

Hamburg University of Applied Sciences

Entwicklung eines FPGA basierten "Distributed Computing System"

Frank Opitz INF-M3 – Seminar - Wintersemester 2010/11 26. November 2010

Inhalt

- Motivation
 - Dynamische Partielle Rekonfiguration
 - Distributed Computing
- Zielsetzung und Vorgehen
 - SoC-Plattform
 - SoC und Server Software
- Architektur des Distributed Computing Systems
- Risiken
- Zusammenfassung

Motivation

Dynamische Partielle Rekonfiguration

Scheduling von Hardware-Ressourcen und HW-Modulen während des SoC-Betriebes

- Wartung von Systemen
- Anpassung an die Umgebung
- Verringerung des Energiebedarfs

Einsatzgebiete

An der HAW:

- Testsysteme zur Selbstrekonfiguration mit μC/OS-2 und Linux
- Rekonfiguration in einem autonomen Fahrzeug

Weltweit:

- Software defined Radio
- Austausch von HW-Modulen im Drohnen-Schwarm
- Reparatur und Update von Satteliten
- u.v.a.

[Kearney und Jasiunas 2006], [Mamegani 2010], [Opitz 2010], [Vladimirova und Wu 2006], [Legat 2009]

Distributed Computing

- ▶ Computer Ressourcen weitestgehend ungenutzt
- Durch Zusammenschluss dieser Ressourcen wird ein "Super Computer" geschaffen
- ▶ Software wird zur Koordination der Systeme verwendet
- Systeme sind im LAN oder WAN verteilt

Distributed Computing: BOINC

- BOINC: Berkeley Open Infrastructure for Network Computing
- ▶ 680.000 Teilenehmer in 245 Ländern
- ▶ 1.000.000 Computer
- ▶ 400 TeraFlops
- ▶ 12 Petabyte freie Plattenspeicher

[Anderson 2006]

Auszug aus der Projektliste von BOINC

Name	Beschreibung	
MilkyWay@Home	Untersuchung der Gravitationskräfte der Milchstraße	
SETI@Home	Suche nach außerirdischer Intelligenz	
Artificial Intelligence System	Aufbau eines KI- Systems zum Reverse Engineering des Gehirns	
Einstein@home	Suche nach Gravitationswellen von Pulsaren	
ClimatePrediction.net	Klimaprognosen bis 2080	
FightAIDS@Home	Suche nach neuen Medikamenten zur Behandlung HIV- Infizierter	

[Wikipedia 2010]

Eigenschaften

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

von Distributed Computing Systemen

	FPGA	PC
Parallelität	+	_
Datendurchsatz	+	_
Energiebedarf	+	
Anschaffungskosten	_	+
Speicherplatz	-	+

Zielsetzung und Vorgehen

Ziel der Masterarbeit

- " Entwicklung eines FPGA basierten Distributed Computing System"
- Implementierung einer SoC-Plattform, um die FPGA Ressourcen zur Verfügung zu stellen
- Erstellen eines Servers zu Verwaltung der Projekte und der verteilten SoCs

▶ Test des Systems mit einem Beispiel-Projekt

SoC-Plattform

Statisches System

- MicroBlaze System mit Ethernet-Anbindung
- Ansteuerung von Speichern zur Speicherung der PRM Dateien
- Bereitstellen eines gemeinsamen Speichers für die PRR und das statische System

2. Dynamisches System

- IP zur Anbindung an den gemeinsamen Speicher
- Erstellen eines Beispiel-Projektes

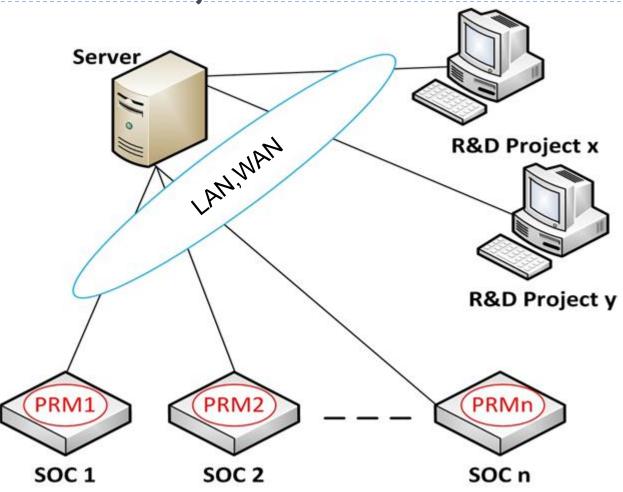
SoC und Server Software

Software des SoCs

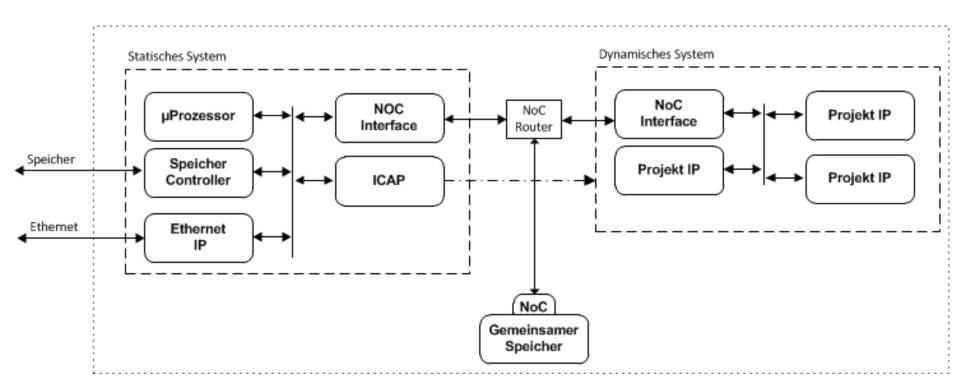
- RTOS zur Steuerung des SoCs
- Einbinden eines File-Systems und TCP/IP
- Ansteuerung der Projekt-Software

2. Server und Beispiel-Projekt

- Server zur Verwaltung der Projekte und SoCs
- Projekt Grundstruktur
- Erstellen eines Beispiel-Projekts



Architektur des Distributed Computing Systems


Projekt-Architektur

SoC des Distributed Computing Systems

Risiken

Risiken für die Masterarbeit

Kategorie	Tätigkeit	Risiko	Einschätzung
SoC	HW-Plattform	NoC, Speicheranbindung	Mittel / Hoch
	Software	Anbindung an Server, Projekt Treiber	Mittel / Hoch
	Beispiel-Projekt	Implementierung	Mittel
PC	Verwaltungsserver	Architektur	Niedrig
	Projekt Software	Architektur, Implementierung	Mittel

▶ Gesamtrisiko: Mittel/Hoch

Risiken für das Projekt

- ▶ Partielle Rekonfiguration ist Hersteller abhängig
- Synthese für jeden FPGA-Typ notwendig
- ▶ Lizenzen aktuell noch sehr teuer

Software einfacher zu Implementieren

Zusammenfassung

Zusammenfassung

- "FPGA basiertes Distributed Computing System"
- ▶ Scheduling von HW-Ressourcen während des SoC-Betriebes
- Distributed Computing verbindet Systeme weltweit zu einem System
- Die Mischung von PR und Distributed Computing stellt ungenutzte FPGA Ressourcen zur Verfügung
- ▶ Risiko für die Masterarbeit: Mittel/Hoch

Quellen

Literatur

[Anderson 2006] ANDERSON, David P.: A Million Years of Computing. 2006

[Wikipedia 2010] WIKIPEDIA: Liste der Projekte verteilten Rechnens—Wikipedia, Die freie Enzyklopädie. 2010. – URL http://de.wikipedia.org/w/index.php?title=Liste_der_Projekte_verteilten_Rechnens&oldid=77690638. – [Online;Stand 12. September 2010]

[Kearney und Jasiunas 2006] KEARNEY, David; JASIUNAS, Mark: Using Simulated Partial Dynamic Run-Time Reconfiguration to Share Embedded FPGA Compute and Power Resources across a Swarm of Unpiloted Airborne Vehicles. In: 'EURASIP Journal on Embedded Systems (2006)

[Mamegani 2010] MAMEGANI, Armin J.: Erprobung und Evaluierung von Methoden zur partiellen und dynamischen Rekonfguration eines SoC-FPGAs, HAW-Hamburg, Masterarbeit, 2010

[Opitz 2010] OPITZ, Frank: Thread basierte partielle Rekonfiguration von SoC Systemen, HAW-Hamburg, Ausarbeitung, 2010

[Vladimirova und Wu 2006] VLADIMIROVA, Tanya; WU, Xiaofeng: On-Board Partial Run-Time Reconfiguration for Pico-Satellite Constellations. (2006)

[Legat 2009] LEGAT, Jean-Didier: Dynamically reconfigurable architectures for SDR in professional embedded systems. 2009