Personenerkennung in Videos für die automatische Validierung von Evakuierungssimulationen

AW1-Vortrag von Torben Woggan 08.12.2011

Gliederung

Einleitung

- Mikroskopische Evakuierungssimulationen
- WALK-Projekt
- (Bisherige) Idee für die Masterarbeit
- Ziel für AW1

Personenerkennung in Videos

- Anwendungsbereiche
- Anforderungen an die Personenerkennung für meine Idee
- Probleme bei der Erkennung von Personen
- Generelles Vorgehen zur Objekterkennung
- Ansätze zur besseren Erkennung bei (teilweisen) Verdeckungen
- Vorstellung einiger Ansätze

Bewertung des Forschungsstandes

- Risiken
- Zuverlässigkeit von Personenerkennung
- Fazit
- Konferenzen & Literaturliste

Mikroskopische Evakuierungssimulationen

- Dienen der Simulation von Evakuierungen (z.B. öffentliche Plätze und Gebäude)
- Ermöglichen Schätzung von Evakuierungszeiten, Gefahrstellen, Verletzten, Verhalten...
- Besonderheit "Mikroskopischer"-Ansatz:
 - Jede Person dargestellt durch einen Software-Agenten (= autonomer Programmteil mit eigener Intelligenz, Verhalten, Entscheidungen)
 - Simulation (z.B. Verhalten der Agenten) lässt sich 1:1 mit echten Evakuierungen vergleichen
 - Gegenteil: "Makroskopischer"-Ansatz Abstrahierung durch Fluss-Simulation (Menschenmenge wie Flüssigkeit statt Individuen, Schätzung von Zeiten und Staustellen)

WALK-Projekt

- Projektleitung:
 - Prof. Dr. Thiel-Clemen, Prof. Dr. Sarstedt
- Entwicklung einer mikroskopischen Evakuierungssimulation
- Besonderheiten:
 - Berücksichtigung von Emotionen im Agentenverhalten
 - Möglichkeit des Auftretens von dynamischen Ereignissen (Feuer, Rauch, Wassereinbruch)
- Mein Bereich: Jede Simulation muss validiert werden
 - Stellt die Simulation wirklich den gewünschten Aspekt des simulierten Systems dar?
 - Gleiches Verhalten auf mikroskopischer Ebene (individuelles Verhalten)
 - Gleiches Verhalten auf makroskopischer Ebene (Zeiten, Dichten, Ereignisse)

(Bisherige) Idee der Masterarbeit

Bachelorarbeit:

 Erstellung eines Konzeptes aus Kombination von Verfahren zur Validierung von Gruppensimulationen

Idee für die Masterarbeit:

- Erstellung eines automatischen Verfahrens zur Validierung von mikroskopischen Evakuierungssimulationen mit Hilfe von Personenerkennung in Videoaufnahmen (Aufnahmen von Überwachungskameras von Evakuierungen)
- Anwendung des Verfahrens für WALK

Vorteile der Idee:

- Objektiv: Vergleich anhand von berechneten Werten (z.B. durchschnittlichen Ausrichtungen, Geschwindigkeiten, Positionen) statt subjektive Meinungen
- Automatisches Verfahren ließe sich z.B. in jeder Nacht durchführen lassen
 - Nightly Build
- Personen müssten nicht aufwendig "von Hand" in jedem Einzelbild gesucht werden

Nicht Teil der Masterarbeit:

 Entwicklung von besseren Verfahren zur Personenerkennung (technische Informatik), sondern Benutzung von Personenerkennung als Werkzeug für die Validierung (angewandte Informatik)

Ziel für AW1

- Einarbeitung in die Grundlagen der Personenerkennung
- Speziell: Personenerkennung in Situationen mit leichten bis starken Verdeckungen
 - → z.B. Evakuierungen
- Klärung der Machbarkeit der Idee und möglicher Probleme

Gliederung

- Einleitung
 - Mikroskopische Evakuierungssimulationen
 - WALK-Projekt
 - (Bisherige) Idee für die Masterarbeit
 - Ziel für AW1
- Personenerkennung in Videos
 - Anwendungsbereiche
 - Anforderungen an die Personenerkennung für meine Idee
 - Probleme bei der Erkennung von Personen
 - Generelles Vorgehen zur Objekterkennung
 - Ansätze zur besseren Erkennung bei (teilweisen) Verdeckungen
 - Vorstellung einiger Ansätze
- Bewertung des Forschungsstandes
 - Risiken
 - Zuverlässigkeit von Personenerkennung
 - Fazit
- Konferenzen & Literaturliste

Anwendungsbereiche

- Bisherige Anwendungsbereiche sind u.a.:
 - Unterhaltung
 - Z.B. Xbox 360 mit Kinect
 - Überwachung
 - · Z.B. Überwachung von gesperrten Bereichen
 - Fahrzeugsicherheit
 - · Z.B. Warnung bei Erkennung von Fußgängern

Anforderungen an die Personenerkennung für meine Idee

- Minimale Funktionalität:
 - Personen werden erkannt
 - Positionen von Personen sind bestimmbar
 - → Ermöglicht einfache Validierung auf Makroebene
 → Vergleich von Anzahl an Agenten in bestimmten Bereichen
- Optionale Funktionalität:
 - Personen werden auch wiedererkannt -> Geschwindigkeit von Personen bestimmbar
 - Ausrichtung von Personen bestimmbar
 - → Ermöglicht genauere Validierung auf Makroebene
 - → Vergleich von durchschnittlichen Ausrichtungen, Geschwindigkeiten, Positionen, ...

Anforderungen an die Personenerkennung für meine Idee

- Weitere wichtige Anforderungen:
 - Hohe Erkennungsraten und niedrige Fehlalarme auch bei Verdeckungen (leicht bis schwer)
 - · Validierung soll möglichst genau sein
- Unwichtig:
 - Hohe Geschwindigkeit der Bestimmung
 - · Personenerkennung muss nicht in Echtzeit erfolgen

Anforderungen für die Personenerkennung für meine Idee

- Es stehen nur 2D-Aufnahmen von Überwachungskameras zur Verfügung
 - Viele moderne Verfahren setzten auf Tiefeninformationen (z.B. Stereo-Kameras)
- Die Qualität der Aufnahmen kann schlecht sein
 - Z.B. niedrige Auflösung und schlechte Kontraste
- Auf den Aufnahmen können große Menschenmenge zu sehen sein
 - Viele Verdeckungen möglich
- Personen laufen möglicherweise
 - Aussehen kann sich stark von normalen Fußgängern unterscheiden

Probleme bei der Personenerkennung

- Große Unterschiede im Aussehen der Personen durch:
 - Körperhaltung und Rotation
 - Kleidung
 - Rucksäcke & Taschen
 - Kamerawinkel
- Verdeckungen der Personen:
 - Durch anderen Personen
 - Durch Objekte der Umgebung
 - Durch sich selbst (z.B. Arm vorm Gesicht)

Generelles Vorgehen zur Objekterkennung

- Trainieren mit positiven und negativen Beispielbildern des Objektes:
 - Neuronales Netzwerk
 - Support Vector Machine
 - AdaBoost (adaptive Boosting)
 - → Klassifikator
- Suchen von Treffern in den Einzelbildern des Videos:
 - Z.B. mit Sliding Window und einem Klassifikator
 - Fenster wird über Bild geschoben und jeweils mit dem Klassifikator entschieden, ob es sich um das Objekt handelt oder nicht

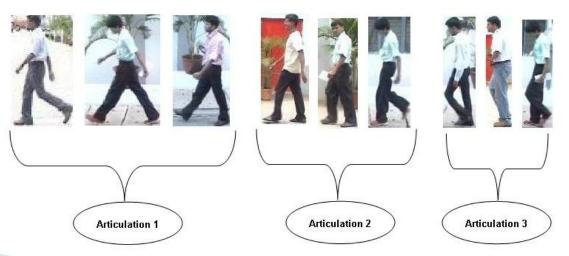
Ansätze zur besseren Personenerkennung bei (teilweisen) Verdeckungen

Generelle Frage:

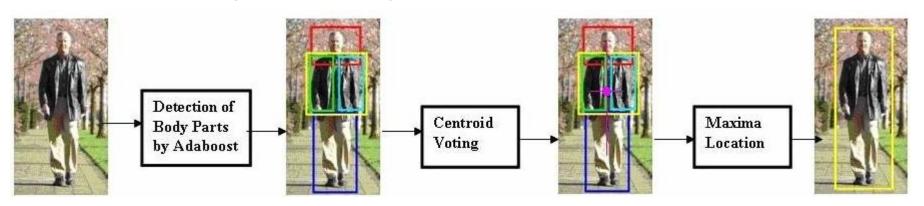
 Wie lässt sich eine Person erkennen, wenn sie nur teilweise sichtbar ist?

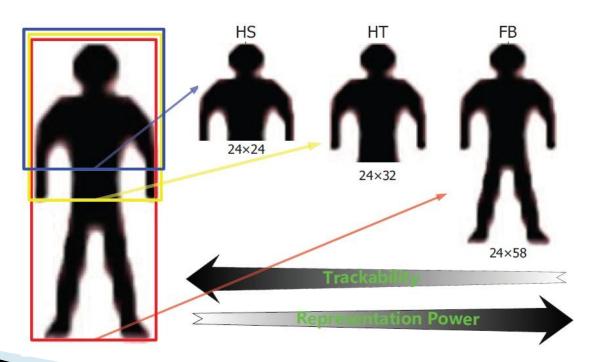
Hauptidee:

- Unterteilung der Person in kleinere Teile und Erkennen dieser Teile
 - Aus erkannten Körperteilen oder Formen lässt sich auf eine Person schließen, auch wenn sie teilweise verdeckt ist


- Lernen einzelner explizit definierter Körperteile
 - Klassifikatoren für z.B. Kopf & Schultern, Torso, Arme, Beine, ganzer Körper
 - Bestimmung der räumlichen Verteilung der Körperteile
 - zur Bestimmung des Zentrums des Körpers

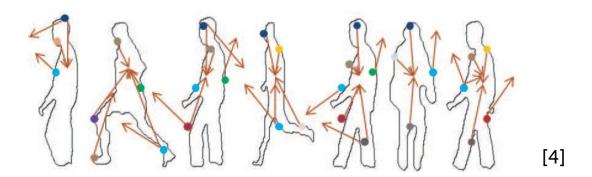
Für jedes Körperteil 8 Ausrichtungen lernen


Zusätzlich für die Beine 3 Haltungen lernen


[3]

[3]

- Ablauf der Erkennung:
 - Erkennung der Körperteile
 - Anhand bekannter räumlicher Verteilung stimmen Körperteile für das Zentrum des Körpers
 - Größte Anzahl an Stimmen → Zentrum des Körpers
 - Bestimmung der Bounding Box



- Eine weitere Möglichkeit zur Aufteilung
 - Kopf–Schulter
 - Kopf–Torso
 - Ganzer Körper
- Für jeweils linke, rechte, frontale Ansicht

Weitere Ansätze

- Lernen von Körperhaltungen für die Segmentierung und lokalen Verteilungen von Formen im menschlichen Umriss
 - Inkl. Position in Bezug auf das Zentrum des Körpers
 - Inkl. wahrscheinlichsten zur Form passender Umriss des Körpers

Bestimmung des Zentrums durch Mehrheitsentscheid

Weitere Ansätze

Tracking von "Interest Points"

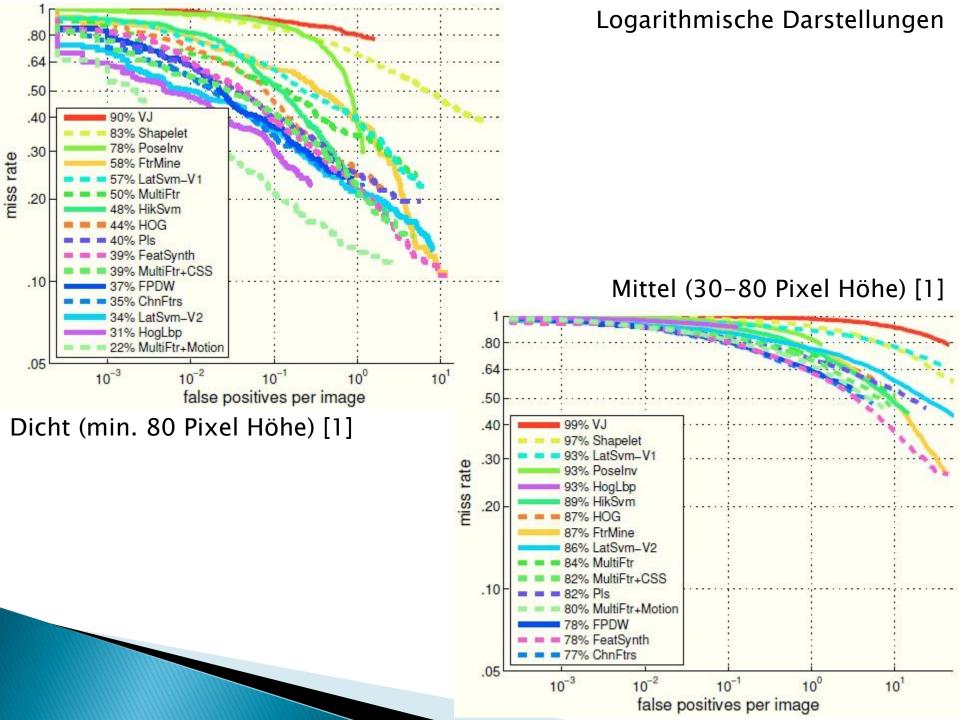
[6]

 Ermittlung des Skelett-Graphen (Denaulay Triangulation) und Bestimmung des Kopfes

Gliederung

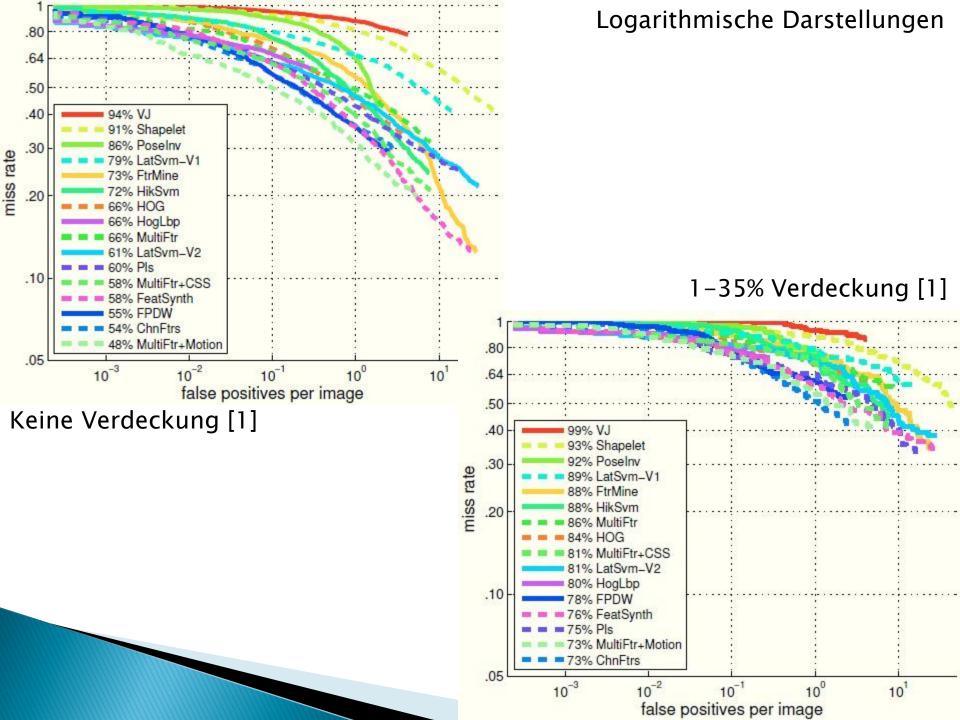
- Einleitung
 - Mikroskopische Evakuierungssimulationen
 - WALK-Projekt
 - (Bisherige) Idee für die Masterarbeit
 - Ziel für AW1
- Personenerkennung in Videos
 - Anwendungsbereiche
 - Anforderungen an die Personenerkennung für meine Idee
 - Probleme bei der Erkennung von Personen
 - Generelles Vorgehen zur Objekterkennung
 - Ansätze zur besseren Erkennung bei (teilweisen) Verdeckungen
 - Vorstellung einiger Ansätze
- Bewertung des Forschungsstandes
 - Risiken
 - Zuverlässigkeit von Personenerkennung
 - Fazit
- Konferenzen & Literaturliste

Risiken


- Zu viele nicht erkannte oder fälschlicherweise erkannte Personen
 - Simulation wird mit zu stark von der Realität abweichenden Daten validiert
 - Falsche Anzahlen von Personen in Bereichen, Dichten
 - Falsche Positionen, Ausrichtungen, Geschwindigkeiten
 - Simulation wird an falsche Daten angepasst
 - Trotz Validierung weicht das Verhalten der Simulation zu stark von der Realität ab
 - Die Validierung ist möglicherweise ungenauer als eine subjektive Bewertung der Simulation
 - → Das Validierungsverfahren ist nicht brauchbar

Zuverlässigkeit von Personenerkennung

- Aktuell (2011): Großer Test zum Stand der Technik
- Vergleich der Zuverlässigkeit (Erkennungsraten, Fehlerraten) von 16 repräsentativen Verfahren (State-of-the-Art) zur Fußgängererkennung
- Eigenes Daten-Set (Caltech Pedestrian Dataset):
 - Auto mit Kamera in Bereichen von Los Angeles mit hohen Fußgängerdichten (nachträglich stabilisiert)
 - 250.000 ausgesuchte Einzelbilder (137 Min., 640x480)
 - 2.300 Fußgänger, 350.000 Bounding Boxes
 - 29% nie verdeckt, 53% manchmal verdeckt, 19% immer verdeckt, 70% in min. 1 Frame verdeckt
- Nicht in den Test mit eingezogen:
 - Bounding Boxes < 20 Pixel Höhe
 - Von den Rändern beschnittene Bounding Boxes
 - Große Gruppen bei denen es nicht möglich war Bounding Boxes für Individuen zu erstellen
 - Wenn selbst durch Menschen nicht eindeutig als Fußgänger identifizierbar


Zuverlässigkeit von Personenerkennung

- Ergebnisse:
 - Nicht-Erkennungsrate, nur 1 Fehlalarm pro 10 Einzelbilder erlaubt
- Abhängigkeit von der Entfernung (Größe der Fußgänger):
 - Jeweils keine Verdeckungen
 - Selbst bei sehr guten Voraussetzungen sind die Ergebnisse nicht perfekt:
 - Dichte Fußgänger (min. 80 Pixel Höhe)
 - 22% werden vom besten Verfahren nicht erkannt
 - Wenige Erkennungen für mittlere Entfernungen:
 - Mittlere Entfernung (30–80 Pixel Höhe)
 - 77% werden vom besten Verfahren nicht erkannt
 - Sehr wenige Erkennungen für weite Entfernungen:
 - Weite Entfernung (< 30 Pixel Höhe)
 - 95% werden vom besten Verfahren nicht erkannt.

Zuverlässigkeit von Personenerkennung

- Abhängigkeit von der Verdeckung:
 - Mehr als die Hälfte nicht erkannt ohne Verdeckung:
 - Mittlere bis dichte Entfernung (min. 50 Pixel Höhe)
 - Keine Verdeckung
 - 48% werden vom besten Verfahren nicht erkannt
 - Wenige Erkennungen bei teilweiser Verdeckung:
 - Mittlere bis dichte Entfernung (min. 50 Pixel Höhe)
 - 1–35% des Körpers verdeckt
 - 73% werden vom besten Verfahren nicht erkannt
 - Sehr wenige Erkennungen bei starker Verdeckung:
 - Mittlere bis dichte Entfernung (min. 50 Pixel Höhe)
 - 35–80% des Körpers verdeckt
 - 93% werden vom besten Verfahren nicht erkannt

Fazit

- Selbst ohne Verdeckungen lassen sich höhere Erkennungsraten nur durch Inkaufnahme von vielen Fehlalarmen erreichen
 - Wie viele Nicht-Erkennungen und Fehlalarme sind hinnehmbar für eine sinnvolle Validierung?
- Für die Idee sollen Aufnahmen von Überwachungskameras ausgewertet werden:
 - Kleine Personen (bei großen überwachten Bereichen)
 - Verdeckungen sehr wahrscheinlich
- Ob die Idee mit den heutigen Verfahren umsetzbar ist, ist deshalb fraglich!

Konferenzen

- AVSS
 - IEEE International Conference on Advanced Video and Signal Based Surveillance
- CVPR
 - IEEE Conference on Computer Vision and Pattern Recognition
- DICTA
 - International Conference on Digital Image Computing: Techniques and Applications
- ECCV
 - European Conference on Computer Vision
- ICCV
 - International Conference on Computer Vision
- MULTIMEDIA
 - International Conference on Multimedia
- Und weitere...

Literaturverzeichnis

- [1] Dollar, P.; Wojek, C.; Schiele, B.; Perona, P.: Pedestrian Detection: An Evaluation of the State of the Art. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2011), Nr. 99, S. 1-20. Online verfügbar unter: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5975165&isnumber=4359286
- [2] Merad, Djamel; Aziz, Kheir Eddine; Thome, Nicolas: Fast People Counting Using Head Detection From Skeleton Graph. In: 2010 Seventh IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Boston, MA, USA: IEEE Computer Society, 2010. S. 233-240. Online verfügbar unter: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5597136&isnumber=5597063
- [3] Rao, Supriya; Pramod, N. C.; Paturu, Chaitanya Krishna: People detection in image and video data. In: *Proceeding of the 1st ACM workshop on Vision networks for behavior analy*sis (VNBA '08). New York, NY, USA: ACM. S. 85-91. Online verfügbar unter: http://doi.acm.org/10.1145/1461893.1461909
- [4] Rodriguez, Mikel D.; Shah, Mubarak: Detecting and segmenting humans in crowded scenes. In: Proceedings of the 15th international conference on Multimedia (MULTIMEDIA '07). New York, NY, USA: ACM, 2007. S. 353-356. Online verfügbar unter: http://doi.acm.org/10.1145/1291233.1291310
- [5] Seemann, E.; Fritz, M.; Schiele, B.: Towards Robust Pedestrian Detection in Crowded Image Sequences. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007. Minneapolis, MN, USA: IEEE Computer Society, 2007. S. 1-8. Online verfügbar unter: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4270325&isnumber=4269956
- [6] Sherrah, Jamie: Occluded Pedestrian Tracking Using Body-Part Tracklets. In: 2010 International Conference on Digital Image Computing: Techniques and Applications (DICTA). Sydney, NSW, Australien: DICTA 2010 Organisation Committee, 2010. S. 314-319. Online verfügbar unter: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5692582&isnumber=5692215
- [7] Xing, Junliang; Ai, Haizhou; Lao, Shihong: Multi-object tracking through occlusions by local tracklets filtering and global tracklets association with detection responses. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. Miami, FL, USA: IEEE Computer Society, 2009. S. 1200–1207. Online verfügbar unter: http://ieeexplore.ieee.org/stamp/stamp.isp?tp=&arnumber=5206745&isnumber=5206488

Fragen?