Physical Interaction Design - Vision for a visual programming and simulation environment

Sebastian Gregor

INF-M3 - Ringvorlesung (WS 08/09) Department Informatik HAW Hamburg 15. Dezember 2008

Outline

- Motivation
 - Interaction Design Projects
 - Arduino
 - LilyPad
 - Fritzing
- Master Thesis
 - Vision
 - visual programming
 - Simulation
- Risks
- Perspective

- Pentiment Summer Course 2008
 - Wearable Computing / E-Textiles (Eyal Sheffer)

- Cooperation Design Department
 - Master Project "Emotional Tent"

Facts:

- electronic and (wearable) computer are widely available (and cheap)
- new (physical) interaction techniques
- fashion designer put the esthetic point to electronic and computing
- different kind of inputs / sensors
- physical computing:
 - human body as input source
 - use sensors
 - MCU process input
 - MCU controls actors (electro-mechanical devices): motors, servos, lightning

Challenges:

- need to assemble different kind of electronics
- sewing is a problem
- a minority can program micro controller
- disappointing difficulties with installation
- can not take components apart and modify them
- debugging is difficult

Pentiment:

- Gruppen mit 3 bis 4 Studenten
- Erarbeitung eines Konzeptes
- Auswahl von Hardware (was gerade da war)
- Versuch der Umsetzung des Konzeptes in zwei Wochen

• Probleme:

- Interaktive Komponenten erfordern den Einsatz von Mikrokontrollern
- Schwierigkeiten der Abstraktion von Technik bei Designer
- Nicht genügend "Techniker" vor Ort
- Einbau aller Komponenten auf einmal → Problem wo liegt der Fehler
- Keine Zeit für Debuggen vorhanden
- Keine Möglichkeit Elektrische Komponenten oder elektrische Schaltkreise zu verändern → alles fest vernäht
- Schwierigkeiten beim Debuggen (nicht eingeplant)

- physical computing:
 - human body as input source
 - use sensors
 - MCU process input
 - MCU controls actors (electro-mechanical devices):
 - motors
 - servos
 - lightning
 - **....**

- Platforms for physical Computing
 - Handyboard (http://handyboard.com)
 - LogoChip (http://www.wellesley.edu/Physics/Rberg/logochip/distribution)
 - Phidgets (http://grouplab.cpsc.ucalgary.ca/phidget)
 - d.tools (http://hci.stanford.edu/dtools/)
 - Gainer (http://gainer.cc)
 - MakingThings (http://www.makingthings.com)
 - Wiring (http://wiring.org.co/)
 - Arduino (http://www.arduino.cc)

Arduino

- Hernando Barragán (Interaction Design Institute Ivrea) developed
 Wiring in 2003
- small IO Board based on Atmel MCU
- based on Wiring the international Arduino Projekt was launched
- IO Board complete open-source
- can communicate with
 Flash, Processing, Max/MSP,...
- stand alone programming environment based on Processing

Ref 7

Photograph by SparkFun Electronics. Used under the Creative Commons Attribution Share-Alike 3.0 license
[http://www.arduino.cc]

Arduino

- development environment runs on Windows, OS X and Linux
- integrated compiler and communication tools
- C like language (based on Wiring)
- uploading to IO Board by clicking on the upload button
- bootloader on Atmel starts Sketch
- communication throughUSB Serial converter
- environment extendable

```
\Theta \Theta \Theta
                                Arduino - 0011 Alpha
\bigcirc
           百里里
                                                                                  ➾
  Blink
 * Blink
 * The basic Arduino example. Turns on an LED on for one second,
 * then off for one second, and so on... We use pin 13 because,
 * depending on your Arduino board, it has either a built-in LED
 * or a built-in resistor so that you need only an LED.
 * http://www.arduino.cc/en/Tutorial/Blink
int ledPin = 13:
                                // LED connected to digital pin 13
void setup()
                                // run once, when the sketch starts
  pinMode(ledPin, OUTPUT);
                                // sets the digital pin as output
 void loop()
                                // run over and over again
  digitalWrite(ledPin, HIGH);
                                // sets the LED on
  delay(1000);
                                // waits for a second
  digitalWrite(ledPin, LOW);
                                // sets the LED off
  delay(1000);
                                // waits for a second
```

[http://www.arduino.cc]

LilyPad

- microcontroller board designed for wearables
- developed by Leah Buechley Univerity of Colorado 2007
- can be sewn to fabric
- available as of October 2007 from Spark Fun
- fully Arduino compatible
- a lot of different sensors and actors are available

PWM: Pulse-width modulation
(b) UART: Universal asynchronous receiver/transmitter
[The LilyPad Arduino: Toward Wearable Engineering for Everyone]

0

[http://www.cs.colorado.edu/~buechley/]

Fritzing

- open-source initiative
- startet October 2007 University of Applied Science Potsdam
- Elektronic Design Automation Software
- goal: allows the designer to create a finished PCB of an individual circuit

Fritzing

13

Motivation - Summary

- there are a lot of different platforms
- some platforms with development environment
- Arduino with huge community
 - a lot of, projects and examples
 - different tutorial and development tools

BUT:

- need some practice to program MCU
- still to complex for non-programmers
- difficult to debug
- no simulation environment

Vision

A graphical programming and simulation environment:

- allowing non programmers to easily explore physical computing
- for Arduino / LilyPad
- with integrated graphical simulation tool
- possibility to enhance the visually generate program with 'handwritten' code
- stable and simple to use
- using visual programming techniques

Vision

Why visual programming?

- lowering the barriers to programming
- drag & drop commonly used
- easier to take in a lot of information's
- use symbolic of a domain
- easier to change the program
- fixed instruction set

Possible problems:

- multidimensional → can be confusing
- require more space
- less documentation

Vision

- Why is simulation so important?
 - hardware and software design
 - you never know where the problem is:
 - hardware correctly assembled?
 - software fully functional?
 - both together work as expected?
 - **...**
 - often impossible to take components apart and change the design
 - easier for artists to imagine what the final piece looks like

Risks / Perspective

Risks:

- oblique approach to the topic
- Too extensive for one master thesis?
- visual programming inapplicable

Perspective:

- a lot more research necessary
- precise the subject
- project Svenja Keune & Martin Tischmann in summer → first prototype / possible tester

Questions?

