Vortrag im Rahmen der Veranstaltung "Seminar Ringvorlesung"

Thema: **3D Sound und virtuelle Hörwelten mit Stereo Kopfhörern**

Betreuer: Prof. Dr. Wolfgang Fohl

Prof. Dr.-Ing Jürgen Reichardt

Gliederung

- Motivation
- Mensch und Wahrnehmung
- Technik
- Masterarbeit

Literatur

"Soundtrack of your life"

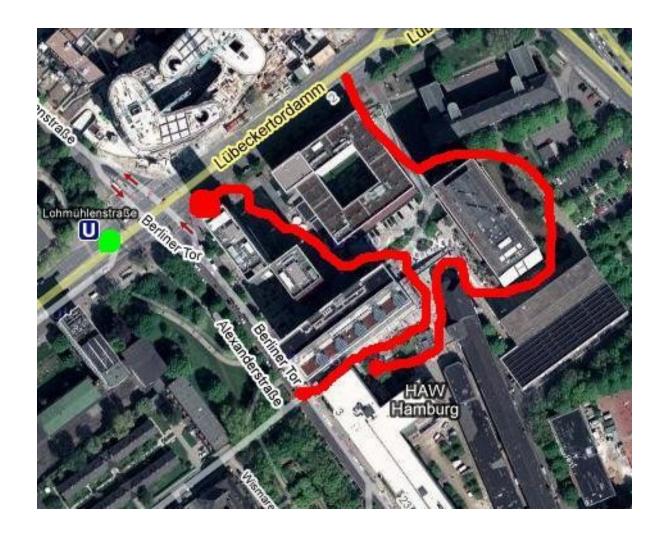
SotA: Überlagerung der Realität mit Musik oder bestimmten Klängen

- Die Realität neu erleben
- Der Realität entfliehen
- Auch ohne visuelle Komponente!

- Bewusste Steuerung des Soundtracks
- Der Computer macht es z.B. Random
- Intelligente Auswahl der Playlist?
- Reaktion auf äußere Einflüsse:
 Regen, Sonne, Kalender, Kontostand

- Erzeugung einer autonomen, virtuellen Klangwelt
- Ergänzung der realen Umgebungsgeräusche durch:
 - Zumischen von Sounds aus einer VR
 - Überlagerung und Verfremdung von Klang (Realitätsbeugung)
- Veränderung des Raumklanges:
 - Das Wohnzimmer zum Bahnhofsklo machen
- Noise oder Sound cancelation:
 - Auslöschen bestimmter Frequenzen oder ganzer Sounds aus den Umgebungsgeräuschen

"Spiel of your life"


IDEE: Spiel mit enhanced 3D Audio!

- 3. Mobiles Alternate Reality / Pervasive Game in einer realen Umgebung
- Surround-Sound aus Stereo Kopfhörern
- Anpassung der Soundlandschaft bei Drehung des Körpers bzw. des Kopfes
- 9. Echtzeit Soundverarbeitung

Andere Nutzungsmöglichkeiten:

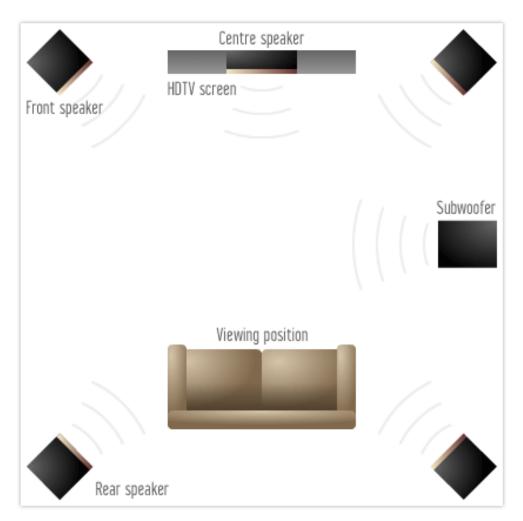
- Einblenden von Nachrichten und Infos zwischendurch? (kommerziell)
- Typische Geräusche von Ladengeschäften
- Einblenden von Werbung (interessante!)

Also:

Supermarktradio für überall!

Mensch und Wahrnehmung

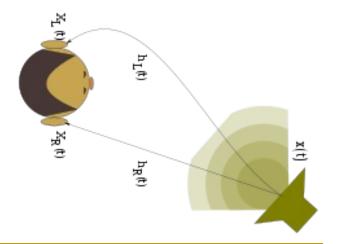
- Klang wird sehr schnell vom Gehirn verarbeitet
- Großer Einfluss auf Stimmungen und Emotionen
- Auge Full HD Aber Ohren Full 3D
- Keine Abschaltung
- Eingeschränkte Kontrolle / Steuerung
- Ohrstöpsel und Kopfhörer sind Normalität
- Audiomanipulation unkritischer als visuelle Manipulation



Technologie: statisches 5.1

Technologie: Software-Tools zur manuellen Soundpositionierung

Technologie: Software-Tools zur manuellen Soundpositionierung

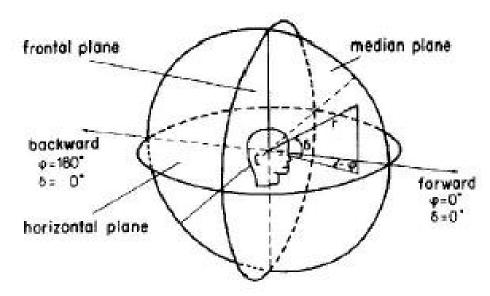

Probleme:

- Hohe Anforderung an Rechenleistung
 - 48.000 Samples pro Sekunde und Kanal
 - Rechenintensive FIR-Filterung (finite impulse response)
 - Jedes Sample muss mit gleichem Aufwand berechnet werden, hohe Filterordnung um gute Qualität zu erreichen
 - Jeweils eine Filterung pro Soundobjekt nötig
 - Echtzeitberechnung mit nicht wahrnehmbarer Latenz unter 10ms
- Interface zu mobilen Geräten

Technologie: HRTF und Filterung

- HRTF Head Related Transfer Function
- Bestimmbar durch Messung von Impulsantworten der Menschlichen Gehörphysik (Kunstkopf)
- Wird abgebildet in mehrere Sätze von Filterkoeffizienten
- Ein Satz Koeffizienten für einen bestimmten Winkel
- Interpolation zwischen Winkeln

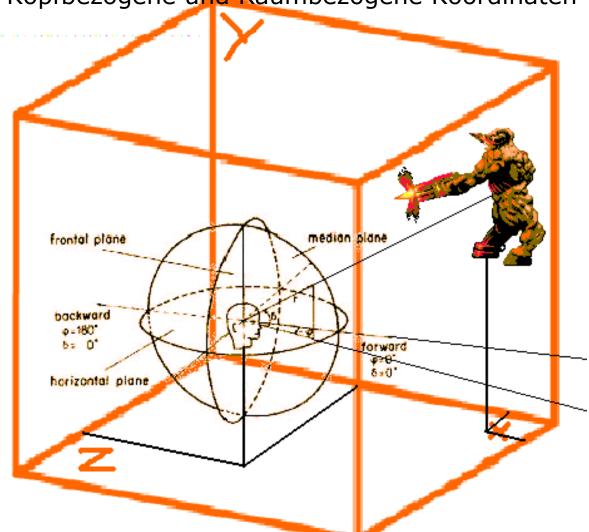
Technologie: Klangpositionierung in VR



- Ein Sound hat eine bekannte Position in der 3D VR
- Der Mensch bzw. Spieler hat bekannte Position in der VR

Problem:

Die korrekte Ortung des Signals ist abhängig von der


Kopfposition bzw. Drehung!

Technologie: Klangpositionierung in VR

Kopfbezogene und Raumbezogene Koordinaten

Monster an x1,y1,z1 Person an x2,y2,z2

Winkel geben die aktuelle Position des Klanges zur Kopfausrichtung an.

Winkel verändern sich mit der Kopfbewegung

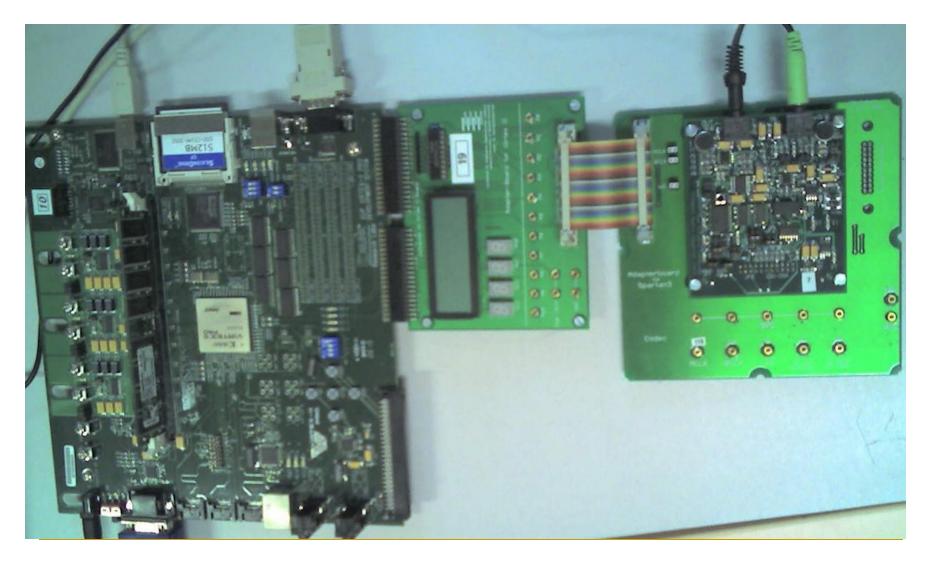
Technologie: Head Tracking

- Ermitteln der Kopfverdrehung im Verhältnis zu einem festen Raumkoordinatensystem
- Kabelgebundene oder Wireless Systeme die anhand eines Fixpunktes in der näheren Umgebung eine Lageänderung feststellen können.

Problem: Outdoor Nutzung kompliziert!

Masterarbeit: Aufgaben

- Implementierung eines Echtzeit-Systems zur Positionierung von Schallquellen in einem virtuellen 3-Dimensionalen Raum
- Klangausgabe auf Stereokopfhörern
- Positionierte Schallquellen sollen bei Bewegung des Hörers und bei Drehung des Kopfes an ihrem "gehörten" Ort bleiben
- Mobilität der Komponenten
- (DAS Spiel)


Masterarbeit: Rahmenbedingungen

- Mobiles System = wenig Rechenleistung,
 Berechnungen nicht in Echtzeit auf Mobilen Devices
- Komplexe Signalfilterung effizient auf dedizierter Hardware
 - -> Realisierung des nötigen FIR-Filters auf einem FPGA
- Ein Microcontroller zur Verbindung aller Komponenten
 - Audio Eingang und Ausgang (Codec)
 - Dateninterface zu einem PC, Handheld oder Smartphone
 - E/A zum FPGA
 - E/A zu Positionssensorik (Bluetooth)
 - Update der FIR Koeffizienten im FPGA bei Bewegung

Masterarbeit: FPGA-System

Masterarbeit: Risiken

- Komplexität der Bluetooth Schnittstellen für MContr.
 - Datenschnittstelle zum mobilen Endgerät
 - Audio Schnittstelle
 - Anbindung des Bewegungssensors
- Anbindung existierender In/Outdoor Positionierungssysteme an den Microcontroller und deren Kompatibilität -> Entfernung zum Sound

Literatur:

- HRTF Measurements and Filter Design for a Headphone-Based 3D-Audio System Bachelorarbeit von Sylvia Sima
- VHDL-Synthese. Entwurf digitaler Schaltungen und Systeme (Taschenbuch) Schwarz/Reichardt
- Wikipedia and Google Pictures