2, with the

new padding methods or for longer interval datasets, such as 60min or interday

data (see Table 7.32), which are also characterized by significantly smaller data

volumes. The limited availability of data, as further discussed in Section 8.3,

appears to play a critical role in this context. Nevertheless, neither SMP nor

SPP models consistently demonstrate improved performance across all temporal

intervals with larger values of ∆t (see Tables 7.31 and 7.32). A notable advantage

of some proposed recurrent models, such as the F ⟨L-M⟩ in Table 7.18, is the time it

takes to converge to untrained data after a few epochs. In particular, Table 7.19

also shows the difficulty in pretraining some models to process the recurrence, if

one compares the performance with F ⟨T⟩.

Hierarchical Processing For SMP, however, the results are more nuanced (see

Table 7.15 and Table 7.3). No consistent superiority of the CWRNN models

over the baselines can be identified across all time intervals and metrics. On
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interday and 60min data, performance differences between both model classes are

minimal, with neither clearly outperforming the other. While the CWRNN models

occasionally show a higher F1-score, the baselines tend to yield slightly higher

values for accuracy and MCC, particularly on the 1min data. This suggests that

the benefits of hierarchical processing might be less pronounced for the SMP task

or are overshadowed by other modeling aspects such as temporal granularity or

class imbalance.

Taken together, these findings support the hypothesis that hierarchical temporal

modeling contributes to performance improvements, especially for SPP tasks at

coarser time resolutions. This makes sense because many of the periodic patterns

mentioned in Chapter 1 occur mainly at coarse granular frequencies.

Research Question 2

To What Extent can Adapted Strategies Contribute to Improving Predic-

tion?

Figure 8.2: Research Question 2 as posed in Section 1.2.

To address this question, it is necessary to consider to what extent performance

can be improved through adapted strategies, such as pretraining, the impact of

pretraining on convergence time, the adaptation of CLM in various forms, and

overall performance enhancement.

Performance Gain by Pretraining The first question to address is to what

extent the absolute performance of ASM and F ⟨T⟩ models can be improved through

pretraining.

SMP is considered first for the F ⟨T⟩ models. The proposed F ⟨J-M⟩ model is identi-

fied as the strongest in SMP without pretraining in interday as seen in Table 7.33.

Performance surpasses baseline accuracy (clearly) on the test set only through pre-

training, as shown in Table 7.39. This is considered positive, as pretraining enables

the model to learn the actual SMP task instead of overfitting to the validation set.

However, the F1-score decreases, a phenomenon observed frequently, suggesting

that pretraining tends to support the use of winner and loser stock strategy (see
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Section 8.3) for some models. The opposite can often be observed in the ASMs

discussed below. The proposed F ⟨E-M⟩ model is slightly negatively affected by

pretraining, although it still belongs to the stronger SMP models even without

it. The F ⟨E-M⟩ model is also the only one that delivers relevant and table-worthy

results on the 60min runs with pretrained data. Although the accuracy remains

comparable in Table 7.40 to the non-pretrained version in Table 7.34, the F1-score

improves significantly. This stands in contrast to the interday results and is partic-

ularly noteworthy due to the dataset imbalance described in Chapter 4. The same

phenomenon is also observed for the F ⟨J-M⟩ model in 1min runs, where accuracy is

comparable (slightly lower), but the F1-score again increases (cf. Table 7.35 and

Table 7.41).

The SPP task is now addressed for the F ⟨T⟩ models. As shown in Table 7.36,

extremely strong performance is achieved for interday runs on the validation set,

which could not be matched in any other model configuration. On the test set,

the performance remains acceptable. As before, test set performance (which is

presumably less similar to the training set distribution) is improved through pre-

training, as presented in Table 7.42, especially for the F ⟨J-M⟩ model, while it slightly

decreases for other models. For the intraday 60min data, a similar pattern to SMP

is observed, and the performance on pretrained data in Table 7.43 yields a slightly

better F1-score compared to Table 7.37. For the 1min data, little to no improve-

ment is observed, with slight degradations due to pretraining (cf. Table 7.38 and

Table 7.44).

For SMP, pretraining shows a slightly positive effect with the appropriate models,

particularly in handling imbalanced classes in intraday data, or no effect overall.

For SPP, a similar pattern is observed, though more pronounced for interday data

and less so for intraday data (or not at all for 1min data).

When compared to ASMs, the proposed F ⟨T⟩ models generally lag slightly in terms

of classification performance. In certain cases, such as the 60min SMP task, trans-

former models like F ⟨E-M⟩ or F ⟨J-M⟩, when equipped with MPM/MFM pretraining,

can approach or even match the accuracy levels achieved by ASMs such as T5 or
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BERT. Although the performance improvements observed in transformer mod-

els remain slightly below those of the top-performing ASMs, the results clearly

underscore the consistent benefits of pretraining across both model families. A

persistent limitation of transformer architectures, however, lies in their lack of

structural extensibility.

In SMP interday without pretraining, ASMs generally show better performance,

especially on the test set, which implies that better generalization is achieved (cf.

Table 7.51 and Table 7.33). The best ASM runs, such as BERT (with |C| = 10),

GPT-2 (with |C| = 10), and T5, cannot be matched by F ⟨T⟩.

The effects of pretraining on ASMs (cf. Table 7.51 with Table 7.58 and Table 7.59)

are found to be positive for interday runs on the S&P-500 dataset, used as

the pretraining dataset in all cases except for the (already extremely strong) T5

model. A particular impact is observed on the F1-score, which helps to coun-

teract class imbalance and allows the actual SMP problem to be solved without

employing the winner-loser stock strategy. When pretraining is conducted on the

All(2010:) dataset, performance gains are found to be mixed. Except for the Trans-

formerXL model or BERT (with |C| = 80), improvements are observed either

on the test set or the validation set. The T5 model still remains unmatched in

terms of performance. The F1-score generally improves in every case, although

not as strongly as with the other pretraining. The performance on pretrained in-

traday runs is considerably weaker than on interday runs and has been discussed

in Section 8.3. Significant improvements are observed only for TransformerXL.

For the SMP intraday runs, attention is first directed toward the 60min runs

that were pretrained on the 1min intraday runs (cf. Table 7.60 and Table 7.53).

For BERT, the F1-score is found to be very poor except for the |C| = 10 runs.

As with interday runs, pretraining on the same dataset appears to help guide

the training in a more favorable direction, which proves to be highly effective for

BERT. Overall accuracy is also improved when compared to the +Lp-based model.

Dataset bias is better resisted, and the learned weights seem to represent a (local)

optimum, preventing SGD from converging in a direction overly influenced by

dataset bias. For the decoder-only models GPT-2 and TransformerXL, a notable
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increase in F1-score by approximately 0.1 is observed in both cases, although

absolute performance remains poor. In both cases, however, accuracy is negatively

affected. The encoder-decoder T5 model again achieves the best performance,

with +Lp yielding even better F1-scores, and pretraining resulting in a level of

performance not reached by any other model, aside from the LLaMA model with

|C| = 10. For the All(2010:) dataset, performance mostly decreases, and the F1-

score in particular suffers (see Table 7.61). In cases where performance increases

are observed, such gains rarely exceed 0.02 accuracy points. It is presumed that,

due to the volume limitation of All(2010:) , the SGD process fails to reach a region

where the stabilizing effect of pretraining becomes active.

For 1min intraday runs, a similar pattern is observed with All(2010:) , and both

accuracy and F1-score degrade (cf. Table 7.62 and Table 7.55). The rare per-

formance gains are deemed negligible. For the other pretrained 1min runs in

Table 7.63, a similar trend is noted, and the outcome cannot be attributed to the

All(2010:) dataset. It is presumed that the volume of data at 1min intervals is so

large that any influence of pretraining becomes irrelevant. For the models not

listed in Table 7.63, no stable results could be produced.

Attention is now turned to SPP: SPP is generally found to be significantly more

stable, and recourse to λp is seldom required. The F1-score is observed to be bet-

ter than in SMP, which is particularly noteworthy given the high class imbalance

in intraday runs. This is likely because the MSE loss is implicitly more suitable

for SMP than BCE. The sMAPE is found to be worse in almost all cases after

pretraining, which can be attributed to the fact that, as explained in Chapter 4,

the SMP metrics accuracy, F1, and MCC are optimized, as these are ultimately

decisive; regression metrics are therefore mentioned only in passing. In the in-

terday runs that were pretrained on the S&P-500 dataset (see Table 7.70),

SMP performance deteriorates in nearly all cases, and no usable result could be

obtained for LLaMA. GPT-2 is the only exception, showing a significant benefit

from pretraining and achieving unmatched SMP performance on interday data.

Pretraining on the All(2010:) dataset yields a similar result (with GPT-2 again be-

ing the only model to benefit substantially); where performance gains occur, they
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are marginal.

For intraday runs at 60min (see table 7.71 and Table 7.72), performance is mostly

slightly worse, and any gains are negligible (compared with those in Table 7.66).

On 1min data without pretraining (see Table 7.66), post-pretraining perform-

ance is poor for most models, especially after pretraining on S&P-500 data

(see Table 7.73), with BERT performing particularly poorly. After pretraining

on the All(2010:) dataset, only T5 achieves slight performance improvements (see

Table 7.74).

In summary, pretraining is not found to be beneficial for SPP in the ASMs. Per-

formance gains are usually minimal, and in most cases, performance is degraded.

This may be due to the fact that pretraining is based on an SMP task, and the

dynamics learned during this process only confuse the model in the SPP context.

It is also possible that SMP performance is already so strong that no additional

improvement is achievable through pretraining.

The choice of the pretraining dataset is crucial in this regard. A broad dataset

such as All(2010:) particularly enhances T5’s generalization capabilities, whereas the

S&P-500 dataset enables more targeted improvements in the SPP task for

models like GPT-2 and TransformerXL. Pretraining effectively reduces dataset

bias and stabilizes class predictions, which is reflected in significantly improved

F1-scores.

Notably, BERT and TransformerXL exhibit more stable classification and regres-

sion performance in interday and 60min environments when pretrained on ap-

propriate financial data. Furthermore, pretraining accelerates convergence, as

market-related patterns are already internalized beforehand, significantly redu-

cing training time. Despite these advantages, performance improvements remain

incremental, reflecting the ongoing volatility and noise in market data.

SMP tends to benefit more from pretraining (especially with interday data or

slight class imbalance) than SPP. For intraday data (60min), models can benefit

particularly in terms of the F1-score when pretrained. The accuracy often re-

mains unchanged or drops slightly. At 1min, few advantages can be seen. ASMs

typically show higher baseline performance than F ⟨T⟩-models and benefit more
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clearly from pretraining. F ⟨T⟩-models can benefit from pretraining in SMP (e.g.

F ⟨E-M⟩, F ⟨J-M⟩), though they are generally somewhat more inconsistent than ASMs.

For SPP, the benefit of pretraining in F ⟨T⟩-models is generally limited.

Using S&P-500 as a pretraining dataset often works better than All(2010:) ,

due to larger data volume and higher representativeness. Overall, it appears that

pretraining is more worthwhile for SMP (for both F ⟨T⟩-models and ASMs) than

for SPP. For SPP, the gains are generally smaller—some models even lose per-

formance, possibly because pretraining does not align well with the target task or

because SPP performance is already strong and leaves less room for improvement.

Despite these findings, the ASMs remain the preferred choice for further analysis,

given their stronger baseline performance, clear benefits from pretraining, and

greater extensibility. They also exhibit characteristics more closely aligned with

foundation models such as LLMs.

Convergence Time through Pretraining One of the key considera-

tions—alongside the general linguistic capabilities and universality of LLMs—is

their convergence time. Pre-trained LLMs enable resource-efficient fine-tuning,

often requiring only a handful of epochs to achieve satisfactory performance. This

paradigm has contributed to the great popularity and success of LLMs in the ML

community as the resources required for the use of speech models in specific con-

texts have been drastically reduced. This is an important step towards making

NLP more accessible [254].

Whether the sole motivation is represented by this, or whether an impact on

performance is generally exerted by foundation models, is rarely debated, and a

mixed picture is presented by the few existing studies; cf. [89] and [254] in NLP,

or [83] in CV. Nevertheless, the paradigm has become so deeply rooted in SOTA

practices that the debate can be considered irrelevant. However, based on our

previous results, it is found that performance in the SF setting is not necessarily

benefited by pretraining. This raises the question of whether at least convergence

time and resource requirements can be reduced.

Applying the proposed paradigm to SF presents unique challenges. In SF tasks,
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expected model accuracy tends to remain low, which in turn constrains the op-

timization window before overfitting occurs. Consequently, practitioners must em-

ploy very small learning rates and extended training durations to avoid overfitting,

thereby negating some of the convergence-time advantages.

By leveraging pretraining in ASMs, the time required to reach a local optimum can

be substantially reduced. However, in SF models this rapid convergence is not ne-

cessarily desirable. Because the optimization window is extremely narrow—owing

to the low expected accuracy pre-trained models quickly reach a suboptimal local

minimum or overshoot it altogether. In practice, it can therefore be more effective

to train the model from scratch, since fine-tuning a pre-trained model often pre-

vents it from finding the true optimum within this constrained Θ space. For the

approaches and datasets presented in this thesis, the training times are also limited

and are not comparable to those of classical LLMs, which is why the convergence

time is not a worthwhile argument under the paradigms presented here.

Another illustrative example is shown in Figure 8.3. On MPM pre-trained ASMs

typically reach a reasonably good local optimum very quickly, as noted previ-

ously. However, continued training beyond this point—often for many additional

epochs—yields only marginal improvements toward what appears to be a global

optimum. Critically, the loss curve provides no clear signal that further training

is beneficial, and the practitioner cannot easily determine when to stop. Con-

sequently, without careful monitoring, training may either stop too early or con-

tinue longer than necessary with minimal benefit.

In summary, although pretraining typically reduces convergence time, this ad-

vantage is not necessarily desirable in SF applications. The expected overall

performance, optimization landscape, and numerical characteristics of SF differ

substantially from those of NLP tasks. Consequently, focusing too much on rapid

convergence can reduce model effectiveness, as the constrained optimization land-

scape and distinctive loss dynamics in financial forecasting make convergence time

less important than achieving robust generalization and general performance. The

phenomena shown here also apply to S2V embedding based runs, which tend to

produce ‘destroyed’ Θ even faster.
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Figure 8.3: Example of longer finetuning for better performance.

CLM Adaption The adaptation of CLM must unfortunately be regarded as

largely unsuccessful. With the exception of the integration of textual data—which

was only briefly explored in the experiments and is discussed in more detail in

Section 9.2—the inclusion of QMSEs as Π yielded no positive effect on model

performance, consistent with the findings in [223]. Moreover, masking within the

transformer architecture, which in some cases employs Π = X(t′>t) or Π = M(t) (as

defined in Section 7.2), also failed to improve results and can likewise be viewed

as an adaptation of CLM. Overall, time series data does not appear to be suitable

as a modality for the CLM adaptations. It works better if the time series has

a formatting that is more optimized for the spatio-temporal aspect, as in the

Stock2Vec/ASM MPM.

General Performance The simulation of the best-performing models, presen-

ted in Section 7.7 and illustrated in Figure 7.18, indicates that ASMs can produce

profitable trading strategies. Notably, these models demonstrate strong suitab-

ility across different time intervals: they perform exceptionally well on interday

data—where markets are generally more efficient—yet exhibit comparatively weak

performance on 1min data. A particularly important observation, first noted in

Section 8.1, is the pronounced discrepancy between results on the validation set

and those on the test set. This divergence underscores the challenges of model
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Figure 8.4: QMSE emergency switch for ASM 1min validation set trading.

generalization in high-frequency forecasting contexts and highlights the need for

careful evaluation when assessing real-world trading applicability.

It is particularly noteworthy that, given the turbulent market conditions under-

pinning the evaluation period, it is unsurprising that a 1min forecasting model

would have incurred losses during this interval. It can be argued that under such

exceptional conditions, the model would not have been used in automated trading.

Nonetheless, to quantitatively identify these anomalous periods, an additional ex-

periment was conducted—presented in Figure 8.4—in which the QMSE metrics

and d, as proposed in [223], were employed as a emergency-mechanism. Using a

threshold parameter, intervals during which trading would have been suspended

based on the condition θQMSE ≤ d are highlighted in red. θQMSE must be carefully

chosen. If done so, the visualization indicates that several critical periods could

have been avoided. It must be emphasized, however, that ASMs are not risk-free

models and would have incurred losses during certain market phases. Whether

these models—in their current form—are suitable for deployment in live trading

is addressed in Section 8.3.

The observation that the sMAPE of most SPP models—especially those discussed

in Section 7.7—is much better than that of naive benchmarks, while accuracy

against SMP remains relatively low, suggests that these models can approximate

future price magnitudes well but struggle with directional prediction. This limit-

ation diminishes their utility as trading models for individual stocks. However, it
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concurrently implies that forecasting objectives which depend primarily on mag-

nitude rather than direction—such as volatility indices (e.g., VIX ) or other

market-wide volatility measures—may represent more suitable targets for these

modeling approaches.

Research Question 3

How Can Effective Foundation Models for Quantitative Stock Data be Built?

Figure 8.5: Research Question 3 as posed in Section 1.2.

Architecturally, this thesis develops a foundational model for processing quantit-

ative equity data, represented by the proposed ASMs. The requirements of both

this thesis and the extant literature (cf. [82]) have been satisfied. The model has

been pretrained on a diverse array of heterogeneous datasets (All(2010:) ) as well as

the S&P-500 dataset. Due to its modular architecture, the proposed model

is extensible: additional data types, asset classes, time resolutions, or equities can

be added without changing the existing model or trained weights.

The pretraining phase is primarily constrained by the quantity of available train-

ing data, as evidenced by the performance disparities observed between the

All(2010:) dataset and the higher-frequency S&P-500 datasets in Section 7.7.1.

The applicability of this model to downstream tasks is demonstrated via imple-

mentations of SMP and SPP; although these implementations are functional, the

literature contains substantially better performing models for these specific tasks.

As noted in Chapter 1, the objective of this thesis is to investigate the success of

adapting NLP models to quantitative stock data, rather than to develop SOTA

SPP or SMP models. In this context, the proposed ASM algorithm constitutes a

successful adaptation of LLMs to quantitative stock data.

The suitability of SMP and SPP as downstream tasks for ASMs should be recon-

sidered based on the overall findings, as the broader predictive usefulness of ASMs

remains uncertain. ASMs, as foundational models, exhibit characteristic proper-

ties analogous to those of LLMs in NLP: namely, the pretraining plus fine-tuning

paradigm can be conceptualized as ‘general representation learning → downstream

task’. This paradigm manifests in NLP through reduced convergence times on
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downstream tasks. The main idea is that pretraining performs much of the task-

agnostic representation learning—referred to here as ‘general language understand-

ing’ [220]—so that later fine-tuning requires relatively few updates. Consequently,

the ASM framework demonstrates that this two-stage training paradigm, inherent

to LLMs, can be successfully transferred to quantitative stock data.

In the ASMs, an analogous approach to the criteria delineated in [62], namely

‘learning indicators and interrelationships → time-series indicators and predic-

tions’ is posited. Initially, general quantitative representations are learned during

pretraining (MPM and the use of pretrained S2V embeddings) prior to any down-

stream task. The first component of the optimization problem—representation

learning—can be clearly demonstrated by the strong pretraining performance, em-

bedding evaluations, S2V model assessments, and model evaluations on SMC and

SPE tasks. For the specific objective of time-series forecasting, ASMs prove condi-

tionally useful but do not consistently outperform alternative SPP/SMP architec-

tures. Although pretraining typically yields modest improvements in forecasting

performance (as shown in Figure 8.2), these gains are quantitatively minor. Con-

vergence analyses indicate that the core relationships have already been intern-

alized during pretraining, enabling SMP/SPP models to build upon this founda-

tional knowledge. However, given the limited scope for further optimization and

the relatively weaker predictive performance of the ASM architecture in forecast-

ing tasks, the value of employing ASMs specifically for SMP and SPP may be

questionable.

As in NLP, this architecture is expected to act as a foundational model within

larger frameworks and various downstream tasks. Several of these potential ap-

plications are described in Section 9.1.

8.3 Limitations of the Research

Key limitations of the research and their potential impact on results and inter-

pretation are outlined in the following.
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Dataset Bias and Model Behavior The robustness of the presented results

should be critically assessed, especially in terms of their relevance to real-world

applications. A key issue, discussed earlier in Section 2.3, concerns the presence of

missing (non-moving) data in the stock datasets. A linear interpolation strategy

was adopted to mitigate this issue and impute missing values. This decision was

motivated by the observation that the datasets themselves and, more notably,

the SMP labels exhibit substantial distributional imbalance. This imbalance is

particularly pronounced due to the temporal structure inherent in the intraday

datasets where ∄θ ∈ R :
∣∣∣1T · I(X ≤ θ) · 1− 0.5 · T · |C|)

∣∣∣ ≈ 0 holds true. As a

consequence, the model was trained and also evaluated on data that do not occur

in this form in reality. This issue is less pronounced in evaluation, where data

quality is higher.

The SMP label distribution is partly problematic as non 50/50 distributions must

be strongly regulated during training to counteract the Winner and Loser stock

behaviors (explained in the following) and |{i|ŷ[i]=0}|
|{i|ŷ[i]=1}| ≈ 1 holds true. Separate

experiments with loss and accuracy metrics only for the moving element were also

carried out.

In particular, simpler models (less pronounced in ASMs) may develop a relatively

trivial yet effective strategy for predicting SMP developments. This strategy is re-

ferred to as the ‘Winner and Loser Stocks’ strategy in the following: This strategy

is characterized by consistently predicting the same outcome for certain stocks.

For instance, so-called "winner stocks" such as BRK.B or SEA are invari-

ably predicted with yBRK.B = 1 and ySEA = 1, respectively. Conversely, "loser

stocks" such as DBK or BAYN are consistently predicted with yDBK = 0

and yBAYN = 0.

Despite the simplicity of this strategy, this strategy performs well, and simpler

models often fail to exceed it. In some cases, the model even exhibits a tendency

to assign the same label to all stocks. SF differs from other ML areas, such as

NLP, in one relevant respect. Due to the inherent complexity of the task and the

anticipated low accuracy, it is possible for ‘defective’ models — for instance, models

with fully exploded gradients or Θ that exhibit severe overfitting and predict only



Chapter 8. Discussion 242

a single label — to still achieve comparatively strong, or even performance levels

unattainable by other models.

However, as discussed in Chapter 1, because SF serves as an auxiliary task and

the primary goal is to develop a meaningful approach that could be transferred

to other areas of ML, certain targeted constraints are introduced in this context.

Specifically, the use of models for which
(∑|C|

i=1 I(ŷi>0.5)∑|C|
i=1 I(ŷi≤0.5)

)
≫ 1 holds is restricted,

and

n((ci, l)) =
β∑

i=1
I(Ŷ [j][i] = l) (8.1)

with

P ∗((ci, l)) = n((ci, l))∑1
l=0 n((ci, l))

(8.2)

and

θ > DKL(P ∗||Q) with Q((ci, l)) = 1
2 · β (8.3)

(with β as mini batch size) holds, in order to prevent the SMP forecasts from being

distributed equally in general, but the most favorable forecast is always made for

each stock separately. This happens especially with all models that are not ASMs

and mainly without normalization. If the normalization from Appendix A.1 is not

used in the ASMs, it can be observed there too.

In both limitations, it is evident that, in many cases, the models could have

achieved superior results, particularly with regard to all SMP metrics. In such

instances, it is challenging to assess to what extent other models — such as those

referenced in Chapter 2 — may have been similarly affected by these phenomena

but it was failed to recognize them. Furthermore, it remains difficult to determine

whether the models have developed a valid strategy, are exploiting a dataset bias,

or merely possess flawed Θ.

Despite these adjustments, certain models still achieve comparatively strong per-

formance with respect to the F1-score. Focusing on the ASM models as foundation

models, noteworthy results are observed not only in the SMP and SPP intraday

runs (see Table 7.58, Table 7.59, and Table 7.67 and Table 7.51 — particularly in

the case of LLaMA) but also in runs where 10 stocks are used as target variables
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and 60 as input features, as shown in Table 7.54.

Among the 1min runs, BERT, as an encoder-only model, demonstrates exception-

ally strong performance both overall and specifically in terms of the F1-score (see

Table 7.55). Overall, BERT appears to be particularly well-suited for predictive

SMP/SPP tasks, as evidenced across multiple instances in Section 7.7. This is

especially true for runs involving a small number of target stocks, as illustrated

for example in Table 7.52. Reason for this might be the predictive encoder-only

architecture.

The F ⟨T⟩ models demonstrate overall solid, yet partly fluctuating F1-scores across

the SMP and SPP tables (e.g., Table 7.33, Table 7.34). Models without additional

pretraining phases (e.g., F ⟨E-M⟩, F ⟨J-M⟩, F ⟨J-C⟩) achieve decent accuracy scores.

The SPP models are usually much better in terms of F1-score (at least in intraday

settings and especially in the ASMs). Pretrained variants (e.g., F ⟨E-M⟩ + Lp or

F ⟨J-M⟩ + Lp in the SPP tables) are capable of partially stabilizing class balance,

yet the effect is very small. In SMP the pretraining has an effect on the F1-

score, especially in the extreme cases (e.g., F ⟨E-M⟩ in the SMP 60min setting,

cf. Table 7.34 and Table 7.40, or in the SMP 1min setting, see Table 7.35 and

Table 7.41).

In direct comparison, the ASM models generally produce more balanced F1-scores

(except for a few outlier models as for example the S2V embeddings in Section 7.7.2

and Section 7.7.3) and are therefore less prone to biased predictions. However,

F ⟨T⟩ models can reach similarly high F1-scores and remain competitive, especially

at higher frequencies. In particular, the unpretrained F ⟨J-C⟩ model achieves the

highest F1-scores among all transformer variants in the SMP interday setting

(0.505/0.517, see Table 7.33). Similarly, the unpretrained F ⟨J-M⟩ model in the

SPP interday task stands out with F1-scores of up to 0.531 (see Table 7.36).

It should be emphasized once again that significantly better results could have been

achieved across all datasets (in terms of accuracy, F1-score, and sMAPE) if the

phenomena mentioned at the beginning of this section had been ignored. However,

refraining from doing so was deliberate in order to maintain the meaningfulness

of the investigation and avoid obtaining trivial models. Further information can
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be found in Appendix A.5.

Data Volume Limitations The data limitations of stock market data are

frequently discussed in academic literature (see Chapter 2 and especially Sec-

tion 3.0.4). Given the limited availability of historical data, the relative youth of

modern stock markets, and the lower recording frequency of interday data points,

direct comparisons between interday and intraday data are currently not feasible.

It would be useful to test whether performance differences stem from lower market

efficiency at 1min or simply from larger data volume. Experiments exploring these

aspects will become feasible only in the distant future.

Experiments have also been conducted with 22 ETFs from 12 countries (see Ap-

pendix A.2) for all models in this thesis, but found that the shorter time periods

that have to be used, since the first data for the ETFs are mostly in the late 2010s,

affect the training of the data-hungry models worse than the marco economic in-

formation of the ETFs can compensate.

The observed underperformance of the All(2010:) dataset in the MPM of the ASMs

can plausibly be attributed to the limited data volume, as evidenced by the out-

comes observed in the 1min and 60min runs of the S&P-500 compared with

the S&P-500 interday runs. A possible explanation for this phenomenon is

provided in [177].

In [177], a GNN is constructed under the premise that stocks DWT or similar

methods, along with the application of individual threshold values to define the

edges in the adjacency matrix for the GNN between stocks, is not advisable. The

authors argue that the number of edges adheres to a power-law distribution in

node degree, as described in [198], which becomes more prominent with increasing

|C|.

Although ASMs lack explicit edges, it is assumed in the subsequent discussion

that an ASM with comparable capabilities to a GNN in representing inter-stock

correlations would similarly increase in complexity as the number of edges in the

corresponding GNN grows. Furthermore, [177] substantiates that the number

of nodes associated with a given stock scales according to a Zipf distribution,

specifically with complexity O(k · |C| · log(|C|)), implying that not every stock
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must be connected to every other stock, thereby circumventing the complexity of

O(|C|2).

Building on this premise, representing interrelationships in the MPM remains a

substantial challenge, as the complexity continues to scale by a factor of k ·log(|C|)

as |C| increases, with all such relationships still requiring representation in the

model.

Given the limited training data available for the All(2010:) dataset, as detailed in

Chapter 4, the model likely suffers from significant underfitting in this regard.

This is particularly pronounced because the model must not only account for indi-

vidual stocks but also represent all corresponding relationships. This observation

is further supported by the experimental results in Section 7.7.1, where setting

ζ = 100 clearly improved performance.

One effective strategy to address data scarcity involves pretraining on larger data-

sets, such like those containing 1min intraday data. Similar to LLMs, which

perform well on small fine-tuning datasets due to their extensive prior knowledge,

time series models also benefit from this approach. TransformerXL and GPT-2 ex-

hibit clear improvements in performance when pretrained on high-frequency data

/ higher data volumes, as illustrated in Table 7.59, whereas LLaMA produces less

consistent results. Notably, GPT-2 shows increased sensitivity to hyperparameter

configurations despite sometimes converging early, as evidenced in Table 7.51. As

can be seen in Table 7.59 for SMP, pretraining on 1min intervals usually results in

a deterioration in performance (these often do not achieve baseline performance

and are therefore not tabulated). This may be attributed to the optimization

process already being advanced (including wrt. downstream tasks), leaving little

room for improvement and causing rapid overfitting. This would indicate that

models exhibiting very strong MPM performance are primarily affected.

Furthermore, the stabilizing effect of pretraining on both MCC and F1-scores is

confirmed in the 60min setup (Table 7.60). However, performance gains are not

uniform and vary depending on the model backbone and the pretraining frequency

(1min vs. 60min data). Both the high-volume 1min pretraining (see Table 7.63)

and the more temporally aligned 60min pretraining offer a measurable advantage
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over models trained from scratch, as indicated by improved final accuracies and

reduced standard deviations.

Application Settings and Barriers In practical applications, predictive mod-

els for forecasting stock prices exhibit several inherent limitations that may con-

strain their applicability and profitability beyond theoretical validation. First,

real-world transaction costs—including order fees, bid-ask spreads, and slip-

page—reduce gross returns but are often insufficiently considered in academic

backtests (as in [66]). This issue is particularly pronounced in high-frequency

trading strategies, where cumulative costs may entirely offset model-generated

profits.

Second, even with high predictive accuracy, models can experience periodic draw-

downs or long loss periods, which may discourage both institutional and private

investors. Such phases weaken the risk–return profile and reduce confidence in the

model’s stability.

Third, inference time constitutes a critical bottleneck: In latency-sensitive domains

such as high-frequency trading, even millisecond-level delays may render predicted

signals obsolete before they can be executed. Recent deployment notes stress

model compression (distillation/quantization), domain-adaptive prefix-tuning, ex-

plicit slippage/impact modeling, and Order Management System/Market Risk

Management integration as prerequisites for production use [289].

Fourth, data quality emerges as a pivotal factor. While backtesting typically relies

on cleaned and fully labeled datasets, real-time market data often contain miss-

ing values, inconsistencies, and anomalies. These issues can significantly impair

prediction accuracy. Importantly, this challenge is not mitigated at lower trading

frequencies: even here, elevated inference latency can lead to a temporal mis-

match between signal generation and order execution, resulting in missed alpha

opportunities.

Furthermore, as shown in Section 7.7.5, the model exhibits a poor MDD, implying

a generally high level of risk exposure.
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These limitations align with recent survey findings highlighting the open chal-

lenges of data reliability, regulatory considerations, interpretability, and out-of-

sample validation for LLM-driven equity research [287]. Real-world deployment

of otherwise robust SF models is constrained by operational, technical, and data

limitations.

8.4 Ethical Considerations

All experiments were conducted strictly for research and demonstration purposes.

No live trading interfaces were deployed, no automated orders were placed, and

no market interventions were performed. Any discussion of potential applications

is exploratory and must not be construed as financial advice. The work uses only

offline evaluation and simulated scenarios.

In line with the intent of IEEE Std 7001 on transparency of autonomous and in-

telligent systems ,[283], this work follows the principle of stakeholder-appropriate

and testable disclosures. Data statements regarding sources, representativeness,

and biases are documented in Chapter 5, while model cards summarizing pur-

pose, training setup, evaluation metrics, and limitations are reflected throughout

Section 4.2 and Section 5.2. Preprocessing steps, evaluation windows, and met-

rics are consistently reported in the methodology chapters to support auditability

and replication. Taken together, these measures align with 7001’s emphasis on

evidencable transparency across the system lifecycle.

Following the lifecycle guidance of IEEE Std 7003 on algorithmic bias consider-

ations ,[284], this study establishes a bias profile through the reporting of class

distributions and dataset pathologies in Section 5.2, the enforcement of strict tem-

poral splits in Section 4.2, and robustness checks across different market regimes

in Section 4.3. Mitigation strategies such as thresholding and calibration are dis-

cussed within the experimental context, while the limitations section (Section 8.3)

reflects on residual biases and dataset constraints. Since no deployment was per-

formed, monitoring requirements remain out of scope; nevertheless, the prerequis-

ites for future deployment are outlined in accordance with the 7003 standard.
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No new human-subjects data were collected. The research relies on publicly avail-

able and/or contractually licensed market data and, where applicable, publicly

available text subject to the respective terms of use. Personally identifiable in-

formation was neither intentionally processed nor inferred, and features were ag-

gregated at the instrument or market level. Proprietary third-party datasets are

not redistributed and are used solely under license. To enhance transparency and

reproducibility, the project maintains concise data statements describing sources,

selection rationale, representativeness, known biases, and usage rights, and model

cards summarizing purpose, evaluation conditions, limitations, and appropriate

use.

Financial data exhibit non-stationarity, regime shifts, and sectoral or regional

imbalances. To mitigate methodological artifacts, the experimental design enforces

strict temporal separations between training, validation, and test sets, employs

robust baselines, and evaluates across multiple market phases. Checkpoints are

reused when feasible, and efficient training schedules are favored to reduce the

environmental footprint without compromising scientific validity.

This dissertation is a research artifact and was not deployed in regulated produc-

tion settings. Any real-world deployment would require adherence to applicable

regulatory frameworks, independent validation, comprehensive backtesting across

regimes, stress testing, ongoing monitoring, and governance consistent with estab-

lished model risk management principles. Predictive models and market repres-

entations can be misused, and although this work omits deployable trading agents,

real-time signal endpoints, and tooling intended to influence prices, the presented

models and techniques are sufficiently foundational and general that their useful-

ness to abusive applications cannot be categorically ruled out.
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Future Work and Conclusion

This chapter outlines avenues for future research and reflects on the broader im-

plications of the presented findings. Building on the contributions of this disser-

tation, it highlights potential applications of ASMs beyond the core experiments,

discusses fine-tuning scenarios in financial time series analysis, and concludes with

an overall assessment of the work.

9.1 Alternative Use Cases as Future Finetuning

Tasks

This section discusses a range of potential downstream applications for ASMs.

These use cases illustrate how pretrained models can be adapted through fine-

tuning to address domain-specific objectives in financial time series analysis.

Overview of Alternative Use Cases Pretrained LLMs in NLP undergo rig-

orous evaluation across an extensive spectrum of downstream tasks, with novel

benchmark challenges continuously emerging to assess their generalization cap-

abilities. As articulated in [82], the foundational model should encapsulate this

generalized market understanding. Consequently, all subsequent use cases should

be conceptualized as (domain-specific) fine-tuning tasks.

249
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A concept introduced in the authors prior work [223] involves the application of

ASMs over short temporal windows for the identification of rapid market disrup-

tions, such as flash crashes, and the detection of anomalous market conditions.

This aligns with the conceptual framework proposed in [278], where Time Series

Anomaly Detection is discussed as a potential pretraining objective within the

TSFM models. Furthermore, [278] explores additional applications, including time

series classification, both long- and short-term forecasting, as well as Few-Shot and

Zero-Shot forecasting. The latter can be realized either implicitly through domain

shifts in stock market data or as an explicitly defined task.

Moreover, potential extensions of this framework include applications in risk-aware

capital management and portfolio optimization (see Section 9.1), alongside the

SDM task (see Section 9.1) or the Lead-Lag Strategy as introduced in [82], which

revolves around trading two assets where the price movements of a ‘leading’ asset

are expected to influence those of a ‘lagging’ asset.

ASM Based Market Simulations Given the robust performance observed in

the MPM task, it can be inferred that an ASM achieves high classification accuracy

when provided with a market C and the corresponding sliding window X, under

the condition that two disjoint substructures Ẋ and Ẍ exist such that Ẋ, Ẍ ⊴ X

and Ċ ∩ C̈ = ∅ holds and one of these windows is known i.e. estimated. As

an initial configuration, Ċ may be defined as the subset of stocks within which a

(potentially high-risk) investment is intended, constituting the portfolio of interest.

Conversely, C̈ represents the subset of stocks for which there exists either a strong

certainty regarding a future movement or a concern regarding a potential future

movement. A reliable method for estimating these subsets with enough precision

to reduce risk is needed. Concretely, in ASM based MPM models PẌ(t+ω)(X =

I(t)(Ẋ(t) > Ẋ(t+ω))) is computed.

Furthermore, the modular and extensible architecture of ASMs allows Ċ ∪ C̈ ̸= C.

This property is especially relevant in practice, as it recognizes the impossibility of

accurately predicting the dynamics of the entire market C, while allowing a focused

analysis of sector-specific effects. Such a structural flexibility is advantageous, as

market participants are frequently more concerned with the behavior of a specific
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industry rather than the aggregate market. This assertion is further substantiated

by the (relatively) strong empirical performance demonstrated by the MPM models

using the ζ-approach, as discussed in Section 7.7.1.

Beyond the selection of an appropriate subset C̈, the most critical aspect is the

model’s capability to generalize to the SMP labels, specifically

P{I(t)(Ẍ(t−j)>Ẍ((t−j)+ω))}∆t

j=0

(
X = I(t)(Ẋ(t) > Ẋ(t+ω))

)
(9.1)

, which has to be tested in future research. Alternatively, the tolerance for

PẌ[i,j]+ϵi,j
(X = I(t)(Ẋ(t) > Ẋ(t+ω))) should be examined, i.e. if regressive val-

ues are estimated but they deviate from the real, exact future values and are

therefore noisy.

This formulation is particularly relevant, as estimating directional movements is

inherently more feasible than predicting precise regression values. A secondary

yet equally significant consideration is the sensitivity of the model’s performance

to variations in νM and ∆t. Specifically, determining the upper and lower bounds

for these parameters while maintaining predictive efficacy is crucial, as it directly

impacts the number of data points required for estimation.

Formally, this challenge can be framed as the optimization problem

min
∆t

max
νM

ν∗
M , ∆t∗ s.t.: L ≤ L∗ (9.2)

for future research.

ASM based Risk Modeling and Portfolio Optimization Additionally, a

prospective portfolio optimization algorithm inspired by the foundational prin-

ciples of Markowitz [153] is proposed. As demonstrated in [183], ML models can

be effectively utilized for portfolio optimization. The general approach works by

imposing either a predefined minimum expected return µ or an upper bound on

risk ς. In this context, these parameters are redefined independently from their

original mathematical formulations in [183] to align with the specific modeling

framework. Each stock ci ∈ C is assigned a corresponding portfolio weight wi,
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collectively represented as the weight vector w ∈ R|C|. The portfolio weights are

subject to the standard constraint 1T w = 1.

The expected return µ is derived from the predicted relative returns. Notably,

absolute returns are abstracted from, and both long and short positions are inher-

ently considered. Formally, µ = wT abs(ŷ) is defined, where ŷ can be generated

by any arbitrary ML model—including ASMs—or derived from human-based fore-

casting. Now ς is redefined accordingly. Instead of employing the covariance of

returns as in the original Markowitz formulation, the risk is expressed in terms of

two ASM-based components as

ς = λe ·
|C|∑
i=0

|C|∑
j=i+1

wi · wj ·
eT

i · ej

∥ ei ∥ · ∥ ej ∥︸ ︷︷ ︸
1)

+λs · s︸ ︷︷ ︸
2)

. (9.3)

The first term 1) represents an enhanced, ASM-based formulation of stock de-

pendencies, where ei can be defined either as E[i] or as its scaled variant

utilizing F ⟨FEW⟩, derived from predicted (or estimated) or historical returns.

This approach provides a significantly more granular representation of complex

variances—particularly within a temporal context—compared with conventional

covariance-based risk measures.

The scalar s in 2) corresponds to the risk output generated by the MPM method.

This risk measure is defined as 1T s = s, and s[i] = −y[i] · tanh(r̂i) with

F ⟨ASM⟩
y∀j ̸=i

: X 7→ r̂i. In the vocabulary-based approach, the logits associated with the

position for stock ci can be directly utilized to obtain a confidence measure. An

alternative approach would involve defining a confidence coefficient that quanti-

fies the minimum proportion of correct predictions required to maintain statistical

reliability.

Doc2Vec for Risk Management As previously outlined in [223], QMSEs ex-

hibit significant potential for applications in both risk management and portfolio

optimization. In this context, instead of employing QMSE-based distance metrics

d as a regularization term in the learning process for Lq-reg—as discussed in Sec-

tion 6.7.2—these metrics can be leveraged to quantify the risk associated with a
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given temporal epoch within a portfolio optimization framework.

To accommodate this approach, the constraint 1T w = 1 may be relaxed, analogous

to the extensions of the Black-Litterman model introduced in [155]. This relax-

ation allows for the allocation of a higher proportion of capital to cash holdings

during periods of elevated market risk (i.e. d ∝ (1T w)−1), rather than committing

it to investments.

Alternatively, this risk-aware portfolio adjustment strategy can be implemented

through trading simulations, similar to those employed in [54] and [66] for SF.

These simulation-based approaches offer an empirical framework for evaluating

the impact of QMSE-driven risk measures on portfolio allocation strategies.

SDM The task of SDM is proposed as a downstream task, a relatively underex-

plored approach within the financial forecasting domain. Rather than attempting

to predict precise stock values, this methodology focuses on determining a prob-

able value range for stock movements. This approach is rarely explored in the

existing literature. A notable implementation of this strategy can be found in

[157], which employs distribution predictions across a diverse portfolio comprising

31 assets, including 9 ETFs. SDM can be implemented as an initial fine-tuning

step by extending the F ⟨CLS⟩ weight matrix to match the parameters required by

the chosen distributional approach. In the case of Gaussian modeling, for which

preliminary experiments have already been done for this thesis, this can be real-

ized by defining WCLS ∈ Rξ×2·|C|. Here, the first partition of ŷ corresponds to µ⃗,

whereas the second partition is allocated to σ⃗.

Analogously, the Weibull distribution—parameterized via WCLS ∈ Rξ×3·|C| to ac-

commodate λ, θ, k—or the gamma distribution, which necessitates the parameters

k and θ, can be effectively incorporated. These distributions enable the model-

ing of directional tendencies concerning one side of the actual value xt
i, thereby

providing an estimate of movement confidence.

Such an approach is also applicable to risk assessment. Using the Gaussian distri-

bution as an illustrative example, the directional position (long or short) can be

inferred based on µ⃗i. Risk exposure can be quantified by classifying predictions

with most probability mass on the loss side as high risk. This risk measure can
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be formally expressed as the proportion of the distribution area residing on the

‘incorrect’ side as

wi ∝
(∫ µ⃗i+3·σ⃗i

µ⃗t
i

φµ⃗i,σ⃗i
(a)da+ 1

)−α

or wi ∝
(∫ µ⃗t

i

µ⃗i−3·σ⃗i

φµ⃗i,σ⃗i
(a)da+ 1

)−α

. (9.4)

Alternatively, the expected return can be redefined as

ŷi ←
∫ µ⃗i+3·σ⃗i

µ⃗i−3·σ⃗i

φµ⃗i,σ⃗i
(a) · (µ⃗i − a · sign(µ⃗i)− µ⃗i · (1− |sign(µ⃗i)|))da (9.5)

using the Gaussian distribution as an example again.

Decoder Approach for ASMs As outlined in [224], various methodologies

for leveraging the generative capabilities of most LLMs have been proposed. How-

ever, in contrast to other research approaches, the intention is to continue utilizing

these models for predictive forecasting (or for generative predictions with a shortly

constrained temporal horizon). This decision is motivated by the considerations

discussed in Chapter 2, particularly the observation that even short-term predic-

tions with ω = 1 exhibit suboptimal performance. Notably, [110] addresses the

rationale for multi-day predictions by noting the regulatory requirements imposed

on institutional investors. Specifically, it states that financial regulators require a

liquidity horizon of at least ten days for institutional investors to sell risky stocks,

a rule meant to prevent major market price disruptions.

An alternative approach is proposed in which the model, when generating pre-

dictions for short forecasting horizons, autonomously determines for which ci pre-

dictions should be made, thereby selecting instances where it exhibits higher con-

fidence. Formally, the decoder is defined as F ⟨D⟩
ρ 7→ B̃ ∈ Rξ×l. In the context

of LLMs, B̃ is typically processed through a linear transformation with a weight

matrix of dimensions ξ̃ × |Ṽ |, followed by a softmax activation. During training,

each component of the output is mapped to a corresponding word token using

the cross-entropy loss function (fCross-Entropy), whereas in autoregressive inference,

token selection is performed via (multinomial) sampling based on the computed

logits.
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Figure 9.1: Sketch of the proposed generative approach.

For the SF models, this framework is extended by employing vocabulary-based

models, wherein the linear projection layer F ⟨G⟩ is defined with a weight mat-

rix WG ∈ Rξ×(|C|·2+2). This formulation accounts for each stock and move-

ment individually while additionally incorporating an [EOS] token and a [PUNC]

token. A straightforward approach could involve defining the target variable as

Y ∈ {0, 1}(θ+1)×(|C|·2+2), initialized as a zero matrix with the exception of

Y

[
i, f

(
X

(t+1+([ i
|C| ]))

i mod |C|

)]
= 1 (9.6)

where f(x(t)
i ) = I(t)(x(t)

i > x
(t+1)
i ) · |C| + i, with the final position reserved for the

[EOS] token.

Additionally, [PUNC] tokens may be interspersed between different time steps t,

though empirical evaluations indicate that their inclusion does not yield notable

benefits. Consequently, for ω = 1, this approach offers no conceptual advantage

over the previous methodology used in this thesis. However, for ω = 2, 3, . . . , θ it

facilitates a generative modeling strategy that incorporates an extended historical

horizon. This formulation closely parallels the structure of conventional generative

text generation tasks in LLMs, as illustrated in Figure 9.1.

As introduced in [224] an alternative and potentially more effective approach in-

volves allowing the model to autonomously determine for which stocks predictions

should be generated, incorporating only these into the loss calculation. To prevent

the model from consistently producing excessively short or minimal predictions,
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non-selected instances could either be excluded from the loss function or penalized

with a minimal regularization term.

Initially, methods were explored in which the model was granted complete free-

dom to generate a token at each position while simultaneously self-assigning token

representations corresponding to specific company predictions. However, this ap-

proach resulted in highly unstable model behavior.

A more robust strategy is to compute predictions over a time horizon θ, where

the total sequence length is given by l = |C| · θ. Each company ci and time step t

is then assigned a fixed position within this sequence. For SMP, the vocabulary-

based approach is subsequently employed while also computing l̂ ∈ (0, 1)l with σ

activation, which quantifies the confidence level associated with each prediction.

Subsequently,

LGen = 1
l
· fCross-Entropy(Ŷ [i], Y [i]) · l̂[i] + λl · (1 + 1T · l̂)−1 (9.7)

is defined, which enables the model to assign lower confidence to specific points

either within the loss function or its predictions, thereby allowing for uncertainty

estimation. To prevent the model from systematically applying this mechanism to

all predictions, a posterior regularization term enforces a constraint that encour-

ages the overall confidence to remain as high as possible.

Experiments with this method have been done on interday data. A major challenge

lies in the exceptionally high standard deviation in performance, which can be

attributed to the inherent current instability of the approach. Another issue is that

the model sometimes assigns very different confidence values across runs (which is

desirable), while in other cases, the values stay almost uniform. This inconsistency

should be examined in future work. Moreover, determining an appropriate value

for λl is particularly challenging, as it strongly depends on the current selection

of C.

However, when a stable model is obtained, the predictive performance across mul-

tiple future time steps is promising. Specifically, for the T5-based model, SMP

accuracies ranging between 50.5% and 51.0% can be achieved. Furthermore, the

model’s predictive stability can be maintained for up to 13 trading days ahead.
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9.2 Further Future Work

Future work should focus on ASMs as foundation models, reflecting their role

as the main contribution of this dissertation. Nevertheless, numerous underlying

concepts and, in particular, the downstream applications are transferable to the

other methodological frameworks proposed in this thesis. The proposed avenues

for future investigations include; ideas derived from established literature, the

expansion of (pretraining) datasets, the incorporation of fundamental (T/TST)

data sources (e.g., multimodal models in NLP), and the adaptation of the ASM

methodology to broader classes of multivariate time series domains. Accordingly,

this section is structured into four distinct subsections, each dedicated to one of

these key aspects. The exploration of additional fine-tuning tasks and further use

cases of the foundation models have been already discussed in Section 9.1.

9.2.1 Specific Future Model Investigations

Several potential enhancements to the models discussed in this disserta-

tion—identified in the literature but not explored in detail—warrant further in-

vestigation. The approach introduced in [134] advocates for the utilization of

multiple prediction heads, dynamically switching between them based on identi-

fiable trading patterns. This methodological refinement is broadly applicable to

various model architectures and, in particular, could be effectively integrated with

the dedicated prediction heads WASM-TP per ci as outlined in Section 6.11.2.

A conceptually related approach was introduced in [213], where the authors argue

that, within investment funds, multiple experts contribute distinct insights before

a final decision is reached. This decision-making process is subsequently mirrored

in ML pipelines through the integration of diversified or differently initialized

models. A similar strategy could be employed in the models presented in this

thesis.

Furthermore, the adaptive strategy proposed in [130], which involves categorizing

market conditions into extreme and normal states and subsequently employing
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distinct model components for each scenario, represents another promising direc-

tion for future model improvements. Doc2Vec models could serve as identification

mechanisms for these states within the proposed framework.

The normalization approach proposed in [141] was incorporated only to a limited

extent, leaving room for a more comprehensive examination of de-stationary at-

tention mechanisms in future research endeavors. Additionally, [168] introduces

alternative normalization techniques specifically tailored to stock market models,

which dynamically adjust to the underlying data. Initial findings regarding their

practical implementation are also discussed therein. Findings on latent-noise mod-

els [84] and critiques of deterministic SF [33] indicate useful directions for further

study. Specifically, this includes the exploration of SDM as a fine-tuning task, as

elaborated in Section 9.1, as well as the increasing relevance of non-deterministic

modeling approaches in light of advancements in quantum computing.

To further enhance the performance of the TM task or to develop time series

embeddings that exhibit sensitivity to subsequent trends for executing NSP task

adaptions, the ideas introduced in [223], which builds upon the framework of [264],

could be further refined. The idea here is an approach that adopts an alternative

perspective by initially generating embeddings in which future price trends func-

tion as implicit labels. Although these labels are not directly used for prediction,

they are essential for shaping the spatial arrangement of embeddings in the vector

space, where the Frobenius norm is the main metric used to enforce this structure.

Furthermore, the Frobenius norm may also be leveraged in alternative configur-

ations within TM, particularly by ensuring that temporally adjacent time series

maintain close proximity within the TM vector space. Alternative approaches

were presented in [48] for individual assets, but can possibly be adapted for whole

stock trends.

In the majority of the experiments, the primary focus was on the OHCLV feature

set, with the exception of the technical indicators discussed in Section 6.11.2.

However, expanding the feature space to incorporate additional indicators, such

as the RSI or SMA, as well as fundamental data that extend beyond the OHLCV

representation, could prove beneficial for improving model performance.
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Tokenization remains a promising direction for future work. This method, with

digit-level tokenization, offers the potential to enhance the numerical stability of

models in the context of non-stationary time series data. Potential refinements

include summing embedding vectors to reduce input sequence length, exploring

alternative tokenization strategies, or leveraging different LLMs or processing ar-

chitectures. In Chapter 2, several approaches that embed time series data into

LLMs have already been outlined, offering a foundation for further exploration in

this direction.

Meta-learning remains a promising direction and has been explored in [264] [150].

9.2.2 Diversifying the ASM Data

Building upon the methodologies proposed in [82] and [45], the integration of more

data sources and perspectives—from ‘macro (e.g., markets, policies, economy),

meso (e.g., industries), to micro (e.g., stocks, companies)’ [45] levels as outlined

in [45]—could enhance the model’s performance. A feasible approach to achieving

this expansion involves the pretraining of the ASM on additional datasets. This is

facilitated by the model’s intrinsic scalability and adaptability. However, prior to

such an extension, it is imperative to resolve the challenge discussed in Section 7.7

and systematically evaluate the impact of incorporating an expanded set of assets

within C while ensuring the preservation of high pretraining task performance.

The extended dataset may encompass a broader spectrum of financial instruments,

asset classes, markets, and temporal intervals.

During fine-tuning, tasks such as high-frequency trading, LOB processing, and

long-term market trend prediction should be assessed to determine where ASMs

perform better or worse. The availability of extensive datasets would enable fur-

ther in-depth investigations, facilitating a more granular understanding of the

model’s applicability across diverse financial domains.

9.2.3 Fundamental Data

The incorporation of fundamental data, as Π can be done in three distinct ways.
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Firstly, quantitative ASMs may be integrated into a multimodal framework, ana-

logous to their application in NLP, where numerous LLMs serve as components of

V+L models. This approach can be extended to the models outlined in Section 2.3

by using the ASMs to process the TS component within the architecture or its

pipeline. An alternative approach entails representing fundamental data across

diverse types and modalities in the form of embeddings, as eΠ, which are incor-

porated as A(t) ⊙Π (as defined in Section 6.11.2). Furthermore, Π = F ⟨E⟩(f(X)),

derived from Section 6.7.1, remains applicable in this context, as supported by

[223].

Additional Π Information Vector Integration in the ASMs Due to the

modular and expandable architecture of ASMs, the integration of diverse data

sources into the model is theoretically feasible. This includes T data, where ASMs

can function as TST models, as well as other numerical fundamental variables such

as interest rates and currency exchange rates. Consequently Π enables the ASM

to approximate the properties of CLM while operating as an adapated language

model.

Furthermore, T data extracted from sources such as social media or financial

reports can be incorporated through end-to-end NLP pipelines, e.g. using the

model from [221]. A practical advantage of the ASM structure is its temporal

integration: textual information is included only when relevant events (e.g., a

tweet) occur, rather than at every time step. In experiments, the dataset from

[221] and the ACL-18 dataset were processed with FinBERT, and the resulting

embeddings were fed end-to-end into a T5-based ASM. However, the observed

performance gains were marginal. This outcome is likely attributable to the limited

size of the dataset and its relatively short historical coverage. Future research

should further investigate these limitations and explore potential enhancements to

the methodology.

Building upon the methodologies proposed in [4] and [88], an alternative approach

involves the integration of heterogeneous quantitative data across multiple tem-

poral resolutions within time series models. Specifically, data sampled at different
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intervals—such as interday (e.g., previous-day values), 60min, and 1min frequen-

cies—can be simultaneously incorporated, with the model receiving explicit em-

beddings that encode the temporal granularity of each input (serving as Π).

Moreover, following the framework outlined in [88], structured numerical data,

including exchange rates, futures contract prices, and ETF prices, can be period-

ically introduced into the model to enhance its predictive capabilities.

Adapting V+L Models As previously discussed in [220], fundamental mod-

els/TST models, provide a suitable conceptual model for comparison with V+L

models within the domain of NLP. The integration of NLP with other modalities

is an active area of current research. One of the most widely studied approaches

is the fusion of NLP with visual modalities.

In the context of this doctoral research, stock market data is conceptualized as a

linguistic modality and subsequently processed using NLP models. Accordingly,

textual inputs in these models can be replaced with stock data to form a text-to-

image (T2I) setup, where the image represents the secondary modality in V+L

models. Conversely, V+L models are inherently designed to process textual data

within the textual modality. Accordingly, text processing can be retained in the

textual stream while stock market data are added as a second modality. This

approach can be conceptualized as Stock-to-Image (S2I), wherein stock data is

interpreted as an additional modality analogous to the image component in con-

ventional V+L models.

The feasibility of utilizing image-processing architectures for stock data analysis

has been previously demonstrated in [74]. In the initial experiments, the X-VLM

[262] model from Zeng, Zhang, and Li is being adapted. However, future research

endeavors should prioritize the exploration of additional models to further advance

the field. X-VLM is one model from the series of transformer-based V+L models

that have a similar structure. A textual stream is built with transformers and a

visual stream is also built with transformers which are then merged in another

transformer-based section to execute a downstream task.

To establish an initial empirical foundation, a series of preliminary experiments

utilizing interday stock data are proposed, leveraging the dataset introduced in
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[221]. For the textual stream, both the original textual encoders from the respect-

ive models and FinBERT, as proposed in [252], are employed. Additionally, a

version of FinBERT, as described in [221], is incorporated.

In the Text-to-Image (T2I) paradigm, the image representation is derived from the

pretrained BERT model introduced in [221] which processes textual data as input.

To integrate stock market data into this framework, the stock data undergoes a

linear transformation to an embedding dimension of ξ = 512, ensuring compatib-

ility with the model architecture. Subsequently, the outputs from both streams

are incorporated into the multimodal model, where the textual stream serves as

the query, while the stock data is utilized as keys and values.

There exist multiple methodologies for employing stock data X as the image-

equivalent modality in the visual stream. One proposed approach involves lever-

aging a pretrained ASM, such as the T5-based one. An alternative approach

involves utilizing image processing models for stock data representation. X-VLM

incorporates CLIP and Swin transformer implementations for visual processing.

While these models are originally designed for image analysis, prior research has

demonstrated their applicability to stock data, as shown in [74].

To adapt these models for financial data, |C| is reduced, and ∆t = |C|·F is ensured,

thereby constructing a quadratic image representation. Ideally, both dimensions

should be e.g. 384 to integrate with the standard Swin transformer architecture.

The Swin transformer implementation is capable of processing an arbitrary num-

ber of input channels, denoted as c, which is particularly advantageous when

incorporating X̂ ∈ R|C|×∆t×F instead of the original stock data representation X.

To achieve this, the number of channels is set to c = F = 5, thereby encoding

each feature as a distinct channel within an image representation. Additionally,

experiments were conducted on generating concise summaries of the extended tex-

tual descriptions present in the AV dataset and other financial datasets. These

experiments utilized state-of-the-art summarization models, such as those pro-

posed in [117] and [140]. While an end-to-end summarization approach could be

implemented, this direction has not been pursued further in the current study.

Additional experiments were conducted utilizing the ACL-18 dataset to further
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assess the efficacy of the proposed models. Empirical results indicate that the

incorporation of T data can enhance interday performance to up to 55%, repres-

enting a significant improvement over the models from this thesis. However, when

compared to alternative models trained on other ACL datasets, this performance

remains suboptimal. A fundamental limitation of SMP/SPP based on textual

data lies in the inherent dependence of predictive accuracy on the degree to which

individual textual inputs align with actual stock movements [54]. Despite these

challenges, the integration of textual data constitutes a promising avenue for future

research. The potential for further advancements lies in three primary directions:

(i) the continued exploration of V+L and multimodal architectures presented in

this work, (ii) the refinement and extension of the novel methodologies introduced

herein, and (iii) leveraging the modular extensibility of ASM frameworks, as dis-

cussed in the preceding section, by incorporating textual data as additional vector

representations eΠ within A(t).

9.2.4 Generalizing NLP Strategies for Multivariate Time

Series Prediction

The idea of deriving general frameworks and strategies from NLP—specifically

transformers—and adapting them for domain-independent problems such as mul-

tivariate time series was first introduced by Zerveas et al. [263]. As outlined in

Chapter 2, multiple studies have adopted methodologies inspired by [165] to ad-

dress the challenges associated with multivariate time series modeling. Efforts to

develop universally applicable methods that generalize across various multivari-

ate, time-dependent prediction tasks—and, to some degree, across different do-

mains—have been discussed in [278]. This work specifically references the patching

strategies introduced in [165] for the structured processing of ci. These approaches

leverage non-euclidean structures like relationship graphs, spatial structures, and

patching techniques to enhance temporal sequence representation. Notably, the

contributions of [263] [242] [165] have collectively advanced the development of gen-

eralized strategies for spatio-temporal problem-solving through transformer-based

architectures. Alternative methodologies for handling higher-order representations
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of multivariate time series have been proposed in [170]. Here, the self-attention

mechanism is adapted to accommodate three-axis tensor representations by em-

ploying a Low-Rank Approximation with Kronecker Decomposition. The capture

of dependencies in sequential data could be improved by combining these tech-

niques with the proposed ASM-based method.

Nevertheless, a close conceptual link between these methods and core NLP prin-

ciples is demonstrated in this thesis. Within the proposed framework, a general

approach is now outlined that could potentially be transferred to other multivari-

ate time series processing tasks. It should be emphasized that approaches that

did not work in the examples (e.g. TM in ASMs) may now do so in domains

such as weather forecasting or energy consumption prediction. For the following a

multivariate time series is defined as X ∈ R|C|×T×F with the multivariate variables

ci ∈ C, the time steps t and the features F. For example, ci could now correspond

to different weather stations, F various measured physical quantities and T the

measured time period.

Meteorological forecasting is used as the example application. For stacked fea-

tures and variables, processing by recurrent or pretrained transformers is straight-

forward. These architectures can take the input data directly, allowing training

through established methods such as masking, trend prediction, and trend align-

ment—techniques that have proven robust across domains, though with limited

flexibility. A key advantage of the ASM architecture lies in its inherent extens-

ibility. New meteorological stations can be integrated without full retraining or

discarding previously learned spatial information. A critical aspect in this con-

text is the determination of optimal values for ∆t, which are expected to exhibit

significant variability across different domains.

Nevertheless, despite the increased complexity, their application remains advant-

ageous due to the numerous benefits delineated in Chapter 8.

For the effective utilization of ASM architectures, it is advisable to employ the C-

CBOS and X-CBOS algorithms to construct domain-specific, contextualized vector

representations of the relevant variables—such as meteorological observation sta-

tions—within the embedding matrix E. This approach is especially relevant given
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the inherent complexity of spatial relationships among variables, as highlighted by

[245]. Two primary methodologies can be employed in this context. First, a slid-

ing window approach can be utilized to process variable sequences, incorporating

one or more features to facilitate regression-based forecasting or movement pre-

diction. Alternatively, multiple variables can be integrated to classify or estimate

one or more attributes of a target variable. For instance, a classification model

may utilize historical and future temperature observations spanning a one-week

period to estimate the temperature on a specific day. Similarly, meteorological

data from multiple weather stations on a given day can be aggregated to infer the

temperature at a station that is masked.

The generated embeddings serve as a foundational representation for input into an

ASM architecture. To establish a coherent temporal context, a sliding window is

applied to the time series. The spatial relationships among ci ∈ C are encoded by

concatenating the corresponding (contextualized) embeddings at each time step

within the sliding window. To preserve temporal ordering, positional encodings are

incorporated, facilitating the model’s ability to distinguish between different time

steps. For instance, at a given time step, meteorological data from all available

weather stations are concatenated in a structured manner and arranged according

to the defined sliding window size.

Analogous to positional embeddings, temporal dependencies between features are

encoded through learned shifting vectors (i.e. different interval granularities).

Furthermore, the measurement data of each weather station are embedded as

learned feature vector representations (i.e. using F ⟨FEW⟩), functioning as shifts

on the respective station-specific embedding vectors. Indicator correlations are

also covered here. These structured sliding window representations can then be

processed by the ASM in two primary ways: (i) for predictive tasks, or (ii) within

a decoder-based architecture to generate future states.

A generalized framework is established by letting the ASM process (pretrained)

contextualized embeddings for spatial dependencies, representing temporal inform-

ation with learned shifts, and distinguishing time steps via positional embeddings
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and flattening. The generalized approach to using time series in ASM-based found-

ation models is illustrated in Figure 9.2. One possibility not illustrated here is the

integration of Doc2Vec-adapted embeddings (by reconstructing inputs from dense

vector representations) in order to provide macro-level information—such as cli-

mate context in the case of weather data.

In this thesis, the applicability of this method in the domain of financial time

series analysis, specifically in modeling stock price data, has been demonstrated.

By leveraging the ASM framework, it has been shown that pretrained contextual-

ized embeddings can enhance the capture of intricate interdependencies between

different assets, market conditions, and temporal trends.

Given the versatility of ASMs in processing multivariate time series data, it is

anticipated that this approach can be successfully extended to a variety of other

domains, including meteorology, healthcare, and engineering, where sequential

data plays a crucial role in decision-making and forecasting. Further adaptations

from the NLP area for time series processing, especially with regard to foundation

models, are hoped for. It is also hoped that the findings will encourage further

research and experimentation in this direction, leading to advancements in time-

series modeling across diverse application areas.
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Figure 9.2: Sketch of the general approach of using ASMs as foundation
models for time series data.

9.3 Summary of the Main Results and Contri-

butions

In this dissertation, a comprehensive experimental strategy was carried out to

transfer key concepts from NLP to the field of quantitative financial time series

analysis. The study was motivated by a significant gap in the existing literature

regarding the use of NLP strategies, models, and findings in other related do-

mains. This gap was primarily reflected in the lack of generalizable, extensible,

and pretrained models capable of capturing both spatial relationships and tem-

poral dependencies in large-scale financial datasets. To the best of the authors

knowledge, this thesis is the first to address this issue by proposing a class of

models referred to as ASMs.

These models were inspired by the transformer-based architecture of LLMs and

were designed to enable the adaptation to various markets, temporal resolutions,
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and application domains. Furthermore, this work represents the first application

of SMC and SPE, as well as the unsuccessful TM task, as pretraining tasks for

time series—especially in the concrete form later realized in the ASMs. To evalu-

ate the suitability of the pretraining+finetuning paradigm, spatial, temporal, and

spatio-temporal masking strategies were tested in various variations within the

transformer-based F ⟨T⟩ approaches. With regard to representation learning, the

research gap concerning unsupervised SMC- and SME-based methods for contex-

tualized embeddings was addressed in the proposed S2V models. These methods

were tested on both the spatial and temporal axes to generate stock embeddings.

In parallel, document-level embedding methods such as Doc2Vec—referred to in

this work as QMSEs—were adapted. This thesis is the first to introduce contex-

tualized vectors for summarizing macroeconomic situations and evaluating them

distinctly, rather than as part of the model pipeline. These approaches were not

merely used for prediction but aimed to learn comprehensive representations of

market structures. The goal of the foundation ASM models design was to lever-

age pretraining across a wide range of datasets, allowing the models to internalize

inter-stock dependencies and indicator-driven patterns before being fine-tuned on

specific forecasting targets such as SMP or SPP. Further novelties of this thesis

include the use of CWRNNs for quantitative stock data, results for V+L adapted

models, and the application of adapted LLMs on token level or as transformer

backbones where stock data were input as embeddings.

The experimental results and the subsequent analytical discussions yielded several

key insights. First, an embedding vector-based spatio-temporal representation in

the proposed Stock2Sentence approach, combined with modular integration of in-

dicators, temporal windows, and optional embeddings such as S2V and Doc2Vec,

was shown to provide a highly flexible and extensible modeling framework. Second,

the adaptation of masking-based tasks from NLP proved particularly effective for

pretraining on financial time series, whereas direct analogs of NSP—i.e. trend

matching—failed to be adapted. Third, the utility of pretraining was supported

by improvements in classification performance and reductions in overfitting, es-

pecially when diverse datasets were used in the pretraining phase. An important
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insight was that although pretraining encodes parts of the downstream optim-

ization process (i.e. learning of indicator and relationship information) into the

model, it may not lead to performance improvements due to limited optimization

margins typical in SF models. Fourth, the use of context embeddings via Doc2Vec

(QMSE) enabled implicit encoding of macroeconomic conditions, offering potential

advantages for downstream tasks such as risk management and portfolio alloca-

tion. Applications in these areas are suggested by the near-perfect performance

of ASMs as SMC models. It was shown that these embeddings can serve as train-

ing regularizers and, although not always beneficial, can be used particularly in

unstable models. Finally, the combination of ASMs, QMSEs, and S2V repres-

entations was used to present a method for creating foundation models for any

multivariate time series that are extendable, generalizable, and pretrainable, and

may prove useful in other domains.

An empirical validation was carried out across multiple temporal granularities and

datasets (All(2010:) , S&P-500 ), illustrating both strengths and limitations of

the proposed techniques. In conclusion, the foundational paradigm of pretraining

followed by finetuning, which has become central in NLP, was successfully adapted

and validated for application in quantitative finance. A modeling framework is

established and its potential across scenarios is demonstrated, laying groundwork

for LLM/NLP-inspired time-series models that incorporate richer modalities and

aim to improve generalization in dynamic financial settings. All adapted NLP

concepts are listed in Table 9.1 for comparison.
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Table 9.1: Conceptual comparison between NLP and stock forecasting methods

NLP Concept Adaptation for Stock Forecasting

Pretraining text corpus All(2010:)

(Small) Finetuning dataset (interday) S&P-500
Word token embedding Market snapshot X̄

(W2V) Word embedding matrix F ⟨LL⟩

(W2V) Word embedding matrix S2V embeddings
W2V Vocabulary SMC input labels in S2V
LLM context-sensitive embeddings ASM embeddings
CBOW / SG CBOS / Stock-SG
LLM (foundation model) ASM (foundation model)
MLM Masking tasks
NSP TM
Positional encoding Time-step encoding
Next-token prediction (causal LM) SMP / SPP
CLM Π integration (QMSE / T data / fundamental data)
Finetuning / downstream taska SMP / SPP
Zero-shot / few-shot learning Market shift handling
Transformer Encoder/Decoder Transformer for multivariate time series forecasting
Recurrent Transformer Block-recurrent Transformer for large ∆t

(Implicit) Hierarchical models Multi-frequency (multi-timeframe) representation
Documents Market Situations
Doc2Vec (document embedding) QMSEs
Attention mechanism Inter-stock correlation weighting
Global attention Market-wide context modeling

ae.g., summary generation, sentiment classification
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Appendix A

A.1 Normalization Module

For SMP, primary reliance is placed on the normalization module introduced in

[168], which has been reimplemented based on the information provided in the

original publication. This reimplementation was substantially modified to improve

performance within the models and to enhance numerical stability. The adapted

version of the approach is (using the original notation from [168])

β(x)′ = Wβsβ + bβ

β(x)′′ = β(x)′ + ḃβ

β(x)′′′ = β(x)′′−1

β(x) = fln(β(x)′′′)

with ḃ ∈ {ϵ,−ϵ}ξ and

∀i : β(x)′[i] > 0 : ḃβ[i] = ϵnorm ⊕ ∀β(x)′[j] ≤ 0 : ḃβ[j] = −ϵnorm (A.1)

and

x′ = σ((x− α(x))⊙ β(x)) (A.2)

and

x′′ = fln(tanh(((x−α(x))⊙ β(x))⊙ γ(x) · αnorm)) . (A.3)
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A.2 Market data

Since complete market or index data are generally not publicly

available, price trends from ETFs representing the respective mar-

kets have been used instead. The ETFs employed for the dif-

ferent countries are Amundi MSCI France UCITS ETF ,

iShares MSCI Canada ETF , iShares Core DAX UCITS ETF

, iShares MSCI China UCITS ETF , iShares MSCI India ETF

, iShares MSCI Japan UCITS ETF , SPDR S&P 500 ETF ,

Vanguard Total Stock Market ETF , Vanguard FTSE 100 UCITS ETF

, CAC PAR , China PAR , DAX , DOW Jones , FTFX ,

INDX.SAO , MXE , RYJSX , Sensexbees , Zag TRT . The

selection of countries was guided by their gross national product; however, it is

significantly constrained by data availability, as several major economies (such as

South Korea, Russia or Indonesia) are not represented.

A.3 Stock Splits

A stock split is when a company increases the number of its stocks by dividing

existing stocks into multiple ones, typically to make the stock more affordable and

attractive to investors while maintaining the same overall market value1. Vice

versa a reverse stock split is when a company reduces the number of its out-

standing stocks by consolidating them into fewer, higher-priced stocks, typically

to increase the stock price and maintain exchange listing requirements or improve

its perception in the market. A straightforward approach is adopted, whereby a

threshold value is selected as θSplit and if
(

x
(t)
i [4]

x
(t+1)
i [4]

)
≥ θSplit applies, αSplit = x(t)

i [4]
x(t+1)

i [4]

and

∀j : t ≤ j ≤ ∆t, ∀f : 1 ≤ f ≤ F : x(j)
i ← x

(j)
i [f ] · αSplit[f ] (A.4)

are defined.
1https://www.finra.org/investors/investing/investment-products/

stocks/stock-splits

https://www.finra.org/investors/investing/investment-products/stocks/stock-splits
https://www.finra.org/investors/investing/investment-products/stocks/stock-splits
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Since relative returns are used, this is only necessary if the split occurs within X,

but not for the entire X̀. To evaluate the effectiveness of the approach is was ap-

plied to selected stock splits from the S&P-500 , CSI-300 , and DAX-40

. Splits are identified through https://finance.yahoo.com/calendar/

splits/. The approach yielded satisfactory results across these indices.

A.4 SPP Implementation

The non-stationarity of the stock time series poses particular challenges for the

selection of the SPP target variable. Through empirical analysis, it has been found

that predicting relative returns yields the best results for SPP, since the absolute

returns, RLR, max-min normalized prices or the like suffer too much from non-

stationarity. Since these are small decimal fractions, L can become too small to

effectively calculate the weights. A simple yet effective trick is applied in the

experiments, wherein multiplication by the scaling factor αSPP ≫ 1 is performed.

Therefore X̆ ∈ R|C|×∆t×F is defined as the raw OHCLV features without any

normalization. Further the targets for training step j ∼ U(N < T) are defined

as

y[i] = X̆[i, j + ω, 4]− X̆[i, j, 4]
X̆[i, j, 4]

· αSPP ∀i ∈ N < |C| . (A.5)

Since no activation function is applied after the final layer in SPP, arbitrary values

can be predicted and subsequently converted back to prices relative to the original

input. To recover the original target from the relative return or the absolute

predicted price; ŷ
αSPP
· xj

i + xj
i can be used.

A.5 SMP Prediction Distribution

With SMP, the phenomenon can occur that the same movement is always predicted

for many ci across all batches and training instances. The problem, especially for

weaker performing baseline models is that the accuracy achieved cannot necessarily

be surpassed. Although this represents a valid solution, such trivial predictions

are intentionally avoided. Therefore, only predictions whose distribution differs

https://finance.yahoo.com/calendar/splits/
https://finance.yahoo.com/calendar/splits/
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from that of the solution in the validation or test data by no more than ϵ are

included in the evaluation.

Formally, if

∀ci :
∣∣∣∣∣∣
 1
|I|

∑
j∈I

y(j)
i

−
 1
|I|

∑
j∈I

ŷ(j)
i

∣∣∣∣∣∣ < ϵ (A.6)

applies with I being the set of all predictions in the run, it is considered valid run

to compare the performance to the others. The distribution is approximated using

a 50/50 label split across all datasets, enabling the evaluation to proceed without

requiring prior knowledge of the label distribution in the test and validation sets.

To overcome the local optimum in Θ during training, the loss penalty

Lp = 1
|C|

∑
ci∈C

((
β∑

b=0
tanh(λSMP · Ŷ (b)

i ))2 + ϵp)0.5 (A.7)

is applied (with β as the mini batch size) inspired by the hinge loss in order to

force the model to produce weighted/balanced predictions for each stock. The

whole loss is expressed as LSMP ← LSMP + λp · Lp.

A.6 Data Cleaning

Despite all efforts, the problem of missing values becomes more severe as the time

resolution increases—particularly for intraday data, where entire time slices may

be missing. As previously discussed, although the choice between forward filling,

backward filling, and linear interpolation remains a subject of debate, the latter

approach is adopted in this work. Linear interpolation is employed, as backward

filling was found to simplify the SPP task excessively, resulting in unrealistically

high performance. However, time steps where too much data is missing are ex-

cluded to ensure that interpolation remains meaningful. To address this issue, a

relative threshold θmissing is defined: if more than θmissing percent of stocks lack

data at a given time step (e.g., a specific day or time slice), that time step is

filtered out and excluded from use. As this problem predominantly affects older

intraday data from the early 2000s, its impact on the overall evaluation remains

limited.
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A.7 Review System

As in [282], the search is conducted using Google Scholar, focusing on the con-

ferences ACL, EMNLP, AAAI, IJCAI, ICAIF, NeurIPS, and KDD, with the fol-

lowing keywords: ‘stock prediction, market, finance and portfolio’, as well as the

additional NLP-adaption specific keywords (see Section 2.3) and also include the

keywords ‘RNN, LSTM, GNN and Transformer’. In contrast to [282], papers with

fewer than two pages are not excluded. The keyword ‘RL’ is omitted, as it is

not relevant to the scope of the present thesis. However, the keyword ‘portfolio’

is retained, as this PhD thesis—although focused on SF—benefits from its inclu-

sion: on the one hand, portfolio optimization encompasses numerous approaches

relevant to W2V adaptations, Doc2Vec adaptations, and contextualized embed-

dings; on the other hand, many optimization papers refer to methods pertinent

to SMP/SPP tasks. In addition, non-relevant papers were manually filtered to

replace for the automated process of ‘using machine learning to filter papers that

predicted the stock market’ [282]. All papers identified through this method were

screened, as in [282], and those deemed relevant are included in Chapter 2.

A.8 Reverse Function Definition

Reversing the digits is defined as

freverse(z) = (zl, zl−1, . . . , z1) ,

zi =
⌊
z − vi

10l−i

⌋
and

vi =


0 if i = 0⌊

z
10l−i+1

⌋
· 10l−i+1 else

, where l = ⌊log10 x+ 1⌋ holds.
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A.9 Relevance Visualization

A modified relevance visualization, previously presented in [221] and [222] and

originally inspired by [17], is employed. For the masking tasks

R = Ā and ▽A :=
∂ 1

1T M̈1 · 1(F ⟨F⟩(X)⊗M ⊗ M̈)1T

∂A
(A.8)

with

M̈ ∈ {0, 1}dim(X) : ∀i, j : M̈ [i, j] = 1 =⇒

(F ⟨F⟩(X)[i, j] = 0 ∧X[i, j] ≤ 0)⊕ (F ⟨F⟩(X)[i, j] = 1 ∧X[i, j] > 0)

is calculated following the notation of [17].


