
Paper
Benjamin Vetter, Dirk Westhoff

Code Attestation with Compressed Instruction
Code

Fakultät Technik und Informatik Faculty of Engineering and Computer Science
Department Informatik Department of Computer Science

2

Title of the paper
Code Attestation with Compressed Instruction Code

Keywords
Secure code attestation, compression attack, compressed instruction code, lossless data
compression

Abstract
Available purely software based code attestation protocols have recently been shown to be
cheatable. In this work we propose to upload compressed instruction code to make the code
attestation protocol robust against a so called compresssion attack. The described secure
code attestation protocol makes use of recently proposed micro-controller architectures for
reading out compressed instruction code. We point out that the proposed concept only makes
sense if the provided cost/benefit ratio for the aforementioned micro-controller is higher than
an alternative hardware based solution requiring a tamper-resistant hardware module.

Table of Contents 3

Table of Contents

List of Tables 4

List of Figures 4

1 Introduction 5

2 Adversary Model 6

3 Compression Attack 6

4 Attestation of Compressed Instruction Code 7

5 Execution of Compressed Instruction Code 8

6 Choice of the Data Compression Algorithm 10
6.1 Envisioned Properties . 10
6.2 Candidates . 11

7 Security Analysis 13
7.1 Decompressing the Code Image . 14
7.2 Attacks on the LAT . 16
7.3 Attacks using External Memory . 17
7.4 Replay Attacks . 17
7.5 Node Depletion Attacks . 18
7.6 Other Attacks: DoS . 18

8 Conclusions and Open Issues 18

9 Acknowledgments 19

References 19

List of Tables 4

List of Tables

1 Maximum sizes of bogus code images |C̃I| for sh = 512 bytes and various
applications. 17

List of Figures

1 Derivates of the secure code attestation protocol with lossless data compression
algorithm. 8

2 Micro-controller architecture with compressed code memory and dictionary me-
mory [11]. 9

3 Compression ratios for multi-hop oscilloscope program image of typical com-
pression algorithms for varying blocksizes. 12

4 Amount of decompressed data for varying block sizes during the attestation. . . 13
5 The attacker’s possible compression choices for Ch = PZIP , a varying sh and

a platform capable of reading 1MB/s from program memory. 15

1 Introduction 5

1 Introduction

The evolution of the ubiquitous computing vision towards full-fledged real world applications
faces a diversity of new problems. Besides other issues and due to the fact that for many
applications due to the large number of involved end-devices cost-efficient hardware is an
issue, one can not guarantee that a code image which once has been uploaded on a tiny,
non-tamper resistant device, will always run in a correct and un-manipulated way. Even worse,
it may behave in a Byzantine manner such that the device sometimes behaves correctly and
sometimes behaves incorrectly.

One strategy to control respectively detect such misbehaving nodes in a sensor network, or,
more generally, in an M2M setting, is to run from time to time a challenge-response protocol
between the restricted device and a master device - the verifier - that is sending the challen-
ge.

However, recently it has been shown that purely software based code attestation [8], [7], [9] is
vulnerable against a set of attacks. Basically one can subdivide code attestation techniques into
two subsets: the first class of approaches is using challenge-response protocols in conjunction
with harsh timing restrictions for the restricted device’s response. Otherwise an attacker could
simply load the original code image into the external memory and save program memory for
his own bogus code. Each time the master device triggers the code attestation protocol, for
the computation of the response the cheated prover device reads the original program from
the external memory. Since reading from external memory is much more time consuming, a
timing restriction at the verifier for the duration between sending the challenge message and
receiving the response message can detect this. The second proposed class of countermea-
sures randomly fills empty program memory to avoid that such free memory space can be
used to infect the device with bogus code. In their landmark work [3], Castelluccia et al. ha-
ve shown that both types of aforementioned countermeasures can be circumvented. Later we
provide more details on this. The rest of the paper is organized as follows: Section 2 introduces
the adversary model. Section 3 describes the so called compression attack the attacker can
perform to break recently proposed code attestation protocols. In Section 4 we propose our
countermeasure to deal with compression attacks and in Section 5 we give insights how to
execute compressed instruction code as necessary requirement for this approach. Section 6
discusses suitable compression algorithms and in Section 7 we provide the security analysis
of the proposed solution. Conclusions and open issues are presented in Section 8.

2 Adversary Model 6

2 Adversary Model

After node deployment and before the first round of the attestation protocol starts, the attacker
has full control over all device memories such that he can modify program memory or any
other memories like e.g. the external memory. At attestation time, when the challenge-response
based attestation protocol is running, the attacker has no physical control over the restricted
device anymore. However, please note that the device may yet run malicious code. It is up to the
code attestation protocol to detect this independently of the fact that the attacker may find ways
to store the original uploaded code image at a different memory than the program memory.
Note that we do not consider fluctual data memory. Control Flow Integrity could prevent attacks
that use techniques like Return-Oriented Programming [3], [1], [4]. Obviously, during the phase
in which the attacker has full control over the restricted device, the attacker is also able to either
modify the code for the code-attestation protocol itself or to read out any sensitive data like e.g.
pre-shared keys in case the code attestation protocol would be based on this.

3 Compression Attack

One major challenge for a purely software-based code attestation for embedded devices is
the so called compression attack. This attack cheats a basic challenge-response based co-
de attestation as follows: the originally uploaded program which shall temporarily be checked
by the attestation protocol to be exclusively stored in the program memory is subsequently
compressed by the attacker. Depending on the concrete compression algorithm and according
to the actual uploaded code image for a given application the compression gain ranges from
12% up to 47% [3]. An attacker can use such free program memory to store and run bogus
code on the node’s program memory. Note that current solutions for secure code-attestation
also propose to fill the free program memory with pseudorandomly generated words instead of
the default entry 0FF. This defends against an attacker who could use this previously unused
memory for uploading a bogus code image in an undetected way. Since the aforementioned
pseudorandomly generated words are required to be part of the response of a code attestation
protocol, the verifier needs to know respectively may be able to compute such pseudorandomly
generated words.

However, Castelluccia et al. have shown that cheating such kinds of attestation protocols is
still possible: whenever the restricted device (prover) receives a nonce from the master device
(verifier) it decompresses the earlier compressed original program on-the-fly and subsequently
computes the hash value x = h(nonce||CI|| PRW) by applying the hash function h(). The x
is the checksum respectively the response of the challenge-response protocol. The CI denotes
the originally uploaded code image and the PRW is the pseudo-randomly filled content within
the remaining free program memory at load-time. Obviously this simple challenge-response

4 Attestation of Compressed Instruction Code 7

based code attestation fails: Whenever the prover receives a fresh nonce (the master device
initiated the code attestation protocol), the attacker decompresses the compressed CI and
writes it into the program memory again. This provides all the relevant input parameters for
the computation of the hash function, namely the CI, the nonce, and the PRW such that the
master device subsequently receives the response x within a given time interval which it verifies
to be correct. Finally note that, to save his own bogusly uploaded code image C̃I, the attacker
could have stored C̃I also within the external memory. Subsequently to the time-critical code
attestation phase, he has enough time to again compress the CI and read C̃I from external
memory to program memory.

4 Attestation of Compressed Instruction Code

Our countermeasure against uploading malicious code into the program memory and subse-
quently not being able to detect this, re-uses and adapts earlier proposed code attestation
protocols [7], [8], [9] by at the same time using

i. a hardware extension at the micro-controller, and

ii. fulfilling a strict policy for uploading CIs into the program memory.

This policy is to only upload a yet compressed code imageC(CI) into the program memory and
to fill the remaining part with PRW 1. Consequently, the attacker cannot allocate such easily
free program memory anymore to tracelessly upload malicious code by applying the above des-
cribed compression attack. Note that with the proposed approach the challenge (a fresh nonce)
which goes into the hash computation for every run of the code-attestation anew, enforces the
prover to always compute the hash value (response) with a compressed CI and PRW anew.
In our proposed setting the response x thus is computed as h(nonce||C(CI)||PRW) where
the C is a properly chosen lossless data compression algorithm. More details on the properties
of the chosen lossless data compression algorithm C and other refinements on C(CI) will be
provided later. The adapted code attestation protocol is shown in Figure 1 (Option 1).

Please note that still with our proposed adapted code attestation protocol allowing to upload
only a compressed code image into the program memory it is essential to enforce a runtime
restriction as a countermeasure against an attack in which the original code image or parts
of it are shifted to the external memory. We term ε as the duration of the time interval [t0, t1]
measured by the local clock of the verifier. The t0 denotes the sending time of the challenge
nonce and the t1 denotes the receiving time of the response x . We emphasize that a proper

1We decided not to compress the PRW since in fact a good choice of the pseudorandomly filled words can not
be compressed anymore. In fact C(PRW) would result in |C(PRW)| ≥ |PRW | eventually providing another
attack vector to save memory by computing C−1(C(PRW)).

5 Execution of Compressed Instruction Code 8

-

�

Option 1 :
x = h(nonce||C(CI)||PRW)

Options 2a and 2b :
x = h(nonce||C(CI)||dic ||PRW)
x = h(nonce||C(CI)||LAT ||PRW)

ε

t0

t1

nonce

x

ver i f ier prover

Figure 1: Derivates of the secure code attestation protocol with lossless data compression
algorithm.

choice of the threshold Tem with ε < Tem is prover device-dependent to defend the approach
against attacks using the external memory of the prover device.

5 Execution of Compressed Instruction Code

Now that an attacker cannot such easily cheat the code-attestation protocol anymore by simply
compressing the originally uploaded code image and subsequently decompressing it if needed,
the remaining problem with this approach is how to run compressed code? To solve this issue
one needs to incorporate a hardware extension at the micro-controller. Please note that the
approach to upload a compressed code image into the program memory is not new. It has
recently been proposed by Yamada et al. [11]. Early work on this can be found in [10].

However, originally it has been proposed with the objective to offer a high compression ratio
and a fast instruction expendability - and not as a building block to protect against a bogus
code image in the program memory like we are proposing. Envisioned is a program memory
which includes a dictionary memory or other means to start the decompression operation.
This component is responsible for storing instruction codes which appear in a typical program
image. Figure 2 illustrates the micro-controller architecture which is proposed in [11]. Another
compression technique based on a dictionary has been presented by Lefurgy et al. in [6].

So we propose to only allow to load yet compressed code into the program memory and to
decompress the code at runtime. The decompression unit is located at the program memory

5 Execution of Compressed Instruction Code 9

RAM

-

CPU

Program
Counter

Bus
Controller

External
Memory

Program Memory

Compressed
Code

Memory

Dictionary
(resp. LAT)

Con-
troller

-

?

Figure 2: Micro-controller architecture with compressed code memory and dictionary memory
[11].

with a controller passing compressed code instructions to the dictionary memory. This archi-
tecture can be used to support the defense against attacks where free program memory space
can be generated by compressing the originally uploaded code image and filling this gap with
malicious code (including the compression/decompression function). A code attestation proto-
col based on simply hashing the original code image plus the remaining free program memory
space would not detect such an attack.

Some Remarks: The dictionary memory as well as the compressed code memory are regions
within the program memory. Thus, in particular the dictionary memory is no dedicated memory
module, neither separated nor protected in a specific manner. Consequently, an attacker could
either fully overwrite or partially modify the dictionary memory. To be able to subsequently
decompress the CI at runtime we are not allowed to compress the dictionary (dic) itself. We
refine the computation of the response x such that:

x = h(nonce||C(CI)||dic ||PRW) (1)

This additional consideration of the dictionary has also been reflected within Figure 1 (Option
2a).

6 Choice of the Data Compression Algorithm 10

6 Choice of the Data Compression Algorithm

6.1 Envisioned Properties

The proper choice of a suitable lossless data compression algorithm C is essential with respect
to the proposed security architecture. We need to find a lossless data compression algorithm
which shall provide the following partially conflicting properties:

1. a high compression ratio for a typical CI (compared to competing lossless data com-
pression algorithms);

2. very fast decompression (vice versa the performance of the compression operation can
be relatively poor);

3. the overall decompression concept is required to support entry-points at which the de-
compression operation can start;

With respect to property number one we state that it is one of the properties of any lossless data
compression algorithm that for typical input files containing many frequently used data chunks
the compression rate is rather high. However, vice versa if the input file contains many seldomly
used data chunks the resulting compression ratio is rather poor. Moreover, the compression
algorithm Ch chosen by the honest party should ideally provide the highest compression rate
compared to other compression candidates, e.g. Ca chosen by the attacker. Otherwise the
attacker could apply Ca(Ch(CI)) to save program memory for C̃I.

The second property is required since decompression of a code image instruction should ideal-
ly not delay the execution of the originally loaded program. On the contrary there is no technical
requirement that restricts the compression time before uploading the CI.

Entry points which define the positions at which the decompression operation starts to de-
compress the next code instruction can be either chosen to be placed at fix positions of the
compressed CI, with a fix and equal distance for a compressed chunk representing a single
code image instruction. This can be achieved by using a dictionary. A complementary ap-
proach would be to allow entry points at variable positions supporting compression chunks
with different sizes. Clearly the latter provides a better compression ratio at the cost of a higher
management effort for finding the next entry-point. A cache together with a line address table
(LAT) are frequently used for this [10]. Note that cache and LAT can be independently applied
of the concretely chosen compression algorithm. For this reason we prefer a LAT instead of a
dictionary. Our choice has been reflected in Figure 2.

6 Choice of the Data Compression Algorithm 11

6.2 Candidates

Initially we considered Canonical Huffman Encoding (CHE) [5] as lossless data compression
algorithm C with canonical Huffman tree. To handle entry points at variable positions with the
objective to provide a higher compression rate we use a LAT as a list of entry points. Note that
with this approach a dictionary memory is not required anymore such that in Figure 1 Option
2b becomes valid:

x = h(nonce||C(CI)||LAT ||PRW) (2)

Also, since each entry is listed only one time within the LAT, later we show that the attacker
does not succeed in sufficiently compressing the LAT. It turns out that to a large degree this
is also true in case the attacker tries to compress the canonical Huffman tree. However, the
disadvantage of the CHE for our purposes is its relatively small gain of compression results
on MicaZ with on average 12.19% for various typical WSN programs [3]. For comparison, the
lossless data compression algorithm Prediction by Partial Matching (PPM) provides an average
gain of 47.45% for typical WSN applications. Unfortunately, such a significant gain difference
of the compression algorithms CHE and PPM again opens the door for an attack to make use
of this gain difference of approximately 35%. The attacker can apply PPM on the compressed
code image CCHE(CI) and again generate free space for his own bogus malicious code in
either of the two ways:
1. Ca(Ch(CI)) := CPPM(CCHE(CI)), respectively
2. Ca(C

−1
h (Ch(CI))) := CPPM(C

−1
CHE(CCHE(CI)))

C−1 denotes the decompression operation. Due to the aforementioned reason we also ana-
lyzed Deflate, ZPAQ and further derivates of PPM, namely PZIP and PPMZ. Please note that
the hardware supported compression scheme proposed by Wolf et al. [10] doesn’t limit the set
of lossless compression algorithms. It only limits the blocksize sh, which has to be equal to the
available cache size (sh = |cache|).

Figure 3 shows that the chosen algorithms provide varying compression ratios depending on
the block size sh. This is illustrated for our benchmark code image multi-hop oscilloscope
(|CI| = 25.9KB) which ships with TinyOS. Large block sizes provide better compression
ratios than small block sizes. If we choose and apply a tuple (Ch, sh) the attacker can only gain
additional free memory |Ca(Ch(CI))| − |Ch(CI)| = |C̃I| by choosing

1. sa > sh if Ca = Ch, or

2. otherwise: sa ≤ sh (for some (Ca, sa)).

6 Choice of the Data Compression Algorithm 12

Figure 3: Compression ratios for multi-hop oscilloscope program image of typical compression
algorithms for varying blocksizes.

Nevertheless, if the attacker chooses a much smaller block size the compression ratio will suf-
fer. Therefore, when we compress the CI with a larger block size the attacker is forced to use
a larger block size as well. Since the decompression of larger blocks increases the overhead,
the time necessary for decompression is increased as well, especially on low-performance
platforms like sensor nodes. This fact becomes significant if we take into account that the at-
testation has to run in a pseudrandomly manner with nonce as the seed for a PRNG forcing a
strict ordering of the CI ’s words when calculating the response x [2]. It forces the attacker to
decompress each block approximately sa times. Moreover, this disables the attacker to apply
a compression algorithm Ca that sacrifices performance for higher compression ratios since
the overhead increases for larger block sizes sa recognizably. Therefore, the use of such al-
gorithms is easily detectable with the choice of a large block size sh and a threshold Tpm as
the upper duration for performing compression attacks on the program memory. Obviously,
ε < min{Tem, Tpm} with Tpm > Tem as we will see.

Figure 4 shows the amount of temporarily decompressed data during the attestation, which
increases for larger block sizes. The attacker has to read about sa · |Ca(CI)| bytes from the
program memory during the attestation if he compressed the full CI previously. If the attacker
chooses the block size to be sa = 2048 bytes and Ca to be PZIP, he will have to read up to
37MB from program memory to decompress all blocks sa times and subsequently be able to
calculate x . This is a huge overhead compared to |CI| = 25.9KB. For the attacker, obviously
this huge amount of data is an immense burden in particular on platforms with low bandwidth

7 Security Analysis 13

Figure 4: Amount of decompressed data for varying block sizes during the attestation.

for reading from program memory. While platforms capable of reading 50MB/s result in less
than 1 second timing overhead for 2048 byte blocks, platforms capable of reading only 1MB/s
require up to 40 seconds and thus are easily detectable by the proposed attestation protocol.

Obviously, these overhead to decompress every block sa times impacts the time necessary
for the attacker to calculate the valid response x for the attestation protocol significantly on
restricted platforms. As an uncompromised node doesn’t have to calculate C−1h (Ch(CI)) at
attestation time, i.e. decompress the compressed program image, the block size enables us
to raise and adjust the overhead for the attacker by orders of magnitude to let us discover the
existence of the attacker reliably through a proper choice for the device-dependent value of ε.
However, a larger cache size respectively sh slow down the on-the-fly decompression routine
during normal operation of the restricted device. On the other hand a larger cache decreases
the number of cache misses. Therefore a necessary decompression is more seldom for a larger
cache size, but takes more time to complete.

7 Security Analysis

Our security analysis considers six attack vectors, namely 7.1 decompressing the code image,
7.2 attacks on the LAT, 7.3 attacks by using the external memory, 7.4 replay attacks, 7.5 node
depletion attacks, and, finally 7.6 DoS attacks.

7 Security Analysis 14

7.1 Decompressing the Code Image

The attacker is able to decrease the timing overhead by exploiting the fact that different blocks
can be compressed with different compression ratios. Therefore, the attacker could pick only
those blocks which provide the best compression ratios out of all blocks until he gains suffi-
cient memory to store his bogus code. Since the blocks are yet compressed with a properly
chosen lossless compression algorithm, each of them provides a similar compression ratio. To
overcome this issue, the attacker could first calculate C−1h (Ch(CI)), i.e. decompress the com-
pressed CI and compress it for his own afterwards, i.e. calculate Ca(C

−1
h (Ch(CI))). During

the attestation he then has to calculate Ch(C−1a (Ca(CI))) to pass the attestation. Therefore
this method further increases the overhead for the attacker, especially if we choose a (Ch, sh)
that compresses rather slowly. Moreover, the attacker’s possible gain is expected to be low,
because blocks which provide a good compression ratio to the attacker will provide a good
compression ratio to us as well.

However, even without calculating C−1h (Ch(CI)) the attacker still requires to compress only as

much blocks as he needs to gain enough free memory for the C̃I. The exact number of blocks
an attacker has to use depends on our choice of (Ch, sh) as well as the attacker’s choice
(Ca, sa) and, obviously |C̃I| itself. Please note that besides the C̃I the attacker has to also
store the code of the decompression routine C−1a and the LATa within the program memory.
As Castelluccia et al. have to spend 1707 bytes for a huffman decompression routine [3] used
in their compression attack, which is a relatively simple algorithm compared to the compression
algorithms proposed in this paper, we force the attacker to compress at least multiple blocks to
get a chance to gain enough space for his needs. In general, the attacker has to compress

#Blocks =
|C̃I|+ |C−1a |+ |LATa|
GainPerBlock

(3)

where

GainPerBlock =
TotalGain

#Blockstotal
(4)

on average with
TotalGain = |Ch(CI)| − |Ca(CI)| (5)

and

#Blockstotal =
|CI|
sa
. (6)

The memory overhead then is about #Blocks · sa · |Ca(CI)||CI| · sa. We assume the atta-

cker has to store at least 1KB of data2, i.e. |C̃I| + |C−1a | + |LATa| = 1KB and he
will calculate C−1h (Ch(CI)) before compressing CI for his own. For example, if we choose

2Please note that this is a very optimistic value from the attacker’s point of view.

7 Security Analysis 15

Figure 5: The attacker’s possible compression choices for Ch = PZIP , a varying sh and a
platform capable of reading 1MB/s from program memory.

(Ch = PZIP, sh = 512 bytes) and the attacker chooses (Ca = PPMZ, sa = 2048 bytes)
the attacker’s memory overhead is about 17.3MB. Figure 5 shows the attacker’s possible choi-
ces for (Ca, sa) to gain sufficient memory whereas Ch = PZIP with varying sh is our choice
of a compression algorithm. For the attacker’s choices we focus on compression algorithms
mentioned in this paper only, namely PZIP, PPMZ, ZPAQ and Deflate for block sizes ranging
from 64 bytes to 2048 bytes. On platforms capable of reading 1MB/s of data from program
memory, we argue that memory overhead above 5MB is easily detectable since it slows down
the attestation for about 5 seconds. Therefore even if we choose rather small block sizes of
sh ≥ 256 bytes the attack is still detectable. Please note that we do not even take the CPU
overhead into account here. From a security point of view we argue to always use the lar-
gest possible block size sh. In practice cache sizes above 1KB are hardly feasible, especially
on embedded devices with less than 4KB of data memory. Therefore we propose to choose
(Ch, sh ≥ 512 bytes). Please note that other combinations will be totally feasible as well, but
one has to choose sh for other compression algorithms more carefully.

7 Security Analysis 16

7.2 Attacks on the LAT

The countermeasure to the compression attack is the compression of the CI with a suita-
ble data compression algorithm as discussed in Section 7.1. Thus, the only remaining non-
compressed data besides the PRW which has been argued to be not effectively compressable
is the LATh. Consequently, if the (Ch, sh) for compressing the CI has been chosen properly,
the only remaining compression attack is to compress the LATh itself to save program memory
(Ca(LATh)). If the attacker succeeds in saving enough program memory out of this to addi-
tionally store a bogus code image C̃I and at the same time requires ε < min{Tem, Tpm}, the
attack is successful and not detectable by our code attestation protocol. However, recall that a
lossless data compression algorithm does not provide the same compression ratio for every in-
going uncompressed data; in particular a LAT due to its condensed form can not significantly
be compressed as we will see. Moreover, we state that typically it holds |LATh| << |CI| and
|CI| ≤ |PRW |3. In general, the number of entries of a LAT can be computed as

#Entr ies(LAT) =
|CI|
s

(7)

So, even if Ca(LATh) and Ca(CI) with (Ca, sa) would provide the same compression ratio,
which obviously is not the case, the absolute gain of program memory for an attacker who
purely can compress the remaining uncompressed LATh would be significantly smaller. E.g.
we assume an embedded device with 128KB of program memory where |CI| = 25.9KB
(multi-hop oscilloscope). We further assume single LAT entries to be coded using 24 bits, i.e.
|LATh| = #Entr ies(LATh) · 3 bytes for the proposed block size sh = 512 bytes. The LATh
then occupies 153 bytes. Compression results for the LATh of our benchmark applications are
listed in Table I. For this setting and by applying our countermeasure an attacker’s absolute
gain of free program memory to upload a bogus code image C̃I would shrink below 5 bytes
approximately4 whereas in the absence of our proposed solution the attacker could occupy
approximately up to 17KB of the program memory without being detectable.

Again, with a larger choice of the block size sh one could reduce the free memory space for
an attacker even more. Furthermore, in case the CI is smaller also the LATh shrinks. E.g. if
CI is the BaseStation respectively Sense application and the block size again is sh = 512
bytes, the attacker will not gain free memory by compressing the LATh of size 90 respectively
18 bytes using the compression algorithms mentioned in this paper. Finally, the attacker could
overwrite the LATh within the program memory for his own bogus code; in equivalence to the
other program memory containing compressed code and PRW this attack is detected by the
computation and subsequent verification of x = h(nonce||Ch(CI)||LATh||PRW).

3Typical CI sizes for WSN applications are between 10 to 60KBytes such that the |PRW | occupies between 63
Kbytes to 113 Kbytes [3].

4The attacker can choose other compression algorithms not mentioned in this paper as well. Although unlikely,
other algorithms could provide slightly better compression ratios.

7 Security Analysis 17

Table 1: Maximum sizes of bogus code images |C̃I| for sh = 512 bytes and various
applications.

Multi-hop os- BaseStation Sense
cilloscope [byte] [byte] [byte]

|CI| 25906 15240 2860
|LATh| 153 90 18
|PZIP (LATh)| 148 92 30
|PPMZ(LATh)| 163 109 48
|Def late(LATh)| 181 123 48
|ZPAQ(LATh)| 242 188 131

max. |C̃I| :
1. our approach 5 0 0
2. Refs. [12], [9] 16948 7029 1124

7.3 Attacks using External Memory

The proposed solution detects attacks by the usage of external memory with the introduction
of a device-dependent threshold ε < Tem. Since the threshold should be as harsh as possible
there will definetively be cases in which a false negative will be the result of a single code
attestation run. Nevertheless we recommend to choose the Tem as harsh as possible to indeed
have a meaningful countermeasure against an attack in which the attacker makes use of the
external memory. As a consequence, in case of a false negative one should repeat the code
attestation protocol n times where n is factor two the number of protocol runs in which the
received x does not match to the computation at the verifier. To restrict the number of iterations
for the code attestation protocol for a single code attestation phase we recommend to stop the
protocol in case two times the received response x (each time with a different nonce) has
been presented.

7.4 Replay Attacks

As long as the challenge nonce is always fresh replay attacks are not possible. Consequently
the size of the nonce is a function over the lifetime of the (frequently) battery-driven prover and
the frequency of applying the code attestation protocol. For example if the approximate lifetime
of the prover is 3 month and the verifier starts the code attestation protocol once per hour we
state |nonce| should not be smaller than four bytes (this is required to correspond to the n
chosen in 7.3). The attacker can eavesdrop over the wireless all transmitted pairs (noncei , xi)
with the objective to resend yet eavesdropped responses xi . Since the nonce is the only data
chunk providing freshness for the response computation, once a nonce noncer is repeatedly

8 Conclusions and Open Issues 18

transmitted by the verifier the attacker can use the time slot ε to upload C̃I. However, a more
realistic attack arises in case of a poor implementation of the ’random’ choice of a nonce at the
verifier side. If the attacker can infer from pairs (nonce1, x1), ..., (noncer , xr) to noncer+1
he can precompute xr+1 and the time to upload and run C̃I extends from ε to the duration until
the next run of the code attestation protocol. However, running bogus code during the time
interval of two consecutive sent challenge nonces noncei and noncei+1 is always possible
even without performing such a replay attack. Thus, a proper implementation of the freshness
function has to ensure that the attacker cannot even infer a sequence of consecutive nonces
noncei , ..., noncei+j with j > 1 allowing to run bogus code undetected during an interval
[i , i + j].

7.5 Node Depletion Attacks

If the attacker aims at wasting the energy of the non-tamper resistant and restricted pro-
ver device he could masquerade as the master device and continiously send challen-
ges nonce. Two countermeasures are possible here: firstly, one could introduce a mas-
ter key k which is shared between the master device and the prover device such that
x = hk(nonce||Ch(CI)||LATh||PRW). The hk() denotes a keyed MAC. However, obviously
this approach contradicts with the fact that initially the attacker has full control over the non-
tamper resistant device such that the k can be read out for subsequent depletion attacks. Due
to this reason we propose a lightweight approach in which the prover device computes and
sends at maximum n times per epoch a response x . Here n corresponds to the number of
iterations recommended under 7.3.

7.6 Other Attacks: DoS

The protocol is not resistant against DoS attacks. To sufficiently handle depletion attacks or at-
tacks on the usage of the external memory an attacker can always enforce the code attestation
protocol to stop. In such situations the master device considers the code image running on the
prover device as bogus.

8 Conclusions and Open Issues

The work at hand presents a code attestation protocol which in particular detects compressi-
on attacks aiming to run bogus code in an undetected manner. The code image is loaded in
a compressed manner. Only LAT and PRW are loaded uncompressed. The presented ap-
proach is work in progress. Surely, more elaborated analysis are required on a proper choice

9 Acknowledgments 19

of parameters like sh, Tpm and n. Also the role of the cache needs to be evaluated more in
depth with respect to potential security weaknesses.

9 Acknowledgments

The authors are most grateful to Aurelien Francillon and Claude Castelluccia who gave insight-
ful comments on their related work. The work presented in this paper was supported in part by
the European Commission within the STREP WSAN4CIP of the EU Framework Programme 7
for Research and Development (http://www.ist-ubisecsens.org) as well as the German BMB+F
SKIMS project. The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of the WSAN4CIP project, the SKIMS project or the European
Commission.

References

[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow integrity. In
Proceedings of the 12th ACM conference on Computer and communications security,
CCS ’05, pages 340–353, New York, NY, USA, 2005. ACM.

[2] Tamer AbuHmed, Nandinbold Nyamaa, and DaeHun Nyang. Software-based remote co-
de attestation in wireless sensor network. In Proceedings of the 28th IEEE conference on
Global telecommunications, GLOBECOM’09, pages 4680–4687, Piscataway, NJ, USA,
2009. IEEE Press.

[3] Claude Castelluccia, Aurélien Francillon, Daniele Perito, and Claudio Soriente. On the
difficulty of software-based attestation of embedded devices. In Proceedings of the 16th
ACM conference on Computer and communications security, CCS ’09, pages 400–409,
New York, NY, USA, 2009. ACM.

[4] Christopher Ferguson, Qijun Gu, and Hongchi Shi. Self-healing control flow protection in
sensor applications. In Proceedings of the second ACM conference on Wireless network
security, WiSec ’09, pages 213–224, New York, NY, USA, 2009. ACM.

[5] D.A. Huffman. A method for the construction of minimum-redundancy codes. Proceedings
of the IRE, 40(9):1098 –1101, 1952.

References 20

[6] Charles Lefurgy, Peter Bird, I-Cheng Chen, and Trevor Mudge. Improving code density
using compression techniques. In Proceedings of the 30th annual ACM/IEEE international
symposium on Microarchitecture, MICRO 30, pages 194–203, Washington, DC, USA,
1997. IEEE Computer Society.

[7] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla. Swatt: software-based attestation for
embedded devices. In Security and Privacy, 2004. Proceedings. 2004 IEEE Symposium
on, pages 272 – 282, May 2004.

[8] Arvind Seshadri, Mark Luk, Adrian Perrig, Leendert van Doorn, and Pradeep Khosla.
Scuba: Secure code update by attestation in sensor networks. In Proceedings of the 5th
ACM workshop on Wireless security, WiSe ’06, pages 85–94, New York, NY, USA, 2006.
ACM.

[9] Mark Shaneck, Karthikeyan Mahadevan, Vishal Kher, and Yongdae Kim. Remote
software-based attestation for wireless sensors. In Refik Molva, Gene Tsudik, and Dirk
Westhoff, editors, Security and Privacy in Ad-hoc and Sensor Networks, volume 3813 of
Lecture Notes in Computer Science, pages 27–41. Springer Berlin / Heidelberg, 2005.
10.1007/11601494_3.

[10] Andrew Wolfe and Alex Chanin. Executing compressed programs on an embedded risc
architecture. SIGMICRO Newsl., 23:81–91, December 1992.

[11] H. Yamada, D. Fuji, Y. Nakatsuka, T. Hotta, K. Shimamura, T. Inuduka, and T. Yamazaki.
Micro-controller for reading out compressed instruction code and program memory for
compressing instruction code and storing therein, January 2006.

[12] Yi Yang, Xinran Wang, Sencun Zhu, and Guohong Cao. Distributed software-based at-
testation for node compromise detection in sensor networks. In Proceedings of the 26th
IEEE International Symposium on Reliable Distributed Systems, SRDS ’07, pages 219–
230, Washington, DC, USA, 2007. IEEE Computer Society.

	List of Tables
	List of Figures
	1 Introduction
	2 Adversary Model
	3 Compression Attack
	4 Attestation of Compressed Instruction Code
	5 Execution of Compressed Instruction Code
	6 Choice of the Data Compression Algorithm
	6.1 Envisioned Properties
	6.2 Candidates

	7 Security Analysis
	7.1 Decompressing the Code Image
	7.2 Attacks on the LAT
	7.3 Attacks using External Memory
	7.4 Replay Attacks
	7.5 Node Depletion Attacks
	7.6 Other Attacks: DoS

	8 Conclusions and Open Issues
	9 Acknowledgments
	References

