Ambient Assisted Living
- Accessibility -

AW 2
Stefan Meißner
11.12.2007
Outline

- Retrospective
- Scenario revision – Object localization
- Digging deeper
- Object localization vs. Object recognition
 - NeXus
 - Orientation aid for blind people
- Scenario revision – Sound awareness
 - IC2Hear
- Summary
Main targets

- Minimize dependencies
- Transparent and omnipresent assistance
- Improve user interfaces
- Make accessibility happen
Scenario revision – Object localization

“Lost bottle opener”

Issues
- Indoor positioning via RFID
- User interface
 - speech recognition
 - guidance by using (virtual) surround sound
- No map or 3D model available
Insights gained from interviews with visual impaired persons

- Dealing with
 - unknown areas
 - obstacles
 - noise (e.g. construction site)

- Uncertainty when
 - changes occur
 - meeting unfamiliar people

[www.bsvh.org]
Object localization vs. Object recognition

Localization
- instant search result
- useful for sighted people as well
- searching “the machine's way”

Recognition
- object discovery
- orientation aid
- awareness improvement
 - information for recognized objects
- searching “the human's way”

General subject for AAL systems
NeXus
Visualization and Interactive Systems Group (University of Stuttgart)

- Spatial world models for mobile context-aware applications
- Global infrastructure for location independent applications
- Subproject “Orientation aid for blind people”

[www.nexus.uni-stuttgart.de]
Orientation aid for blind people

• Interactive localization and recognition of objects using
 - stereo images
 - orientation (inertial sensors)
 - 3D model information
• Initial room localization using conventional W-LAN
• Precise “self-localization”
 - distance measurement
 - appropriate adjustment of the building model

[Hub et al.:2006]
Orientation aid for blind people

- Object identification
- Matching of known and recognized objects
- Transmission of corresponding information

[Hub et al.:2004]
Further features

- Training, recognition and tracking of movable objects
- Virtual navigation areas

“Door to staircase.”

“Stair with seven steps upstairs. Banisters to the left and right side. Turn left after the landing.”

[Hub et al.:2005], [Hub et al.:2006]
Scenario revision – Sound awareness

“Child falls and cries”

Issues
- Event recognition
- Locating sound source
- Sound visualization
- Floor plan
IC2Hear – Sound awareness

IC2Hear
Group for User Interface Research (University of California at Berkeley)

- Acoustic event classification system
 - CHIL Project Database
 - 25 noise classes (manually transcribed)
 - 2800 noise instances collected
 - SVM / GMM / HMM classifier
- Prototype
 - Trained with common office sounds
 - Background noises filtered out
 - High quality microphone mounted above desk

[Malkin et al.:2005], [Matthews et al.:2005]
Sound visualization

- Spectrograph
- Symbols / Icons
IC2Hear – Sound awareness

Sound visualization

- Symbols / Icons
- Spectrograph

[Ho-Ching et al.:2003]
IC2Hear – Sound awareness

When? Where?

- History
- Map prototype

[Matthews et al.:2006]
- Awareness improvement
 - Sound
 - Vision
- Several approaches
- Integration required
- For disabled and non-disabled
References

Make accessibility happen

On the Internet, no one knows you're not a dog!
Nor even if you're still the same dog!

[T.V. Raman]
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAL</td>
<td>Ambient Assisted Living</td>
</tr>
<tr>
<td>CHIL</td>
<td>Computers in the Human Interaction Loop</td>
</tr>
<tr>
<td>GMM</td>
<td>Gaussian Mixture Model</td>
</tr>
<tr>
<td>HMM</td>
<td>Hidden Markov Model</td>
</tr>
<tr>
<td>RFID</td>
<td>Radio Frequency Identification</td>
</tr>
<tr>
<td>SVM</td>
<td>Support Vector Machine</td>
</tr>
</tbody>
</table>