
Simulation von Cyberangriffen

André Harms

Simulation von Cyberangriffen

Inhalt

Einführung

Angriffsebenen

Motivation

Bisherige Ansätze

Idee

Forschung

Zusammenfassung

Einführung

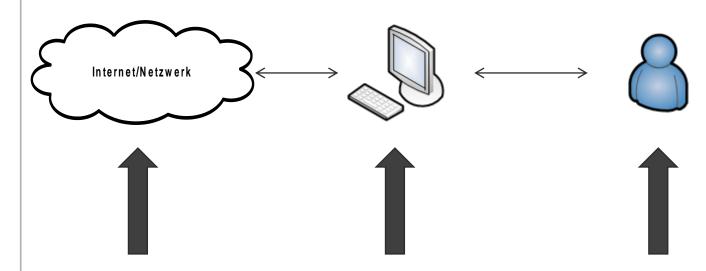
- Was ist ein Cyberangriff?
 - Verschiedene Vorstellungen und Ausprägungen:
 - Industriespionage
 - o Informationskrieg/Falschinformationen
 - Schädigung von Infrastruktur
 - o Aber: alles mit Mitteln der IT
 - Cyberwar → Asymmetrischer Krieg [1] [11]
 - Kein Kräftegleichgewicht
 - o Angreifer schwer identifizierbar
 - Beispiele:
 - Angriff auf Estland (2007) durch russische Hacker [1] [2]:
 - Politisch motiviert
 - DDoS Attacken legten Notrufnummern und Banken lahm
 - o Stuxnet [3]

Einführung

Angriffsebenen

Motivation

Bisherige Ansätze


Idee

Forschung

Zusammenfassung

<u>Angriffsebenen</u>

Einfache Darstellung:

Infrastruktur- u. Protokollangriffe, Daten abfangen

Angriffe auf Anwendungen und Programmlogik Soziale Manipulation (Social Engineering)

Einführung

Angriffsebenen

Motivation

Bisherige Ansätze Idee

Forschung

Zusammenfassung

Motivation

- Immer mehr Vernetzung von schützenswerten Systemen
- Häufung von Angriffen in jüngerer Vergangenheit [1][2][3][10]
- Bevölkerungsschutz:
 - Unterstützung bei Absicherung von kritischer Infrastruktur (z.B. Smart Grid)
 - Möglichkeiten zur Eindämmung erforschen
 - "One of the problems related to the simulation of attacks against critical infrastructures is the lack of adequate tools for the simulation of malicious software (malware)."

Rafał Leszczyna et al. [5]

- Forensik
 - Wie konnte ein Angriff wahrscheinlich realisiert werden

Einführung

Angriffsebenen

Motivation

Bisherige Ansätze

Idee

Forschung

Zusammenfassung

Bisherige Ansätze

- Mathematische Modelle aus der Epidemiologie [4] [9]
 - Von biologischen Modellen abgeleitet
 - Ausbreitungsgeschwindigkeit vorhersagen anhand von:
 - o Differentialgleichungen
 - Markow-Modelle

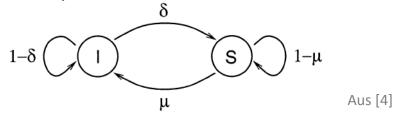
Einführung

Angriffsebenen

Motivation

Bisherige Ansätze

Idee


Forschung

Zusammenfassung

Bisherige Ansätze

Ausbreitung von Schadsoftware

Beispiel (SIS-Modell):

S → Susceptible

I → Infected

μ → Wahrscheinlichkeit, dass Knoten infiziert wird

 $\delta \rightarrow$ Wahrscheinlichkeit, dass Knoten wieder geheilt wird

Wobei:

μ => Konnektivität zu infiziertem Knoten und Wahrscheinlichkeit eine Infektion zu übertragen

Einführung

Angriffsebenen

Motivation

Bisherige Ansätze

Idee

Forschung

Zusammenfassung

Bisherige Ansätze

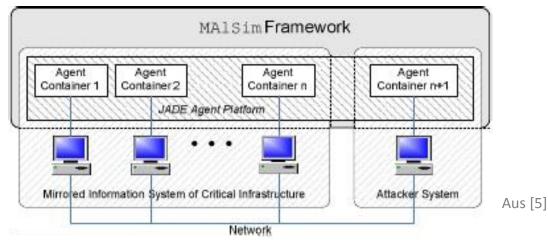
- Nachteile:
 - Berücksichtigt keine Patches (keine Immunisierung)
 - Keine geolokalen Informationen
 - Benutzerverhalten nur bedingt abgebildet

Einführung

Angriffsebenen

Motivation

Bisherige Ansätze


Idee

Forschung

Zusammenfassung

Bisherige Ansätze

- Beispiel: MAlSim (Mobile Agent Malware Simulator)[5]
 - Verschiedenartige Schadsoftware als mobile Agenten implementiert
 - Verwendung von JADE
 - Vorhandene Infrastruktur wird genutzt oder gespiegelt
 - Agent-Container als Ausführungsumgebung

Einführung

Angriffsebenen

Motivation

Bisherige Ansätze

Idee

Forschung

Zusammenfassung

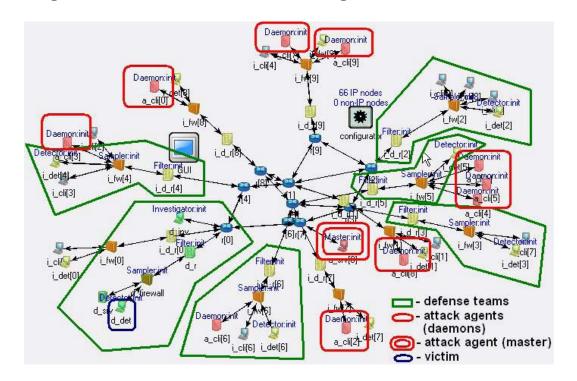
Bisherige Ansätze

- Nachteile
 - Kopie eines Netzes muss erstellt werden
 - Benutzerverhalten findet keine Berücksichtigung
 - Beschränkung auf Geräte, die Ausführung von Agent-Container unterstützen

Einführung
Angriffsebenen
Motivation

Bisherige Ansätze

Idee


Forschung

Zusammenfassung

Bisherige Ansätze

Simulation von Netzwerkangriffen

- Beispiel: Ein Multi-Agenten Ansatz [8]
 - Simulation des Packet-Flows
 (Kompromiss zw. Skalierbarkeit und Genauigkeit)
 - Angreifer und Abwehrende als Agenten modelliert

Einführung

Angriffsebenen

Motivation

Bisherige Ansätze

Idee

Forschung

Zusammenfassung

Bisherige Ansätze

Simulation von Netzwerkangriffen

- Nachteile
 - Benutzerverhalten nicht berücksichtigt
 - Nur aktive Angriffe werden betrachtet

Einführung

Angriffsebenen

Motivation

Bisherige Ansätze

Idee

Forschung

Zusammenfassung

Idee

- Simulation durch Multiagentensystem
 - Benutzerverhalten kann modelliert werden
 - Schadsoftware als Agenten
 - Geolokale Informationen können berücksichtigt werden
 - Implementierungsmöglichkeiten (beispielhaft):
 - o SPADE2(Python)
 - JADE (Java)
 - eXAT (Erlang)
- Risiken
 - Betrachtungslevel muss definiert werden
 - Modellierung von Schwachstellen und Ausnutzung dieser
 - Aufbau von kritischer Infrastruktur muss bekannt sein

Einführung

Angriffsebenen

Motivation

Bisherige Ansätze

Idee

Forschung

Zusammenfassung

Forschung

Konferenzen & Magazine

- Konferenzen
 - Winter Simulation Conference (WSC) [1]
 - Black Hat Conference [12]
 - DEF CON in Las Vegas [13]
- Magazine
 - Journal in computer virology

Einführung

Angriffsebenen

Motivation

Bisherige Ansätze

Idee

Forschung

Zusammenfassung

Forschung

Akteure

- Sicherheit/kritische Infrastruktur
 - BSI Bundesamt für Sicherheit in der Informationstechnik [14]
 - BKA Bundeskriminalamt [15]
 - BMI Bundesministerium des Inneren [16]
 - Fraunhofer-Einrichtung
 für Angewandte und Integrierte Sicherheit (AISEC) [17]
- Cyberwar:

John Arquilla, Ph.D.

Schadsoftware

Frederick B. Cohen, Ph.D.

Einführung

Angriffsebenen

Motivation

Bisherige Ansätze

Idee

Forschung

Zusammenfassung

Zusammenfassung

- Interessantes Themengebiet
- Interdisziplinär
- Aktualität und Interesse durch
 - Zunehmende Vernetzung
 - Konkrete Vorfälle
 - Bevölkerungsschutz

<u>Literaturverzeichnis</u>

- [1] John J. Kelly, Lauri Almann: *eWMDs*, In: Policy Review No. 152, 2008
- [2] John Arquilla:

From Blitzkrieg to Bitskrieg: The Military Encounter with Computers, In: Communications of the ACM Volume 54 Issue 10, 2011

- [3] Bundesamt für Sicherheit in der Informationstechnik:

 Die Lage der IT-Sicherheit in Deutschland 2011, 2011, S.14-16, 28-29, 40-41
- [4] Lora Billings a , William M. Spears b , Ira B. Schwartz:

 A unified prediction of computer virus spread in connected networks, 2002
- [5] Rafał Leszczyna, Igor Nai Fovino, Marcelo Masera:
 MAISim Mobile Agent Malware Simulator, 2008
- [6] S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.:

 Cyber Attack Modeling and Simulation for the network analysis, In: Proceedings of the 2007 Winter Simulation Conference, 2007
- [7] Claudia Eckert, Christoph Krauß, Peter Schoo: Sicherheit im Smart Grid - Eckpunkte für ein Energieinformationsnetz, 2011
- [8] Igor Kotenko:

Multi-agent Modelling and Simulation of Cyber-Attacks and Cyber-Defense for Homeland Security, In: Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, 2007

- [9] Romualdo Pastor-Satorras Alessandro Vespignani: Epidemic spreading in scale-free networks, 2008
- [10] Bundesamt für Sicherheit in der Informationstechnik: *Lagebericht 1. Quartal*, 2011, S. 10-11
- [11] Bundesamt für Bevölkerungsschutz und Katastrophenhilfe: Vierter Gefahrenbericht, 2011, ISBN-13: 978-3-939347-35-4, S. 44-60

<u>Internetquellen</u>

[11] Winter Simulation Conference, URL: http://wintersim.org Datum: 06. November 2011

[12] Black Hat Conference , URL: http://blackhat.com Datum: 07. November 2011

[13] DEF CON, URL: http://defcon.org Datum 08. November 2011

[14] BSI, URL: http://www.bsi.de Datum 10. November 2011

[I5] BKA, URL: http://bka.de Datum 10. November 2011

[16] BMI, URL: http://www.bmi.bund.de Datum 10. November 2011

[17] Fraunhofer AISEC, URL: http://www.aisec.fraunhofer.de Datum 10. November 2011

Vielen Dank für die Aufmerksamkeit

Fragen