

Framework zur Interaktion im virtuellen Raum

Olaf Potratz

Ringvorlesung - Seminarvorträge Wintersemester 2012 / 2013

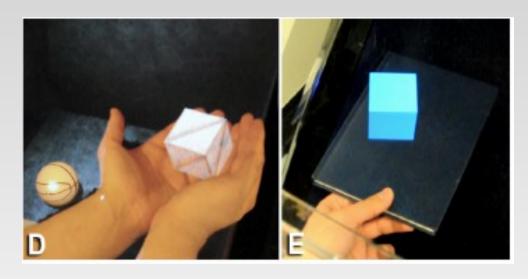
Übersicht

- Motivation
- Rückblick
- Aktueller Stand
- Ziele der Masterarbeit
 - Framework
 - Testszenarien
- Chancen und Risiken

Motivation

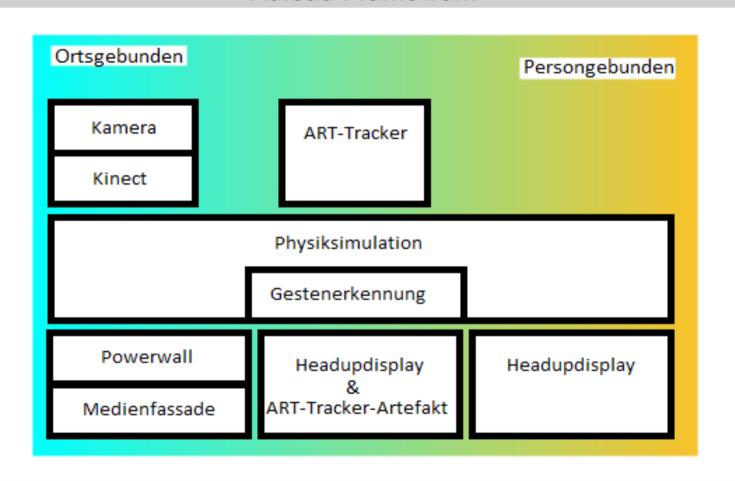
Motivation

- Ein Framework zur Mensch-Maschine Interaktion im Raum
- Kommunikation mittels Gesten
- Akteur soll ohne Hilfsmittel auskommen können
- Gesten sollen im Kontext ausgewertet werten
- Vermeidung komplizierter Auswertungsstrategien der Gesten



Rückblick

Anwendungen 1 & 2


- Medienfassaden
- Outdoor Tracking
- Related Work
 - HoloDesk: Direct 3D Interactions with a Situated SeeThrough Display
 - u.A.

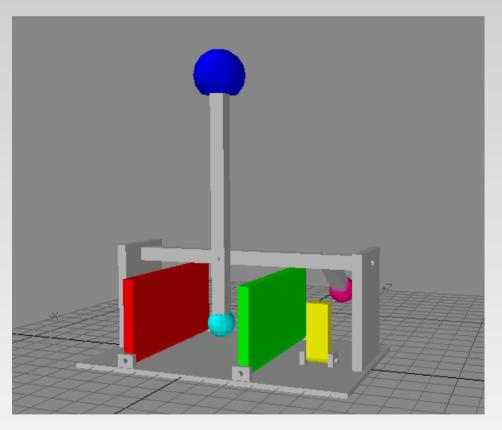
[Abbildung1]

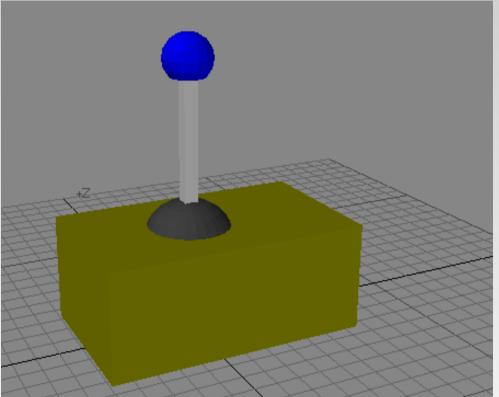
Aufbau Framework

Projekt 1

- Auswahl der Programmiersprache (C#, XNA 4.0)
- Auswahl Physik-Engine
 - Kollisionserkennung
 - Schwerkraft
 - Reibung
- Aufbau der Physiksimulation
- Einbindung von ART-Tracker
- Einbindung von Kinect

Aktueller Stand



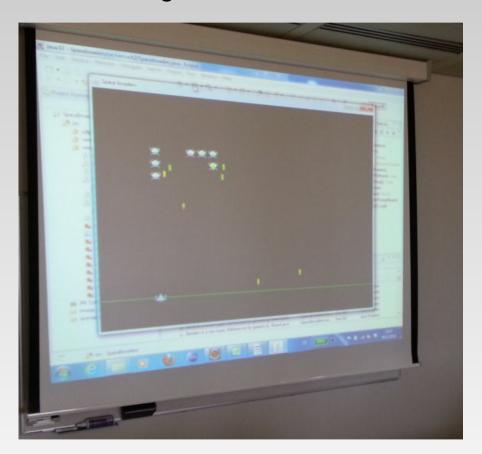

Wo stehe ich?

- ART-Tracker und Kinect Adapter implementiert
- Physikraum ist implementiert
- Erstellung erster Physikobjekte abgeschlossen
 - Hebel
 - Joystick
- Erkennung der Manipulation des Joysticks
- Steuerung von "Space-Invader"-Clone mittels Joystick
- Fehlende Ausgabe der Physiksimulation als 3D-Grafik
 - Repräsentation des Joysticks in "Hardware"

Simulation des Joysticks



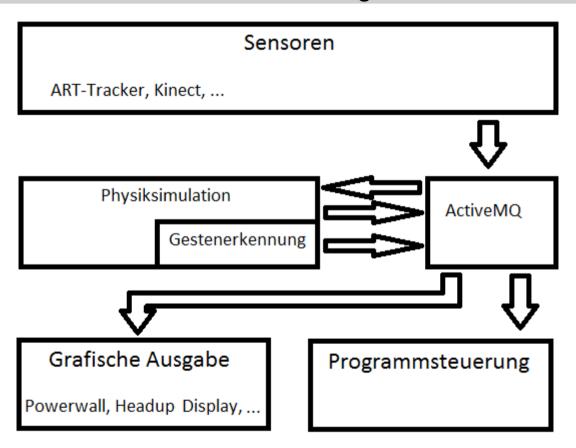
Physikobjekt


3D-Grafikobjekt

Alphatest Gestensteuerung

"Hardware"-Joystick

"Space-Invader"-Clone



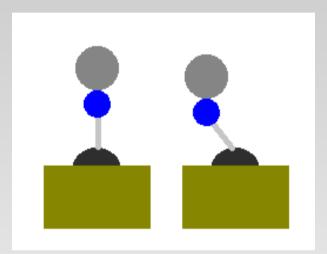
Woran arbeite ich jetzt?

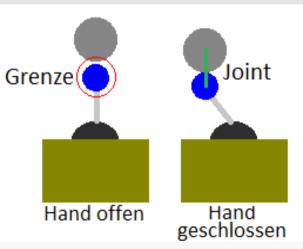
- Kommunikation über ActiveMQ
- Grafische Ausgabe über Headup Display
- Varianten der Aktorinteraktion

Aufbau mit MessageMQ

Mounded Headup Display

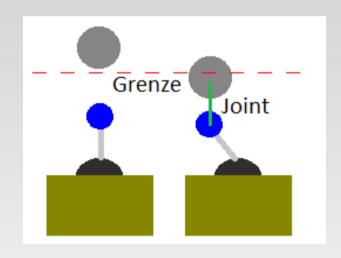
- Tracking via ART-Tracker
- Position und Lageberechnung
- Grafikberechnung anhand:
 - Ausrichtung des MH-Displays
 - Position der Physikobjekte


Ziel: "Mixed reality"



Varianten der Aktorinteraktion I

- Reibung
 - Aktor berührt Physikobjekte
 - Physiksimulation errechnet Reibung
 - Manipulation ausschließlich durch Reibungskräfte
- Greifgeste
 - Hand offen / Hand geschlossen
 - Offene Hand: Aktor kollidiert nicht mit Physikobjekten
 - Geschlossene Hand: Aktor wird mit Physikobkjekt fest verbunden



Varianten der Aktorinteraktion II

Räumliche Annährung

- Berechnung der Distanz zwischen Aktor und Physikobjekt
- Nach Grenzwertunterschreitung erfolgt die Ausrichtung des Physikobjekt in Richtung des Aktors
- Es wird ein Joint zwischen Aktor und dem Objekt erstellt
- Überschreitet die Distanz den Grenzwert wieder, wird der Joint entfernt

Ziele der Masterarbeit

Framework

- Beschreibung des Meta-Modells
- Festlegung erforderlicher Eigenschaften der Physik-Engine
- Definition von Schnittstellen für Ein / Ausgabegeräte
- Entwicklung eines GUI-Editors zum Positionieren der Physikobjekte
- Testen der Physikobjekte auf Nutzbarkeit mit Hilfe einer "Schalttafel"

Schalttafel

- Sensoren
 - ART-Tracker
 - Kinect
- Physikobjekte
 - Rad
 - Hebel
 - Schieber
 - · . . .

- Ausgabe der Physiksimulation
 - Headup Display
 - Powerwall
- Ausgabe der Programmsteuerung
 - Powerwall

Szenario - Weltraumsimulation

- Sensoren
 - ART-Tracker
 - Kinect
- Physikobjekte
 - Joystick (Steuerung)
 - Hebel (Stellung der Flügel, Fahrwerk)
 - Schieber (Geschwindigkeit)
- Ausgabe der Physiksimulation
 - Headup Display
- Ausgabe der Programmsteuerung
 - Powerwall
 - Steuerung einer Raumschiffsimulation

Chancen und Risiken

Chancen

- Themengebiet ist sehr aktuell
- Räumliche Gestensteuerung nicht mehr nur für Spiele
- Neue Sensoren sind / kommen auf dem Markt
 - Asus Xtion Motion
 - Kinect 2 (ab 2013)
- Neue Ausgabemedien
 - Google Projekt Glass (ab 2013)

Risiken

- Umsetzung benötigt zuviel Zeit
- Reaktionsverzögerung der Sensoren zu hoch
- Testpersonen
- Test in Laborumfeld

Vielen Dank für Ihre Aufmerksamkeit! Fragen?

Abbildungsverzeichnis

Abbildung 1: http://doi.acm.org/10.1145/2208276.2208405

Quellenverzeichnis

• Hilliges, Otmar u.a. "HoloDesk: direct 3d interactions with a situated see-through display". In: Proceedings of the 2012 ACM annual conference on Human Factors in Computing Systems. CHI '12. Austin, Texas, USA. ACM, 2012, S. 2421-2430. URL: http://doi.acm.org/10.1145/2208276.2208405