

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Ambient Assisted Living - Accessibility -

AW 2 Stefan Meißner 11.12.2007

- Retrospective
- Scenario revision Object localization
- Digging deeper
- Object localization vs. Object recognition
 - NeXus
 - Orientation aid for blind people
- Scenario revision Sound awareness
 - IC2Hear
- Summary

Main targets

- Minimize dependencies
- Transparent and omnipresent assistance
- Improve user interfaces
- Make accessibility happen

Fraunhofer - Gesellschaft - InHaus1

Scenario revision – Object localization

"Lost bottle opener"

Issues

- Indoor positioning via **RFID**
- User interface
 - speech recognition
 - guidance by using (virtual) surround sound
- No map or 3D model available

Digging deeper

Insights gained from interviews with visual impaired persons

- Dealing with
 - unknown areas
 - obstacles
 - noise (e.g. construction site)
- Uncertainty when
 - changes occur
 - meeting unfamiliar people

[www.bsvh.org]

Object localization vs. Object recognition

Localization

- instant search result
- useful for sighted people as well
- searching "the machine's way"

Recognition

- object discovery
- orientation aid
- awareness improvement
 - information for recognized objects
- searching "the human's way"

NeXus

Visualization and Interactive Systems Group (University of Stuttgart)

- Spatial world models for mobile context-aware applications
- Global infrastructure for location independent applications
- Subproject
 "Orientation aid for blind people"

[www.nexus.uni-stuttgart.de]

Orientation aid for blind people

- Interactive localization and recognition of objects using
 - stereo images
 - orientation (inertial sensors)
 - 3D model information
- Initial room localization using conventional W-LAN
- Precise "self-localization"
 - distance measurement
 - appropriate adjustment of the building model

[Hub et al.:2006]

Orientation aid for blind people

- Object identification
- Matching of known and recognized objects
- Transmission of corresponding information

[Hub et al.:2004]

Further features

- Training, recognition and tracking of movable objects
- Virtual navigation areas

"Door to staircase."

"Stair with seven steps upstairs. Banisters to the left and right side. Turn left after the landing."

[Hub et al.:2005], [Hub et al.:2006]

Scenario revision – Sound awareness 🎾

"Child falls and cries"

Issues

- Event recognition
- Locating sound source
- Sound visualization
- Floor plan

IC2Hear - Sound awareness

IC2Hear

Group for User Interface Research (University of California at Berkeley)

- Acoustic event classification system
 - CHIL Project Database
 - 25 noise classes (manually transcribed)
 - 2800 noise instances collected
 - SVM / GMM / HMM classifier
- Prototype
 - Trained with common office sounds
 - Background noises filtered out
 - High quality microphone mounted above desk

[Malkin et al.:2005], [Matthews et al.:2005]

畫

Sound visualization

IC2Hear - Sound awareness

Sound visualization

Symbols / Icons

Spectrograph

[Ho-Ching et al.:2003]

IC2Hear – Sound awareness

When? Where?

History

Map prototype

[Matthews et al.:2006]

- Awareness improvement
 - Sound
 - Vision
- Several approaches
- Integration required
- For disabled and non-disabled

畫

References

- [Hub et al.:2004] A. Hub, J. Diepstraten and T. Ertl: Design and Development of an Indoor Navigation and Object Identification System for the Blind, 2004 - Proceedings of the ACM SIGACCESS conference on Computers and accessibility, Designing for accessibility, Atlanta, GA, USA, 147-152, 2004
- » [Hub et al.:2005] A. Hub, J. Diepstraten and T. Ertl: Augmented Indoor Modeling for Navigation Support for the Blind, 2005 - Proceedings of the 2005 International Conference on Computers for People with Special Needs, Las Vegas, NV, USA, 54-59, 2005
- » [Hub et al.:2006] A. Hub, T. Hartter and T. Ertl: Interactive Tracking of Movable Objects for the Blind on the Basis of Environment Models and Perception-Oriented Object Recognition Methods, 2006 -Proceedings of the 8th ACM SIGACCESS Conference on Computers and Accessibility, October 23-25, Portland, OR, USA, 111-118, 2006
- » [Ho-Ching et al.:2003] F. W. Ho-Ching, J. Mankoff and J. A. Landay: From Data to Display: the Design and Evaluation of a Peripheral Sound Display for the Deaf, 2003 Proceedings of CHI 2003
- » [Matthews et al.:2005] T. Matthews, J. Fong and J. Mankoff: Visualizing Non-Speech Sounds for the Deaf, 2005 Proceedings of ACM SIGACCESS conference on Computers and Accessibility (ASSETS). Baltimore, MD, pp. 52-59, 2005
- Matthews et al.:2006] T. Matthews, J. Føng, F. W. Ho-Ching and J. Mankoff: Evaluating non-speech sound visualizations for the deaf, 2006 Behaviour & Information Technology, 25 (4), 333-351
- » [Malkin et al.:2005] R. Malkin, D. Macho and A. Temko: First evaluation of acoustic event classification systems in the CHIL project, 2005 - Proceedings, 2005 Workshop on Hands-Free Speech Communication and Microphone Arrays

[www.xkcd.com]

Make accessibility happen

Glossary

AAL Ambient Assisted Living

CHIL Computers in the Human Interaction Loop

GMM Gaussian Mixture Model

HMM Hidden Markov Model

RFID Radio Frequency Identification

SVM Support Vector Machine