
A Concrete Solution for Web Services Adaptability
Using Policies and Aspects

Fabien Baligand1
Ecole des Mines de Nantes

4 rue Alfred Kastler
44307 Nantes, France
+33 (0)6 64 64 86 26

fbaligan@eleve.emn.fr

Valérie Monfort2

Université Paris 1 Sorbonne
90 rue de Tolbiac

75013 Paris, France
+33 (0)6 74 94 89 17

v-monfort@mdtvision.com

1, 2
IBM, MDTVision

31, Avenue de la Baltique
91954 Les Ulis, France

ABSTRACT
Traditional middleware is usually developed on monolithic and non-
evolving entities, resulting in a lack of flexibility and
interoperability. Among current architectures, Service Oriented
Architectures aim to easily develop more adaptable Information
Systems. Most often, Web Service is the fitted technical solution
which provides the required loose coupling to achieve such
architectures. However there is still much to be done in order to
obtain a genuinely flawless Web Service, and current market
implementations still do not provide adaptable Web Service
behavior depending on the service contract. Therefore, our approach
considers Aspect Oriented Programming (AOP) as a new design
solution for Web Services. Based on both WSDL and Policies
contracts, this solution aims to allow better flexibility on both the
client and server side. In this paper we expose our technical and
concrete solution using Axis as the SOAP Engine, WSS4J as the
WS-Security handler, and Javassist to weave some non-functional
security aspects depending on the policies requirements.

Categories and Subject Descriptors
D.2.12 [Interoperability]: Distributed objects

General Terms: Languages, Experimentation.

Keywords: Service, Web Service, Adaptability, Reusability,
Aspect Oriented Programming, Service Oriented Architecture.

1. INTRODUCTION
Companies are faced with economic challenges which require
Information Systems (IS) changes. They are buying new companies,
externalizing departments. They are faced with Time to Market
constraints and strong competitiveness. Moreover, companies have
to communicate with distant IS as partners, suppliers, etc.
Consequently, they need to exchange data through workflows in
heterogeneous contexts. To illustrate this matter of fact, the Service
Oriented Architecture (SOA) concept has emerged and aims to give
methodological and technical answers for these concerns [14].

Among the different notions gathered in this concept, the Service
paradigm leads the spirits, symbolizing the loose coupling that SOA
aims to provide. Recently, a new middleware technology, namely
Web Service, was born to bridge heterogeneous systems. Even
though Web Services are not the only way to model the Service
paradigm, they are likely to be one of the major technologies used to
achieve both the interoperability and loose coupling required for
SOA.

In this context, Web Service technology is asked to handle the same
features as components from the DCOM, J2EE or CORBA worlds
already handle. These features, such as security, reliability, or
transactional mechanisms, can be considered as non-functional
aspects. Obviously these aspects are crucial for business purposes
and one cannot build any genuine IS without consideration for them.

However, managing these aspects is likely to involve a great loss in
interoperability and flexibility. This effect has already been
experienced with various middleware technologies. Mostly,
middleware delegates these tasks to the underlying platform, hiding
these advanced mechanisms from the developer, and then
establishing a solid bond between the application and the platform.

Thus, a great deal of work is required to make Web Service fully
appropriate for industry. Especially, mechanisms in charge of
handling non-functional tasks must preserve seamless
interoperability.

Our industrial experiences lead us to model and implement
Extended Enterprise. We used Web Services to cross BizTalk Server
and J2EE WebSphere platforms. Our conclusion is that none of
these two major platforms provide a flawless Web Service model
with the ability to adapt seamlessly to non-functional concerns. Our
study of Web Services norms based on industrial cases and the
feedback we received allowed us to define and implement a new
pragmatic solution to handle these aspects with great care to
preserve interoperability and reusability.

In this paper, we will first introduce the different Web Service
principles and norms, before discussing the issues encountered
when developing with current Web Services solutions. Next, we will
describe ideas and concepts that can provide an answer for a better
interoperability and reusability in Web Service world. Then, our
technical solution towards more flexible Web Services will be
presented. Finally, we will give an idea about the current limitations
of our work and we shall conclude.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ICSOC'04, November 15-19, 2004, New York, New York, USA.
Copyright 2004 ACM 1-58113-871-7/04/0011...$5.00.

134

2. WEB SERVICES PRINCIPLES AND
NORMS
2.1 Web Service as a Service Implementation
Web Services, like any other middleware technologies, aim to
provide mechanisms to bridge heterogeneous platforms, allowing
data to flow across various programs. The Web Service technology
looks very similar to what most middleware technologies look like.
Consequently, each Web Service possesses an Interface Definition
Language, namely Web Service Definition Language (WSDL),
which is responsible for the message payload, itself described with
the equally famous protocol SOAP, while data structures are
explained by XML Schemas [13].

In fact, the winning card of this technology is not its mechanism but
rather the standards upon which it is built. Indeed, each of these
standards is not only open to everyone but, since all of them are
based on XML, it is pretty easy to implement these standards for
most platforms and languages. For this reason, Web Services are
highly interoperable and do not rely on the underlying platform they
are built on, unlike many Object Remote Procedure Call (ORPC).
According to a vast majority of industrial leaders, Web Service is
likely to become the best fitted technology for implementing Service
Oriented Architectures. Figure 1 illustrates how this technology can
suit to the service layer of Service Oriented Architectures.

User
Interface

Layer

Service
Layer

Business
Logic Layer

Data
Access
Layer

Service

Service

Business
Object

Business
Object

Business
Object

Business
Object

Business
Object

Figure 1. Example of Service Oriented Architecture model.

2.2 The Message Contract
Web Services provide a minimalist mechanism to interconnect
different applications. But one fundamental point is the importance
of the WSDL being the exact interface of the system. As we said
earlier, most of ORPC take a great care of hiding the message layer
details from the developer. This approach breaks down when the
applications involved do not lay on the same middleware
infrastructure, and when interoperability becomes a major concern,
traditional ORPC fail to achieve this properly. With Web Services,
the message contract (WSDL) is the central meeting point which
connects applications. The WSDL contract constitutes the design
view upon which developers can generate both client and server
sides (proxy and stub), as can be seen in figure 2.

2.3 The Business Features
Now Web Services have to incorporate new features so they can
face any challenge associated with usual business contexts. This
reality is translated by tremendous efforts to establish standards
concerning each of these non-functional aspects. The roadmap of
these efforts is guided by the Web Service Architecture as shown in
figure 3.

XML WSDL
Stub

WSDL

WSDL
Proxy

Machine A Machine B

Invoke Web Service

Figure 2. WSDL as a starting point for client and service

generation.

Messaging

Security Reliable
Messaging Transaction

M
et

ad
at

a

XML

Figure 3. Web Service Architecture.

Works underway aim to establish specifications related to
Messaging, Security, Reliability, Transactional and Metadata
concerns. These are the main aspects which should provide Web
Services with genuine business features. Let us give a brief overview
of these main specification domains:

- Messaging specifications deal with message transport properties
and especially provide an abstract transport mechanism between
Web Services (WS-Addressing). Message attachments are also
specified in this area of concern.

- Security is of course the major concern that Web Services are
expected to handle. The main capabilities offered by WS-Security
are message signatures, message encryption and authentication with
token or certificates (X509, Kerberos, etc.). Many other
specifications are underway to enable creation of trusted areas and
answer other specific situations.

- Reliable Messaging provides mechanisms to take care of the
successful reception of multiple messages sent from one end to the
other end.

- Transactional domain is responsible for bringing to Web Services
the specifications related to business coordination, like the two
phase commit.

At this point, it is essential to note that every specification, except
those related to Metadata, aim to describe the expected content of
the header belonging to messages delivered by Web Services. For
instance, if a user needs to be authenticated to use some Web
Service methods, he will have to add a token in the header of the
SOAP messages sent to this Web Service. Conversely, the Web

135

Service will have to get the token from the SOAP header and
validate the authentication. Both client and service know how to
insert and collect the token because the header message is fully
explained by an appropriate specification: WS-Security.

Metadata specifications especially tackle WSDL and Policies. As we
have already discussed above, WSDL constitutes a message contract
which explains the different structures and endpoints involved in
reaching any Web Service. However, if we only consider WSDL,
there is still a missing piece to make a Web Service work properly.
For instance, if a Web Service requires authentication, this
requirement has to be fully declared, otherwise the communication
will fail at runtime. In other words, we need data whose role is to
provide a genuine service contract. Hopefully Policies provide a
flexible and extensible framework for expressing the abilities,
requirements, and preferences of entities in a Web Services-based
system.

Without Policies, there would be no way for the Web Service to
express its requirements concerning non-functional aspects. Policies
impact on both client and service. They need to be handled in order
to achieve real interoperability between the two parties.

Now, let us focus on the issues encountered when using the current
toolkits.

3. CURRENT FLEXIBILITY ISSUES
3.1 Toolkits Handling Business Features
In order to provide the missing business features required to
leverage Web Service technology, a first set of tools has emerged.
Built on top of both platforms .NET and J2EE, Microsoft and IBM
have implemented their own toolkit with regards to the Web Service
specifications.

Web Services Enhancements for Microsoft .NET (WSE) [16] is a
supported add-on to the Microsoft .NET Framework providing
developers the latest advanced Web Services capabilities such as
security, security policy, addressing, routing, and attachments.
Instead of using a regular Web Service proxy, a new class, namely
Microsoft.Web.Services.WebServicesProtocol, enables the
treatment of advanced mechanisms performed by an enhanced
proxy. Whenever a message is to be sent or received, it has to go
through the enhanced proxy which acts according to the SOAP
context of the message.

The Emerging Technologies Toolkit (ETTK) [17] is a software
development kit for designing, developing, and executing emerging
autonomic and Web Service technologies. It provides an
environment in which to run emerging technology examples that
showcase recently announced specifications and prototypes from
IBM's emerging technology development and research teams. Based
on Axis [18], ETTK processes messages through handlers in chain.
One particular chain enables developers to insert their own message
managers, such as security handlers. A MessageContext object is
included in outgoing messages and is extracted from incoming
messages, as shown on figure 4. The handlers in charge of the
transformations are specified in a Web Service Deployment
Descriptor (WSDD) file.

Plain SOAP Message

Enhanced SOAP
Message

Filter 1 (e.g.
Security)

Filter 2 (e.g.
Transaction)

SOAPWebRequest MessageContext

Outbound
Filters

Specified
in the

WSDD file

Figure 4. SOAP message filtering.

These toolkits look quite similar in the sense that they operate and
compute messages following the same principles that can be seen in
figure 5 below. SOAP Engines are composed of filters (SOAP
handlers) whose main role is to perform transformations on the
SOAP message, depending on parameters included in the header.
The SOAP headers are in charge of delivering the context of the
message (authentication tokens, reliable messaging properties, etc.).

ServiceClient
Internet

//
Intranet

SOAP Engine

SOAP handlers

SOAP Engine

SOAP handlers
Figure 5. SOAP message processing overview.

3.2 Some Concrete Implementations
In order to understand more precisely the mechanisms and the
architecture, let us see some code samples from our Extended
Enterprise implementation. This case was originally developed for
an automotive company to implement its relationship with partners
and distant workshops. In this scenario, we tried to expose two
major non-functional aspects often required in business
architectures: Security and Routing. The Security aspect is
illustrated when a Java JSP client wants to submit to a .NET Web
Service some encrypted data with an X509 certificate. To achieve
such a mechanism it is necessary to configure the ETTK client.
Indeed, as explained previously, ETTK uses handlers to transform
the message during the specific treatment layer process. Therefore,
we need to add a specific security handler as shown below.

<handler name="handler-SS"
type="java:com.ibm.wstk.axis.handlers.SecuritySender">

<parameter name="configPath"
value="services/demos/encclient/deployment/handler-config.xml"/>

…

</handler>

136

Next the configuration of this handler must be specified in the
handler-config.xml configuration file (referenced above).

<DecryptionKeys>
<KeyStore type="jks" path="../common/demo.jks"
storepass="password">
<Key alias="demokey" keypass="password"/>
</DecryptionKeys>

On the .NET side, the developer needs to create a method whose
role is to add the certificate corresponding X509 token to the
reception context.

SoapContext repContext = HttpSoapContext.ResponseContext;
X509SecurityToken x509token = GetSecurityToken();
if (x509token != null)
{
 repContext.Security.Tokens.Add(x509token);
 repContext.Security.Elements.Add(new Signature(x509token));
}

Eventually if the .NET Web Service replies using encryption, it will
also have to add this token to the sending context. Communication
between client and server will then be totally encrypted and the
messages will be successfully processed through the different filters
of both platforms thanks to interoperability specifications.

Similar mechanisms occur with the routing aspect. In our case study,
SOAP messages are sent to an endpoint and the engine decides,
depending on a value written in the SOAP header, which underlying
Web Service will have to process the message. Once again the
developer has to develop handlers for both the Java and .NET sides
and to specify them when the service is deployed. The code below
shows the implementation of the .NET handler inheriting from
RoutingHandler.

public class Route : RoutingHandler

{

 protected override void ProcessRequestMessage(SoapEnvelope message,
Path outgoingPath)

 {

 string valueX = message.Header.GetElementsByTagName("valueX
")[0].InnerText;

 if (IsLimitReached(valueX))

 {

 Via ws1 = new Via(new Uri("http://localhost/ws1.asmx"));

 outgoingPath.Fwd.Insert(0, ws1);

 } else …

Once implemented, this file must be registered in the web.config file
in charge of the Web Service configuration.

<system.web>
 <httpHandlers>
 <add type="ns1.Route, ns1" path="*.asmx" verb="*" />
 </httpHandlers>…

3.3 Issues Encountered With These Designs
As we can see, both solutions do not automatically answer to the
service contract wishes. Indeed, there is no mechanism that allows
developers to create policy-adaptable Web Services, and this causes
a major lack of flexibility. With these approaches, if policies are to
change, or if a Web Service has to handle two different policies
from different clients then it will fail at runtime.

The reason is: for both platforms, handling business features
necessarily implies deploying certain handlers. Thus, Web Services
and clients are asked to answer properly to any policy requirement
as soon as they are coded and deployed. For instance, if a Java Web
Service is asked to support different kinds of security tokens or
certificates depending on its clients, it will not be able to deal
properly with each of them because specific handlers have already
been deployed along with the service. Also, if a .NET client using
WSE needs to transmit a Kerberos token along with the outgoing
message, it will have to add some non-functional code within its
own code, with no consideration for the separation of concern
approach [7].

Therefore, current Web Service design cannot help Service Oriented
Architectures to accomplish full interoperability. Non-functional
features, such as security, routing, reliability, and transactions,
cannot be defined once for all when developing or deploying an
application. Otherwise Web Services will become as monolithic as
previous middleware technologies were. In other words, features
that Web Services are asked to provide will become strongly
coupled with the application. Designers and developers need Web
Services that can automatically adapt to policies.

Knowing these issues, we can now examine how policies and
aspects can help to fix them by providing both the data and the
mechanisms to achieve adaptable Web Services.

4. TOWARDS MORE FLEXIBLE WEB
SERVICES
4.1 Aspect Oriented Programming
Our technical approach to current Web Service solutions enabled us
to notice two major facts which are at the root of Web Service’s lack
of flexibility. First, there is no dynamic mechanism to bind policies
and Web Service handlers. Secondly, there is no clean separation of
concerns between the functional and the non-functional code, and
also between SOAP logic within handlers and non-functional logic
within handlers, as figure 6 shows.

Once the client or service is coded and the handlers are deployed,
the Web Service cannot handle new features and, because the
different logics are tangled up, it is not easy for another developer to
reuse the application in a different context. Consequently, an
appropriate way to deal with these crosscutting concerns [9] would
be to use different units of modularization to encapsulate these
logics [5]. Moreover, if these units of modularization could be
managed by a dynamic mechanism, then the whole system would be
able to dynamically reconfigure itself depending on the policies [2].

137

SOAP logic Business logic

SOAP Engine

string valueX =
message.Header.GetElementsByTag
Name("valueX ")[0].InnerText;
 if (IsLimitReached(valueX))
 {
 Via ws1 = new Via(new
Uri("http://localhost/ws1.asmx"));
 outgoingPath.Fwd.Insert(0,
ws1);

ReqContext.Security.Elements.Add
(new EncryptedData(tok));
X509SecurityToken x509token =
RetrieveX509ClientToken();
ReqContext.Security.Tokens.Add(x
509token);
ReqContext.Security.Elements.Add
(new Signature(x509token));

service.CallInventory(amount,
item);

Non functional
aspects handling

logic

Client or Service

 Figure 6. Tangled logics within SOAP Services.

These requirements lead us to consider Aspects Oriented
Programming (AOP) as an answer to Web Services reusability
issues [3, 4]. AOP is one of the most promising solutions to the
problem of creating clean, well-encapsulated objects without
extraneous functionality. It allows the separation of crosscutting
concerns into single units called aspects, which are modular units of
crosscutting implementation. With AOP, each aspect is expressed in
a separate and natural form, and can be dynamically combined
together by a weaver. As a result, AOP widely contributes to
increased reusability of the code and provides mechanisms to
dynamically weave aspects.

Considering Web Services, non-functional aspects handling logic
should be encapsulated within multiple aspects. Each aspect would
be in charge of certain features, such as security, and would deal
directly with well-defined objects like Kerberos tokens (security) or
Shipping forms (reliable messaging) as shown figure 7.

FunctionalData NonFunctionalData

BankAccount KerberosToken ShippingFormBill

Handled by service
implementation Handled by aspects

Figure 7. Functional and non-functional data.

Pushing the non functional handling logic inside aspects means that
handler’s role has to be redefined, as they will only contain SOAP
logic then. The idea is to replace the multiple specific handlers,
which used to process SOAP messages depending on their own
implementations, by a global handler whose role will be restrained

to extracting non-functional data contained in incoming messages,
and pushing it inside outgoing messages.

4.2 Weaving Process
At this point, we need to define where, when and how the aspects
should be weaved. Let us answer these questions by considering the
different opportunities for each of them. First, aspects could be
weaved to the global handler, to the stub or to the service
implementation itself. In fact, considering the global message path
and process, choosing any of these entities does not really influence
the mechanism. However, we found it more convenient to weave
aspects to the stub since it provides a natural meta object to focus on
the service itself [6]. Secondly, there are multiple choices for when
to weave aspects. It could occur during compile time, deployment
time, load time or run time. If the weaving were to happen at
compile time or deployment time, it would not be possible to handle
policy changes dynamically. Conversely, there is no need to weave
aspects at runtime since the policy document will not be most likely
to change after the service starts running. Thus, the ideal solution is
to weave aspects when the service is loaded to enable one single yet
sufficient analysis of the policies document for each new instance
[12]. Thirdly, the weaver should be an application capable of
reading the policy document, interpreting the policies, selecting the
relevant aspects and finally mixing them with the plain stub, as can
be seen on figure 8.

Transaction
Aspect

Security
Aspect

Messaging
Aspect

Policies
Stub

SOAP Service
Enhanced

Stub
Service or

Client

Policy
Engine

Figure 8. Aspects weaving at load time.

Transmitting non-functional data to aspects weaved to the stub at
load time is one fitted solution to achieve genuinely flexible Web
Services. This mechanism allows Web Services to be reused more
easily since each non-functional aspect is detached from both the
service implementation and the handler. The Policy Engine inserts
these aspects depending on the service contract requirements [8],
which means that interoperability is preserved if, for instance,
requirements from different clients vary.

We have seen how AOP can help to gain flexibility through a
cleaner separation of logics and which mechanism can help to
provide policy awareness among Web Services. We shall now
present our concrete implementation of these concepts.

138

5. OUR CONCRETE SOLUTION
5.1 Structure of Axis
In our solution we take advantage of multiple open source solutions
already available for Java so we modify and assemble them easily.
This way, we can start with a ready-to-use platform that we need to
complete in order to obtain flexible Web Services.

Thus, the Web Server and the SOAP Engine are constituted by the
famous open source duo Tomcat-Axis. Basically, Axis plugs into the
Tomcat servlet engine, meaning that it can be considered the same
as any other Web Application. Web Services are hosted and
managed by Axis in a transparent way for Tomcat as shown in
figure 9.

Web Service
.class File

Connector

Container

AxisServlet

AxisEngine Message
Context

Request

Response

SOAP Service

Tomcat
Engine

AXIS

Figure 9. Axis server side architecture.

Axis is based on the concept of a chained message. The
MessageContext object is a wrapper object for the request and the
responses message and for contextual information about process,
request, response, etc. In figure 9, Request and Response are
handlers that manipulate the MessageContext. Because these
handlers can easily manipulate this object, it is quite natural to select
these handlers to act like basic SOAP logic handler. For instance, if
an incoming SOAP header contains data that says the body message
is encrypted, then the Request handler needs to decrypt the body, as
an automatic reflex. But the genuine non-functional logic is hosted
by the aspects, and non-functional data used by these aspects is
transmitted by the provider. The provider is another handler that,
when invoked, calls the stub corresponding to the service invoked.
Once processed and transformed into appropriate objects, these data
will be passed to the stub weaved with aspects.

5.2 Stub Bytecode Modifications
Let us now see how aspects are weaved to the stub. First, we need to
understand how class loading works in Tomcat. Indeed, if we can
modify the bytecode of the stub object when it is loaded into the
Java Virtual Machine (JVM), then it will be possible to weave the
aspects at load time. Tomcat uses multiple class loaders, which are
java objects aiming to load resources (class or jar files). With Java 2,
class loaders follow a delegation model, which means that if a class
is asked to be loaded by a class loader, then this class loader will
first ask it’s parent class loader to do so. If it cannot load the class,
the initial class loader will search inside its own resources. All
Tomcat class loaders follow this rule except Web Application class
loaders, which are responsible for the loading of each class of the
Web Application they are in charge of. Consequently, the idea is to
modify the class loader in charge of Axis Web Application so we

can reach any Web Service stub anytime it is loaded, as shown
figure 10.

Tomcat ClassLoader

WebAppClass
Loader

WebApp1

JVM ClassLoader

WebAppClass
Loader

WebApp1
ModifiedClass

Loader

AXIS

Web
Service 1

Web
Service 2

Figure 10. Class loaders hierarchy.

To obtain such a class loader, we just need to reuse the code of the
Axis regular WebAppClassLoader and specify that Tomcat has to
use the ModifiedClassLoader when it loads Axis Web application,
via the server.xml configuration file.

<Context docBase="C:\axis-1_1\webapps\axis" path="/axis">

 <Loader loaderClass =
"org.apache.catalina.loader.ModifiedClassLoader"/>

</Context>

The next step is to use a tool which allows both introspection and
reflection - the former to inspect the stub code when it is loaded and
the latter to achieve the weaving of aspects. One particularly
convenient answer to these requests is brought by Javassist [1].
Javassist is a class library for enabling structural reflection in Java,
which is performed by bytecode transformation at compile time or
load time. In order to modify bytecode at load time, Javassist
performs structural reflection by translating alterations of structural
reflection into equivalent bytecode transformation of the initial class
file. After the transformation, the modified class file is loaded into
the JVM by a special class loader.
To bring this mechanism into our solution, the
ModifiedClassLoader must adhere to three rules. First, it must
encapsulate a Javassist.ClassPool object, which will act as a
container for objects containing class files to be loaded [15]. These
objects derive from the CtClass class which is a convenient handle
for dealing with class files (methods or fields adds or renames, etc.).
Next, when the ModifiedClassLoader constructor is called, this
ClassPool object must be instantiated with the Web Application
class path so it can get the scope of the classes it can handle. Finally,
whenever a class is to be loaded, the findClassInternal (String name)
method is called and must contain the transformation logic which
will affect the stub object anytime it is loaded. The code below
shows these modifications inside of what used to be the regular
WebAppClassLoader class.
public class ModifiedClassLoader extends URLClassLoader {

 protected ClassPool pool = null;

 public WebappClassLoader() {

 pool = ClassPool.getDefault();

139

 pool.insertClassPath(new LoaderClassPath(this));

 ...}

 /* Method called whenever a class is to be loaded */

 protected Class findClassInternal(String name) {

 ResourceEntry entry = findResourceInternal(name, classPath);

 Class clazz = entry.loadedClass;

 /* Javassist loader is invoked to get an easily modifiable CtClass */

 CtClass cc = pool.get(name);

 /* Class modifications according to the PolicyEngine */

 if(isStubClass("name"))

 PolicyEngine.Process(cc);

 byte[] b = cc.toBytecode();

 clazz = defineClass(name, b, 0, b.length);

 ...

 return clazz;

 }…

5.3 Policy Engine as a Weaver
Eventually, we shall define how the Policy Engine works. As
explained in section 2.3, Policies constitute the Service Contract and
thus describe what the requirements to establish communication are.
For instance, the <wsse:SecurityToken> element, as shown below,
is used to describe which security tokens are required and accepted
by a Web service. It can also be used to express which security
tokens are included when the service replies.

<SecurityToken wsp:Preference="..." wsp:Usage="..." >

 <TokenType>...</TokenType>

 <TokenIssuer>...</TokenIssuer>

 <Claims>...Token type-specific claims...</Claims>

 ... (TokenType-specific details)

</SecurityToken>

Once the PolicyEngine.Process(…) method is called, the engine gets
a CtClass object containing the code of the stub. Because the name
of this class is related to the name of the service itself, it becomes
easy for the Policy Engine to locate the Policy contract and thus it
can access the policy’s requests. The next step for the engine is to
fulfill each of these requests by inserting the appropriate aspects
within the methods of the stub. This mechanism is almost equivalent
for both client and service side. Eventually, the Policy Engine adds
fields to the stub so it can obtain and set the non-functional data that
the provider manages.

At this point, the new “SOAP messages process” is effective and can
be used to dynamically handle each of the functional aspects
declared in the Policy document. Figure 11 below illustrates the
global mechanism at runtime.

SOAP
Service

Functional
Data

Non
Functional

Data

Functional and
Non Functional

Data

Service (business logic)

Aspect (Non functional
aspect handling logic)

Request

Response

Provider

Handler (SOAP logic)

BankAccount Object

X509 Token Object

ShippingForm Object

TransactionData Object

Figure 11. Functional, non-functional and SOAP logics.

5.4 Security Scenario
Let us conclude this section by illustrating the whole mechanism
with a scenario using security. In our solution, we use Web Service
Security For Java (WSS4J) as an implementation of WS-Security,
more especially to handle encryption and security token insertion.
The WSS4J Axis handlers already support a large number of WS-
Security features and their combinations. However, it is not our aim
to use WSS4J directly to handle security. Our approach consists of
separating its SOAP logic (like the automatic decryption) and its
non-functional aspect handling (token management). Then we insert
the SOAP logic into the Request/Response handlers while the non-
functional aspect handling is left to aspects.

In our case, the policy document specifies that the Web Service
requires a Username token and handles 3-DES encryption. At load
time, the Policy Engine adds a Username token field to the stub of
this service, and weaves the targeted method with the Username
token aspect. This code specifies that if the Username is unknown,
or if the password is not correct, the service implementation will be
skipped and an appropriate message will be returned. At run time,
an incoming encrypted message containing a Username token is
presented to the SOAP engine of a Web Service. The Request
handler will automatically decrypt the body and will transmit the
updated MessageContext object to the provider. The provider is in
charge of extracting the token data and transmitting an appropriate
token object to the stub along with the business objects. When the
method of the stub is invoked, the aspect in charge of the token is
called and it handles the token with the appropriate logic, as
described above. Eventually the implementation of the service is
invoked and the result will be returned along with the token of the
Web Service. The provider will then fill the MessageContext
response object and the Response handler will eventually encrypt
the body.

As can be noticed in this scenario, this mechanism enables policies
to select an aspect in charge of the security requirement (the
Username token). Also, the different logics are cleanly separated

140

from the others, enabling both Web Service and aspects to be reused
easily. If these policies were to change, different aspects would be
weaved at load time and the service would become fully compliant
with these new requirements.

Let us now conclude this presentation by explaining the current
limitations of our solution.

6. LIMITATIONS AND FUTURE WORKS
There is still much work that needs to be done before this solution
can be fully used in a genuine business scope. Our work allowed us
to identify four major tasks that are required to make it happen.

The two first tasks fall on the Web Service community, and
especially the WS-I organization, which works on WS-* norms.
There is still a need for these norms to be approved by everyone and
we have to see their use in concrete scenarios to fully understand
how to deal with them. The second task is also to provide complete
policies describing properly each of these norm requirements.
Indeed, without a proper explanation of the requirements, it would
not be possible to create a dynamic mechanism for handling the
multiple non-functional aspects.

Also, we need to define how to handle each norm with both an
appropriate SOAP logic and non-functional aspect handling logic.
For instance, if an incoming encrypted message containing a token
is presented to the SOAP Service, an appropriate decryption logic
must be placed within the Request handler while the token must be
handled by an aspect. In our case, we have seen that there is an open
implementation of WS-Security, namely WSS4J, which brought to
us the code we required. However, there is still no open
implementation to handle most of the other norms.

Finally, the last task is related to the Policy Engine development.
The role of this Engine is to select the appropriate aspects depending
on the policies. However, policies are likely to be complex to
understand and many requirements may overlap with each other.
Building a Policy Engine which can understand and properly
respond to each of the policies will be a major task.

These multiple tasks arise from the different bounds that need to tie
between each element of our solution, as illustrated on figure 12
below. Eventually, the ultimate result will consist of linking the
policies requirements to the appropriate aspects handling them.

Aspects

Policies

Policy
Engine

WS-*
Norms

Figure 12. Bounds between each element of the solution.

7. RELATED WORKS
The Web Service Management Layer (WSML) [19] is an aspect
based platform for Web Services allowing a more loosely coupling
between the client and server sides. The idea of this technology is to

transfer the Web Service related code from the client code to this
new management layer. The advantages are the dynamic adaptation
of the client to find the most fitted Web Service, and it also deals
with the non functional properties like Traffic Optimization, Billing
Management, Accounting, Security, Transaction. This work looks
very similar to the solution we provide in the sense that it aims to
gather the scattered code in aspects. However, our solution
especially aims to answer to the norms from the Web Service
Architecture, which are described in the policies. The Web Services
Mediator (WSM) [20] is a middleware layer that sits above standard
Web Services technologies such as Simple Object Access Protocol
(SOAP) Servers. It aims to decouple an application from its
consumed Web Services, and to isolate the application’s
characteristics (e.g., reliability, scalability, latency).
The Aspect-Oriented Component Engineering (AOCE) [21] has
been developed to capture the cross-cutting concerns, such as
transaction, co-ordination and security, etc. To achieve this solution,
the WSDL grammar was extended by enriching it with aspect-
oriented features so that it becomes better characterized and
categorized. However, there are no universally accepted standards in
the terminology and notations used in AOCE by the various
interested parties trying to use it. On the whole, AOCE and our
work seem to offer very similar approaches but, although using just
policies to select aspects might be restrictive, our strategy does not
require developers to understand any vendor specific standard. The
Web Service Description Framework (WSDF) [22] consists in a
suite of tools for the semantic annotation and invocation of Web
Services, by mixing both Web Service and Semantic Web
communities. Instead of establishing a hard wired connection
between the client and the service, by specifying the Web Services
through addresses, WSDF enables the developer to formally specify
a service using rules and ontological terms.

8. CONCLUSION
Service Oriented Architectures require loose coupling to access the
services which will most likely be implemented with emerging Web
Service technology. Using current SOAP toolkits, we noticed that
interoperability between client and Web Service is damaged by non-
functional aspects required by businesses (such as security,
transaction, reliable messaging, etc). In fact, they require
establishing a strong coupling between the service logic, the non-
functional handling logic, and the SOAP logic. On top of this, there
is no dynamic adaptation mechanism to bind the service contract
requirements to the Web Service and client abilities. These facts
significantly reduce Web Service flexibility and affect the loose
coupling ability offered by Services.

The solution we provide aims to offer a dynamic mechanism to
compute the service contract on the fly, enabling Web Services to
become fully aware of the business requirements. The main
principle consists of using computational reflection as a means to
achieve separation of concerns and dynamic adaptability. Our new
SOAP Service design provides a cleaner separation between the
multiple logics weaved at load time. After analyzing the policies
requirements, a Policy Engine is in charge of selecting the
appropriate aspects to handle business mechanism like security,
transactions, etc. This mechanism allows Services to gain in loose
coupling.

Future works will consist of widening the application scope of this
solution and validating the Web Services behavior in concrete

141

Service Oriented Architectures. The main tasks will be to implement
a library to handle the multiple WS-* norms and then develop a
policies fully compliant Policy Engine.

9. REFERENCES
[1] Chiba, S., “Load-time Structural Reflection in Java” in Proc.

of ECOOP’2000, 2000, SpringerVerlag LNCS 1850
[2] F. Baligand, V. Monfort “A Pragmatic Use of Contracts and

Aspects to gain in Adaptability and Reusability” The 2004 2nd
European Workshop on Web Services and Object Orientation,
EOOWS'04, ECOOP, June 14-18, 2004, Oslo, Norway

[3] M. N. Bouraqadi-Saâdani, R. Douence, T. Ledoux, O.
Motelet, M. Südholt "Status of work on AOP at the OCM
group, April 2001" , École des Mines de Nantes, technical
report, no. 01/4/INFO, 2001 KW: AOP, execution
monitoring, program transformation, interpreter

[4] Kiczales G. et al. “Aspect-Oriented Programmign”, in Proc of
ECOOP’97. LNCS 1241, Spinger-Verlag, 1997

[5] Eric Tanter, Jacque Noyé, Denis Caromel, Pierre Cointe
“Partial Behavioral Reflection : Spatial and Temporal
Selection of Reification”, 18th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2003

[6] Chiba, S., “A Metaobject Protocol for C++” in Proc. of ACM
Conf. on Object-Oriented Programming Systems, Languages,
and Applications, no.10 in SIGPLAN Notices vol 30, pp. 285-
299, ACM, 1995

[7] F. Baligand, V. Monfort, S. Goudeau “Standards and Web
Services: Some Concrete Limitations” The 2004 International
Symposium on Web Services and Applications, ISWS'04,
IEEE, June 21-24, 2004, Las Vegas, Nevada, USA

[8] D. Mandrioli, B. Meyer « Applying Design by contract »
Interactive Software Engineering Inc editions Prentice Hall

[9] O. Barais, L. Duchien, R. Pawlak, “Separation of Concerns in
Software Modeling: A Framework for Software Architecture”
Transformation, IASTED International Conference on

Software Engineering Applications (SEA), IASTED, USA,
november 2003.

[10] Eric Tanter, Michael Vernaillen, José Piquer “Towards
Transparent Adaptation of Migration Policies” Workshop in
Mobile Object Systems, EWMOS 2002, 2002

[11] Chiba, S. and M. Tatsubori, “Yet Another java.lang.Class” in
Proc. of ECOOP’98 Workshop on Reflective Object-Oriented
Programming and Systems, July 1998

[12] D. Sosnoki “Java programming dynamics: Transforming
classes on-the-fly” Feb 2004 http://www-106.ibm.com/dev-
eloper-works/java/library/j-dyn0203.html

[13] visit web site http://www.w3.org/TR/SOAP
[14] visit web site http://www.service-architecture.com/
[15] visit web site http://www-106.ibm.com/developerworks/lib-

rary/ws-polfram/
[16] visit web site http://msdn.microsoft.com/webservices/build-

ing/wse/
[17] visit web site http://www.alphaworks.ibm.com/tech/ettk
[18] visit web site http://www.axis.com/
[19] Verheecke B., Cibrán M.A., "Aspect-Oriented Programming

for Dynamic Web Service Monitoring and Selection," to be
published in the proceedings of the European Conference on
Web Services 2004 (ECOWS'04), Erfurt, Germany,
September 2004.

[20] visit web site http://javaboutique.internet.com/articles/
WSApplications/

[21] Singh, S., Grundy, J.C., Hosking, J.G. Developing .NET Web
Service-based Applications with Aspect-Oriented Component
Engineering , In Proceedings of the Fifth Autralasian
Workshop on Software and Systems Architecures, Melbourne,
Australia, 13-14 April 2004.

[22] A. Eberhart. Towards universal Web Service clients. In B.
Hopgood, B. Matthews, and M. Wilson, editors, Proceedings
of the Euroweb 2002.

142

