
Web Service Composition Transaction Management

Benchaphon Limthanmaphon
Department of Computer and Information Science

Faculty of Applied Science
King Mongkut's Institue of Technology

North Bangkok
Bangkok, Thailand
blt@kmitnb.ac.th

Yanchun Zhang
School of Computer Science and Mathematics

Victoria University of Technology
Melbourne, Australia

yzhang@matilda.vu.edu.au

Abstract
The development of new web services by composition of
existing services is becoming an extensive approach. This
has resulted in transactions that span in multiple web
services. These business transactions may be
unpredictable and long in duration. Thus they may not be
acceptable to lock resources exclusively for such long
period. Two-phase commit is also not suitable for
transactions with some long sub-transactions.
Compensation is a way to ensure transaction reliability.
However, rolling back a previously completed transaction
is potentially expensive. Thus, tentative holding is another
option. This paper presents a transaction management
model for web service composition. We apply the
approach of tentative hold and compensation for the
composite transaction. We also present a multi-dimension
negotiation model for the service composition.

Keywords: Web services composition, Web Service
Transaction Management, Compensation, Tentative hold,
Negotiation

1 Introduction
A web service can be described broadly as a service
available via the Internet that conducts transactions.
Service composition refers to the process of creating
customised services from existing services by a process
of dynamic discovery, integration and execution of those
services in a deliberate order to satisfy user requirements
(Chakraborty et, al. 2002). Integrating or composing
services from different and heterogenous business entities
is necessary to the discussion of transaction management
issues. Web services that are capable of intelligent
interaction would be able to discover and negotiate with
each other, mediate on behalf of their users and compose
themselves into more complex services. 1
A transaction involving multiple web services is
composed of many autonomous sub-transactions that
abort or commit independently. In other words, web
service transactions are loosely coupled. They are
possibly involving and spanning many enterprises. They

Copyright ©2004, Australian Computer Society, Inc. This
paper appeared at the Fifteenth Australasian Database
Conference (ADC2004), Dunedin, New Zealand, Conferences in
Research and Practice in Information Technology, Vol. 27.
Klaus-Dieter Schewe and Hugh Williams, Ed. Reproduction for
academic, not-for profit purposes permitted provided this text is
included.

may be unpredictable and long in duration. Thus they
may not be acceptable to lock resources exclusively for
such long period. Also, two-phase commit protocol
involves one or other form of resource locking. Longer
periods of resource locking will result in serious
scalability issues. If each web service invocation is
executed as an independent transaction, the way to
guarantee the desired all-or-nothing property of
transactions is through the notion of compensation.
However, not all web services will support compensation.
Moreover, rolling back a previously completed
transaction is potentially expensive. Thus tentative
holding is another option. The effect of a tentative hold is
to allow tentative, non-blocking holds or reservations to
be requested for a business resource. The resource owners
grant non-blocking reservations on their services,
preserving control of their resources while allowing many
potential clients to place their requests. This facility will
provide clients with up-to-date data and minimise the
need for cancellations.
In this paper we apply two concepts of tentative hold and
compensation to manage service composition. We also
present the negotiation model for service composition.

The rest of this paper is organised as follows: Section 2
presents an overview of service composition and related
works. Transaction models are presented in section 3. Our
tentative hold and compensation transaction model for
service composition is presented in section 4. Section 5
presents the negotiation concept during composition.
Finally, the conclusion and future research direction are
presented in section 6.

2 Overview and Related Work
There are several ways of classifying service
composition. Chakraborty and Joshi (2001) classified
service composition in terms of offline and on-line
processing which refer to pro-active and reactive
composition respectively. Pro-active service composition
means offline or pre-compiled composition of available
services to form new services. Services that compose in a
pro-active manner are usually stable and used at a very
high rate over the Internet. Reactive service composition
refers to the type of composition that is executed only
upon request or created on the fly (Chakraborty et, al.
2002). It requires a component manager to take the
responsibility of collaborating with the different sub-
services to provide the composite service to the client.
The interaction cannot be predefined and varied
according to the dynamic situation.

171

There are some works focus on transaction management
(Strandenæs and Karlsen 2002; Mikalsen, et, al. 2002;
Pires, et, al. 2002; Park and Choi 2003). The WSTx
framework was proposed based on reliability in web
service composition (Mikalsen et, al. 2002). The model
describes three transactional attitudes: pending-commit,
group-pending-commit, and commit-compensate. The
WebTransact framework was proposed to treat the
problem of building composition in an integrated way by
providing mechanisms to describe the dissimilar
transaction behaviour of web services (Pires, et, al. 2002).
Strandenæs and Karlsen (2002) describe a technique for
implementing compensating transactions based on the
concept of triggers, while Park and Choi (2003) applied
the concept of tentative hold to allow placement of
business resources by considering the performance
optimisation of tentative hold through two parameters:
over hold size and hold duration.

Our previous work (Limthanmaphon and Zhang 2003)
presented the model that composition process executes in
two modes: proactive, and reactive which consists of
three main components: request analyst, outsource agents
and services composer. Service relationships are defined
and used during the proactive phase. We used the Case-
Based Reasoning (CBR) techniques to evaluate the
customer’s queries and plan the composition service.

3 Transaction Models
Basic transactions or traditional transactions refer to
transactions endowed with the properties of atomicity,
consistency, isolation and durability (ACID), while
complex transactions refer to extended and relaxed
transactions. Extended transactions permit grouping of
their operations into hierarchical structures while relaxed
transactions indicate that a given transaction model
relaxes some of the ACID requirements.
In this section we briefly review the existing transaction
models and then present the existing web service and
business transactions.

3.1 Extended and Relaxed Transaction models
An important part of the evolution of a traditional
transaction model is the extension of the flat or single
level transaction structure to multi-level structures (Zhang
and Jia 1999, Zhang et, al. 1999).

- Nested Transactions permits transactions to be
nested within transactions to form a transaction
tree (Moss 1981). A child transaction may start
after its parent has started and a parent
transaction may terminate only after all its
children terminate. If a parent transaction is
aborted, all its children are aborted. These
commit/abort and resource inheritance strategies
are applied recursively throughout the tree.
Nested transactions have benefits in three areas.
First, they provide full isolation on the global
level, while permitting increased modularity –
each transaction can be decomposed into a
hierarchy of cooperating sub-transactions. The
next benefit is to provide finer granularity of
failure handling. Recovery action can be taken at

the level of failed sub-transactions. Last, non-
conflicting sub-transactions can be executed
concurrently (so called intra-transaction
parallelism).

- Open Nested Transactions relax the isolation

requirements by making the results of committed
sub-transactions visible to other top-level
transactions (Wiekum and Schek 1992). In open
nested transactions, the abort of a top-level
transaction requires compensation for committed
sub-transactions. In other words, a sub-
transaction can commit and release the resources
before the global transaction successfully
completes and commits. If the global transaction
later aborts, its failure atomicity may require that
the effects of already committed sub-
transactions be undone by executing
compensating sub-transactions.

- The Saga Transaction Model permits a long-

lived transaction to be divided into a sequence of
sub-transactions (Garcia-Molina and Salem
1987). Each transaction has an associated
compensating sub-transaction that can be
triggered to semantically undo the effects of its
committed associate. This means that a saga
consists of a set of ACID sub-transactions
T1,…,Tn with a predefined order of execution,
and a set of compensating sub-transactions
CT1,…,CTn-1, corresponding to T1,…, Tn-1. If a
saga sub-transaction Tk fails and cannot recover,
its partial effects are undone by executing
compensating sub-transactions CTk-1,…, CT1.

- The Split-Join Transaction Model was designed

as its name implies, to split itself into two
independent or dependent transactions and later
join together to form a single transaction [Pu
1988, Pu et, al. 1988). It was designed for open-
ended activities characterised by uncertain, but
normally very long-duration, unpredictable
development, and interaction with other
activities.

- ConTracts is a mechanism for grouping

transactions into a multi-transaction activity
(Reuter 1989). It consists of a set of predefined
actions called steps, and an explicitly specified
execution plan called a script. An execution of a
ConTract must be forward-recoverable. In the
case of a failure the state of the ConTract must
be restored and its execution may continue.

- Long-Running Activity is modelled as a set of

execution units that consist recursively of other
activities or transactions (Dayal et, al. 1991).
Control flow and data flow of an activity may be
specified statically in the activity’s script or
dynamically by Event-Condition-Action (ECA)
rules.

172

3.2 Web Service and Business Transactions
Web service transacting would be exactly the same as any
other distributed transaction management system.
However, the following characteristics of web service
mean that its requirements are different:

• Web service transactions will usually be
conducted across organisational boundaries.
This implies that transaction participants will be
autonomous and distributed across the Internet
(Mani and Nagarajan 2002). Due to the limited
utilisation of transaction management protocol
standards in general, participants are likely to be
using incompatible transaction management
implementations.

• Web services transactions can be long running,
however organisations cannot afford to allow
their resources to be consumed unpredictably in
an open environment such as the Internet. This
implies that extreme care should be taken to
make sure that resources are not blocked for
long periods of time (Mani and Nagarajan 2002).
However, this conflicts with the application of
strict ACID properties, because ACID implies
resources must be locked until the transaction
terminated, so that isolation and consistency are
preserved. Moreover, the commit protocol is
particularly vulnerable to the effects of network
instability and malicious attacks, which can lead
to resources being locked for long or indefinite
periods. The natural long time frame of web
service transactions and the blocking potential of
commit protocols may leave web service
resources vulnerable to extended locking.

To solve the above problems, the earlier attempts to
define an Internet-based transaction protocol that
simplifies the distributed application like web service is
the proposed Transaction Internet Protocol (TIP) as well
as the motivation of creating a business transaction
protocol (BTP) to be used in business transaction that
require transactional support beyond ACID and extended
transactions. Next, tentative hold protocol (THP) is
another concept that allows multiple clients to place holds
on the same resource to eliminate blocking problems.
This protocol minimises the need for cancellations.
Lastly, web services transaction (WS-Transaction)
defines two models for transactions over web services:
atomic transactions and business activity transactions. An
important property of activity transactions is that they
provide a compensation mechanism, which is needed to
support business processes.

3.2.1 Transaction Internet Protocol
Transaction Internet Protocol (TIP) 3.0 as defined in
RFC2371 is a transport protocol enabling distributed
transaction coordinators to communicate over the Internet
(Lyon et, al. 1998, Papazoglou 2003). TIP allows
transaction coordination protocols for the recovery of
collapsed connections between transaction participants. It

does not attempt to ameliorate the issue of blocking that
can occur at the participant endpoints due to 2PC
protocol. In the case of failure during the PREPARE and
COMMIT/ABORT, a TIP coordinator is expected to wait
until communication with the transaction manager
restored. Hence TIP has the same flaw of blocking issues
as affects other distributed transaction processing systems
(DTPs). Moreover, TIP is not a secure protocol and does
not require or support authentication. It requires the
participants to open an additional bi-directional TCP port
(3372), which will allow remote parties to block their
local resources by delaying their vote on transaction
outcomes.

TIP is a simple 2PC protocol that removes the restrictions
of conventional 2PC protocols by providing ubiquitous
distributed transaction support in a heterogeneous and
cross-domain environment. This is made possible by
employing a two-pipe model separating the transaction
protocol from the application communications protocol.
TIP supports both “push” and “pull” models for starting
transactions with multiple servers. In the push model, a
client will first asks its transaction manager (TM) to
export the transaction to a remote node’s transaction
manager to instantiate a transaction, make it as a
subordinate to an existing transaction on the client’s TM,
and then return the remote TM’s context for the
transaction. Then the client will send the work request to
the remote node with the remote’s transaction context,
and tell it to execute it as part of that transaction. In the
pull model, the client requests a remote node to do some
work and make it as a part of an existing transaction. The
remote node’s TM will pull the transaction over from the
client. As a result of this pull, the client’s TM knows to
involve the remote node’s TM in a 2PC process.

In summary, the TIP offers flexibility for 2PC protocol-
based short-lived transactions, but it falls short in the case
of long-lived business transactions. Business transactions
consist of a large number of component transactions with
largely different response times, thus blocking resources
controlled by short-lived transactions for unacceptably
long periods of time, making them unable to process new
service requests. This is an undesirable model from an
autonomous service provider’s point of view.

3.2.2 Business Transaction Protocol (BTP)
BTP is an XML based standard interoperation protocol
that defines the role of transaction participants and the
messages being passed between them over the Internet
(BTP, Dalal et, al. 2001, Papazoglou 2003). The objective
of BTP is to orchestrate loosely coupled web services into
a single business transaction. It aims to be an underlying
protocol that offers transactional support in terms of
coordinating distributed multiple autonomous business
functionality, in the form of services. The goals of the
BTP specification can be summarised as follows (BTP,
Potts et, al. 2002):

• Provide a model for transactions over the
Internet.

• Integrate reliable outcomes over unreliable
communication channels.

173

• Manage the transaction life-cycle and support
the ACID properties.

• Support asynchronous communication between
loosely-coupled systems.

• Provide support for long-lived transactions.

• Coordinate multiple autonomous related
transactions and sub-transactions.

• Provide a foundation for workflow.

A traditional transaction is normally viewed as atomic,
which means that it is a consistency preserving state
update. ACID transactions include this consistency along
with guarantees on isolation and durability. With ACID
transactions, any failure that occurs within the transaction
will be rolled back and its effects reversed or erased. For
long-lived business transactions, individual constituent
work may be ACID in nature, but the overall business
transaction employs a compensatory approach to reverse
or erase partial work. The concept of isolation in an
ACID transaction is relaxed in this model.

BTP is based on two-phase commit for short duration
interactions known as atoms, which can be combined into
larger non-ACID transactions known as cohesions.
Atomic business transactions are small scale interactions
made up of services that all agree to enforce a common
outcome: either commit or abort of the entire transaction.
The cohesive business transactions or cohesions are
aggregations of several atomic transactions, which allow
the selective confirm (commit) or cancel (rollback) of
participants. A cohesive business transaction relaxes the
isolation property by allowing the effects of a cohesive
interaction to be externally visible before the interaction
is committed. Moreover, a cohesion may deliver different
termination results to its participants such that some will
confirm while the remainder will cancel. Finally,
consistency is determined by agreement and interaction
between the initiator (or the client) and the coordinator.
The initiator is the only participant that is allowed to
terminate the transaction. In order to terminate the
transaction, the initiator sends a terminate request to the
main coordinator. The main coordinator then together
with all the subordinate coordinators jointly executes the
termination protocol. A transaction can be terminated
with success or with error. Transaction termination with
error triggers the appropriate compensating transaction.

3.2.3 Tentative Hold Protocol (THP)
Tentative Hold Protocol is an open, loosely coupled,
messaging-based framework for information exchange
between business partners prior to the actual transaction
itself (Roberts et, al. 2001, Papazoglou 2003). The
objective of THP is an effort to facilitate automated
coordination of multi-business transactions. It defines an
architecture that allows tentative, non-blocking holds or
reservations to be requested for a business resource. In
this paradigm of online ordering, these lightweight
reservations are placed prior to the sale, allowing multiple
clients to place holds on the same item (thus non-
blocking). Whenever one client finishes the purchase of
that item, the other clients receive notifications that their

holds are no longer valid. The resource owners grant non-
blocking reservations on their products, preserving
control of their resources, while allowing many potential
clients greater flexibility in coordinating their purchase.
The following four states (as shown in figure 1) are
associated with the use of THP:

Figure 1. Tentative Hold Protocol Stat

• Responding is an initial stat
application sends a Hold Request m

• In Process is an intermediate st
that the hold request has been rec
acknowledgement of the reque
returned to the hold requestor.

• Active is reached when the reque
been granted. A Hold Granted mes
sent by the resource owner. In this
requestor may attempt to modify th
this hold by sending a Modify Hold

• Inactive is reached from the Acti
the tentative hold is no longer v
Cancellation’ message has been
client or the resource owner, or
expired.

There is a THP coordinator on both client
owner sides, responsible for communic
messages such as hold requests, cancellatio
The THP client and resource coordinators s
to communicate through firewalls. The
requirements for the coordinators can be s
follows:

• Client Coordinator Requirement

First, at start up, the client coor
determine the status of any previously
Second, the client coordinator shall be
implementation, capable of running on
of platforms. Third, the client coo
provide an interface that permits a clie
to (1) request a hold from a specific re
for a specific resource, (2) query e

 Data
Achieved

Hold Expired

Hold Cancelled/

Hold
Denied

Hold
Granted

t

Modify
Hold Status

Query

Status
Query

Status
Query

Request Acknowledgement

Responding

In process

Active Inactive

174
Removed
Hold
Reques
e Diagram

e when an
essage.

ate indicating
eived and an
st has been

sted hold has
sage has been
 state the hold
e specifics of
 message.

ve state when
alid. A ‘Hold

sent by the
the hold has

 and resource
ating various
ns, and so on.
hould be able
functionality

ummarised as

dinator shall
granted holds.
 a lightweight
 a wide range
rdinator shall
nt application
source owner
xisting holds

owned by this client, (3) cancel an existing hold
owned by this client, (4) query for the logged THP
activities, and (5) request a modification of an
existing hold.

• Resource Coordinator Requirements

First, at start up, the resource coordinator shall
determine the status of any previously granted holds,
then verify the expiration times. Second, the resource
coordinator shall respond to client coordinator hold
requests either synchronously (hold request respond
is sent immediately) or asynchronously (resource
coordinator shall send an acknowledgement of the
request, followed at some later time by a hold request
response). Third, the resource coordinator shall use
the resource owner developed Rules Integration
Module to satisfy new hold requests. Fourth, the
resource coordinator shall asynchronously notify
affected client coordinators should a resource
become unavailable, such as the resource is allocated
to another party. Last, the resource coordinator shall
provide an interface that permits a resource owner’s
application to (1) query existing holds granted by this
resource owner, (2) cancel an existing hold granted
by this resource owner, and (3) query for the logged
THP activities.

The benefits of adding a THP phase for business services
are: firstly, minimising the need for cancellations. Both
the requesting clients and resource owners would benefit
from THP. For example, the requesting clients would be
less likely to cancel a purchase after they have placed it.
Consequently, the resource owner is less likely to have a
need to process a cancellation. Secondly, providing
clients with up-to-date data to base their decision upon. A
client would place a tentative hold on an item and be
aware of its current availability. If that item becomes
unavailable, the client would be notified by a tentative
hold protocol message. Without THP, the client would
have no knowledge of the change of state, and might
make significant decisions based on obsolete data or data
that is no longer valid.

3.2.4 Web Services Transaction
The current set of web service specifications (such as
WSDL, SOAP) defines protocols for web service
interoperability. Web services increasingly tie together a
large number of participants forming large distributed
applications. WS-Transaction (Cabrera et, al. 2001)
defines how web services coordinate their activities in
order to ensure the integrity of underlying database
operations. WS-Transaction defines two models for
transactions over web services: atomic transactions and
business activity transactions.

An atomic transaction (AT) is used to coordinate
activities having a short duration executed within limited
high level of protection domains. Atomic transactions are
small scale interactions made up of services that all agree
to enforce a common outcome: either commit or abort the
entire transaction (an “all-or-nothing” property). The
atomic transaction follows the ACID properties and
guarantees that all participants will see the same outcome

(atomic). Each participant typically locks any database
records involved in the transaction to prevent any changes
from being made to the data while the transaction is being
processed. Only when all participants have indicated a
readiness to commit does the coordinator instruct them to
make the changes. If any participant either rejects the
transaction or fails to respond, the coordinator instructs
all participants to abort the transaction and discard any
changes. This process is typically known as two-phase
commit. The flaw of this approach is that each database
involved in the transaction must hold some kind of lock
on records for the duration of the transaction thereby
making those records unavailable to other clients. While
the duration of a transaction on an internal network is
likely to be relatively small, the wide spanning of web
service transaction will cause the problem of the
endpoint’s resource manager (such as a database) to be
locked and blocked for potentially very long periods of
time due to network latency.

Business Activity (BA) is defined to support transactions
without requiring locks on all database records. It handles
long-life transactions. Typically, a business activity is
designed as an activity that consists of a sequence of
tasks, where each task satisfies the constraints of an
atomic transaction. The key behind business activities is
compensation. Rather than requiring each participant in
the transaction to lock data and hold off on committing
changes until all participants approve, compensation
assumes that all updates will succeed and commits the
changes immediately, but prepares a way to undo the
changes and therefore compensate for the failure of any
component. Figure 2 shows the business activity state
diagram.

It
op
in
co
tr
ou
th
pa
th

Active

Complete

Compensating Closing

Faulted Ended

Cancelling

175
Coordinator generated

Figure 2. Business Activity S

 is a fact that going back to the
tion in an online system. The o
stall a compensating transaction fo
mmitted at that moment and ke

ansaction around in case the pre-c
t to be invalid. The state diagram
e behaviour of the protocol betwee
rticipant. The state reflects what
eir relationship.
closed
tate D

past is
nly po
r what

ep the
ommitt
 is figu
n a coo
 both s
Cancel

Exited

Forget
Compensated
Register
 Faulted

Faulted
close
compensate
completed
iag

no
ssi
 is
co

ed
re
rd
ide
Cancelled
Participant generated
ram

t a realistic
bility is to
about to be
mpensating
results turn
 2 specifies
inator and a
s know of

4 Web Service Tentative Hold and
Compensation Composition Transaction
Model

From the above extended and relaxed transaction models,
each of those approaches has its own strengths and
weaknesses. Their suitability depends on the individual
business’s needs. Because no single technology can
provide a solution that successfully supports all
businesses and overcomes all the challenges facing the
automation of multi-service interactions, mixed
technologies are needed.

4.1 State Transition
Consider the example of business trip where a client
acquires the hotel and airline services independently. If
he/she can reserve the hotel and issue payment but cannot
reserve the air ticket on that day, the client should be able
to cancel or change the hotel reservation or request partial
refund of the payment. Hence, the hotel service may not
be happy. With tentative holds, the client would place
tentative holds on both services thus ensuring their
availability, and then invoke the payment.
We present figure 3, a state machine diagram that
captures the behaviour of our model. The multiple paths
correspond to the executions of different types of action
commands. The diagram consists of nodes, arrows and
labels. The nodes describe the different states for an
action. The arrows describe the transitions between states,
and the labels on the arrows correspond to the conditions
required by the respective transitions. The ‘Active state’
is the initial state. The final states are ‘Abort’ and
‘Ended’.

Figure 3. Tentative Hold Protoco
Transaction State Diagram

The transaction starts in the active s
into the hold state when an app
request message. The tentative com
state indicating that the hold reques

the hold requestor. The abort state is reached from the
hold state when the tentative hold is no longer valid. A
hold cancellation or expire will be sent by the service
owner. On the other hand, the committed state
corresponds to the state in which the effects of the action
have already been committed to the other services, and
therefore, the action can only be compensated for a part
of transactions abort. All actions that are either
committed or compensated will move into the ended
state. The EOT indicates end of transaction.

4.2 Reactive relational service composition
Our previous work (Limthanmaphon and Zhang 2003)
designed the reactive service composition according to
the service relationships. The service composer will
orchestrate the most preferred participating services to
form a composition service by considering the
relationships and constraints of each service. As a result,
the service composition will be formed differently. We
give some examples below:

Ex1: the business trip service consists of airline and hotel
services. They are independent and there is no other
requirement as shown in figure 4 (a). The airline and
hotel services start independently on different transaction
flows T11 and T21 from the initial state. The result of
transaction flow T12 is either failure or success in flight
reservation and the result of hotel reservation on
transaction flow T22 will be concluded and evaluated at
the intermediate state. For example, if the airline and
hotel reservation services are “success”, the “start”
command will be issued and sent to the payment service
(on transaction flow T3). Vice versa, if one of the results
from airline or hotel reservation services is “failure”, the
“wait” command will be sent. If a failure result is
returned from the whole service, the “cancel” command
will be sent to cancel the payment service. The payment
service will apply and execute the command that issue
from transaction flow T3. The payment service may have
some other constraints such as authentication and / or
other security mechanism to be executed. It then
generates the result on transaction flow T4 to complete the
whole service composition process.

Ex2: The business trip consists of two services. Each
service starts at the same time but the hotel has to wait
until the air ticket is available or confirmed by the airline
service. Figure 4 (b) describes the situation where the T

Compensated

Compensate

t

Hold Cancelled /
Hold Expired

t

A

Hold
Request

Tentative
commit

Active

Hold

Abort

Committed

Compensate
EO
Commi
Abor
Hold
Denied
Request
cknowledge
l and Compensation

tate. Then it will enter
lication sends a hold
mit is an intermediate
t has been returned to

airline and hotel services can start at the same time but
the hotel service has to wait the trigger on transaction
flow T31. The trigger here is the condition according to
the airline services’ result (from transaction flow T12).
This means that if the air ticket is available or implies that
the airline reservation is successful and confirmed, then
the hotel service can continue (on transaction flow T4).
The transaction flow T5 will be issued after the
intermediate state evaluates the result of transaction flows
T32 and T4. The payment service will apply the command
from transaction flow T5 and generate the result to T6 (as
described in Ex1 (a)) to finish the service composition
process.

Ended

176

Ex3: The business trip consists of two services. The hotel
service will start when the airline service finished
execution. There is no other constraint between the
services as shown in figure 4 (c). It shows that the hotel
service will start when the airline service finishes
execution. There is no constraint between these services.
The transition flows and trigger can be explained as the
same as in Ex2 (b).

Figure 4. Relational service composition exe
flows of business trip in different form

5 Negotiation During Composition
It is quite possible that budgetary constraints are
important issue before placing a tentative hol
service reservations. For example, a client has
for $A2000. He/She intends to pay $A1600 f
ticket and $400 for a hotel. Unfortunately, the
suits his/her requirements (such as location
$550. He/She may try to negotiate for discoun
by changing to a lower class, no Internet a
breakfast provided and so on. Meanwhile, he/sh
to negotiate with the airline service by changi
that need to transit and stop many places, or cha
flight that leaves in the very early morning in
for a lower price ticket. At the end of the day
cost to invoke both services needs to be under bu

In our previous work (Limthanmaphon and Zhang 2003),
we defined service relationships for a composite web
service. One of the service relationships is parallel-
dependency relationship. This means that the participated
sub-services are able to execute freely but there are some
constraints (for example, price) that share between these
services. As a result, the negotiation process is required.
Apparently, negotiation is modeled as a business process
as it is a set of activities that are performed conforming to
a set of activities in order to achieve a goal.
We describe the negotiation process for web service
composition by giving definitions and steps as follows:

Definition 1: Let SA and SB be sub-services of a
composite service S. Denoted as S = {SA, SB}. Ct is a
constraint to be negotiated between the service composer
and sub-services S and S . V (Ct) refers to a value of

1

1

2

 Airline

Hotel

Payment

)

Air ticket

Airline

Hotel

Payment

 2

Airline Hotel Paym

= Service

t

= Trigger

Time

A B A

constraint Ct of sub-service S For example, budget is a
(a)
T1
T2
T1
T22
T3
 T4
A.
constraint to be negotiated. Vairline(budget) = $1600 and
Vhotel(budget) = $400.

Definition 2: Let F(SA) be a list of service features of
service SA while VA(Ct) is corresponding to F(SA). For
instance, a list of hotel service features is {Type = Single
Bed, Class = A, Breakfast = Oriental, Internet access =
available, Kitchenettes = yes, Cable = yes, Duration = 3
nights} responding with the cost of $600. Another
example list of hotel service features is {Type = twin
share, Class = B, Breakfast = no, Internet access = no,
(b
T311
T32
T4
T5

)
t

n

,

e

Time
T11
T21
T12
T6
Kitchenettes = no, Duration = 3 nights} responding with
the cost of $400. Denote as Vi(Ct) α F(Si). Any feature of
F(Si) effects the value of constraint Ct.
Note that we use the term ‘budget’ from the client’s point
of view and ‘cost’ from the service provider’s point of nt
T4
T
 T31
T32
T5
cu
s.

 th
d o
a
or
hot
 c
, s
cce
e m
ng
gi
exc
 th
dg

T6
t

e

b

h
u
s

n

e
e

view to refer to the same constraint.

Time

Definition 3: Let qV(Ct) be the value of a constraint
query from a client. Then the summation of the value of
(c)
constraints from each sub-service SA and SB must be less
than or equal to the value of the constraint query at the
end of the negotiation process. Denote as qV(Ct) ≥
VA(Ct) + VB(Ct). For example, the client’s budget must
cover the cost of hotel and airline services.
= Transition flow
= Holding
= Final state
= Constrain
= Initial state
= Intermediate state
= Input constraint
ion

 most
n any
udget

an air
el that
arges
ch as
s, no
ay try
flights
g to a
hange
 total
t.

Definition 4: The list of service features is altered during
the negotiation process. Let i be a service feature. i ∈ I+ =
{1,..,n} represents the number of n features under
negotiation, and each service feature i has mi alternatives,
where mi ∈ I+. For instance, feature 1 has m1 alternatives,
feature 2 has m2 alternatives, and feature n has mn
alternatives. When all the worst or least expensive
alternatives of each service feature have been chosen, no
further reduction or negotiation over service features can
occur.

Definition 5: Negotiation processes between service
composer and each service are independent but respect
the condition that the value of constraints needs to be
compromised under the condition in definition 3 (qV(Ct)
≥ VA(Ct) + VB(Ct)) as shown in figure 5. The service
composer can spend time negotiating differently in each
service.

177

Figure

For insta
final prop
composer
hold’ req
can occur

- 5.1: Ser
and VA(C
3. In this
with a su
state diag

Figure 6

Airline (SA) Hotel (SB)
t

Service composer

1

 2

3

Comp

C

Time
 5

nc
os
 s
ue
:

vic
t)
 c
cc
ra

. S

en

Ac

om
Star
. The chan

e, service
al F(SA)m +
atisfies this
st to service

e SB sent F
m + VB(Ct)n
ase, all ne
essful resu

m for the su

tate diagra

sate

Hold
Req

Tent
com

tive

Com

pensate
F(SA)1 + VA(Ct)

ging of service features and the control of the value of
process.

SA may negotiate by placing the
 VA(Ct)m at round m. If the service
 proposal, it will send a ‘tentative
 SA. However, three possible cases

(SB)n + VB(Ct)n as a final proposal
 meets the conditions in definition
gotiation processes will terminate
lt. Figure 6 shows the transition
ccessful negotiation.

m for the successful Negotiation.

- 5.2: Service SB s
but VA(Ct)m + V
definition 3. In th
find another candi

-5.3: Service SB c
the limited time
composer may f
negotiate, or cance

6 Conclusion
This paper addr
composition tran
complex, can inv
organizations, and
time, they are un
exclusively or in
management mod
compensation con
negotiation proces

In future work, w
more complex situ
subject to failure.
able to complete t

EOT

Compensated

Commit

Request
Acknowledge

uest

ative
mit

Hold

mitted

Ended

178
F(SB)1 + VB(Ct)1
F(SA) + VA(Ct)
 F(SB) + VB(Ct)
F(SB)2 + VB(Ct)2
VA(Ct)1 + VB(Ct)1
F(SB)3 + VB(Ct)3
VA(Ct)1 + VB(Ct)3
F(SA)2 + VA(Ct)
F(SA)3 + VA(Ct)
 VA(Ct)3 + VB(Ct)3
F(SA)m + VA(Ct)m
F(SA)m-1 + VA(Ct)m-1
 VA(Ct)m-1 + VB(Ct)x

VA(Ct)m+ VB(Ct)n-1
 F(SB)n-1 + VB(Ct)n-1
F(SB)n + VB(Ct)n

VA(Ct)m + VB(Ct)n
 constraints during the negotiation

ent F(SB)n + VB(Ct)n as a final proposal
B(Ct)n does not meet the conditions in
is case the service composer needs to
date service S′B to negotiate.

ould not complete negotiations within
 constraint. In this case the service
ind another candidate service S′B to
l all services

esses the problems of web service
sactions. When transactions are
olve many parties, can span multiple
 can potentially last for long periods of
able to lock any underlying resources
definitely. We present a transaction
el based on the tentative hold and
cepts. Our model also supports the
s for service composition.

e plan to extend the proposed model to
ations in which the service composer is
The participated composite services are
he composite transaction.

7 References
BTP: OASIS Business Transaction Protocol (BTP).

http://www.oasis-open.org/committees/business-
transactions/.

Cabrera, F., Copeland, G., Cox, B., Freund, T., Klein, J.,
Storey, T. and Thatte, S. (2001): Web Services
Transaction (WS-Transaction), BEA Systems,
International Business Machines Corporation,
Microsoft Corporation, Inc.,
http://www.ibm.com/developerworks/library/ws-
transpec.

Chakraborty, D. and Joshi, A. (2001): Dynamic Service
Composition: State-of-the-Art and Research
Directions, Technical Report TR-CS-01-19,
Department of Computer Science and Electrical
Engineering, University of Maryland, Baltimore
County, Baltimore, USA.

Chakraborty, D., Perich, F., Joshi, A., Finin, T. and
Yesha, Y. (2002): A Reactive Service Composition
Architecture for Pervasive Computing Environments,
In 7th Personal Wireless Communications Conference
(PWC 2002), Singapore, October.

Dalal, S. and Takacsi-Nagy, P. (2001): Proposal for
Business Transaction Protocol Version 1.0, BEA
Systems, Inc.

Dayal, U., Hsu, M. and Ladin, R. (1991): A Transaction
Model for Long-Running Activities, In Proceedings of
the 17th VLDB Conference, September.

Garcia-Molina, H. and Salem, K. (1987): SAGAS, In
Proceedings of ACM SIGMOD Conference on
Management of Data.

Limthanmaphon, B. and Zhang, Y. (2003): Web Service
Composition with Case-Based Reasoning, Database
Technologies 2003, In Proceedings of the 14th
Australasian Database Conference (ADC2003), K.
Dieter-Schewe and X. Zhou Editors, Adelaide,
Australia, February.

Lyon, J., Evans, K. and Klein, J. (1998): Transaction
Internet Protocol, version 3.0, RFC2371,
http://www.ietf.org/rfc/ rfc2371.txt, Network Working
Group, July.

Mani, A. and Nagarajan, A. (2002): Understanding
quality of service for Web services, http://www-
106.ibm.com/developerworks/library/wsquality.html
[20 October 2002], January.

Mikalsen, T., Tai, S., and Rouvellou, I. (2002):
Transactional Attitudes: Reliable Composition of
Autonomous Web Services, Workshop on Dependable
Middleware-based Systems (WDMS 2002), In the
International Conference on Dependable Systems and
Networks (DSN 2002), Washington D.C., June.

Moss, J.E.B. (1981): Nested Transactions: An Approach
to Reliable Distributed Computing, MIT/LCS/TR-260,
Laboratory for Computer Science, Massachusetts
Institute of Technology, Cambridge, U.S.A.

Papazoglou, M.P. (2003): Web Services and Business
Transaction, World Wide Web Internet and Web
Information Systems, 6(1), M. Rusinkiewicz, Y.
Kambayashi, Y. Zhang (Eds), Kluwer Academic
Publishers, March.

Park, J. and Choi, K-S. (2003), Design of an Efficient
Tentative Hold Protocol for Automated Coordination
of Multi-Business Transactions, in Proceedings of the
IEEE Conference on E-Commerce, June.

Pires, P.F., Benevides, R.F.M., and Mattoso, M. (2002):
Building Reliable Web Services Compositions, Web,
Web-Services, and Database Systems, NODe 2002, A.
Chaudhri, M. Jeckle, E. Rahm, and R. Unland (Eds.),
LNCS 2593, Springer.

Potts, M., Cox, B., and Pope, B., (2002): Business
Transaction Protocol Primer, An OASIS Committee
Supporting Document, Version 1.0, June.

Pu, C. (1988): Superdatabases for Composition of
Heterogenous Databases In Proceedings of the 4th
International Conference on Data Engineering.

Pu, C., Kaiser, G., and Hutchinson, N. (1988): “Split-
Transactions for Open-Ended Activities”, In
Proceedings of the 14th International Conference on
VLDB.

Reuter, A. (1989): ConTracts: A Means for Extending
Control Beyond Transaction Boundaries, In
Proceedings of the 3rd International Workshop on High
Performance Transaction Systems.

Roberts, J., and Srinivasan, K. (2001): Tentative Hold
Protocol Part 1: White Paper, W3C Note 28 November
2001, http://www.w3.org/TR/tenthold-1.

Roberts, J., Collier, T., Malu, P. and Srinivasan, K.
(2001): Tentative Hold Protocol Part 2: Technical
Specification, W3C Note 28 November 2001,
http://www.w3.org/TR/tenthold-2.

Strandenæs, T. and Karlsen, R. (2002): Transaction
Compensation in Web Services, NIK 2002, The
Norwegian Computer Science Conference, Norway,
Buskerud College.

Wiekum, G., and Schek, H-J. (1992): Concepts and
applications of multilevel transactions and open nested
transactions, In A Elmagamid, editor, Database
Transaction Models for Advanced Applications,
Morgan-Kaufmann.

Zhang, Y., and Jia, X. (1999): Transaction Processing, in
Wiley's Encyclopedia of Electrical and Electronics
Engineering, Vol. 22, Ed. J. Webster, February, pp
298-311.

Zhang, Y., Kambayashi, Y., Jia, X., Yang, Y., and Sun,
C. (1999): On Interactions between Co-existing
Traditional and Cooperative Transactions, International
Journal of Cooperative Information Systems, Vol. 8,
No.2.

179

http://www.ibm.com/developerworks/library/ws-transpec
http://www.ibm.com/developerworks/library/ws-transpec
http://www.ietf.org/rfc/
http://www-106.ibm.com/developerworks/library/ws-quality.html
http://www-106.ibm.com/developerworks/library/ws-quality.html
http://www.w3.org/TR/tenthold-1
http://www.w3.org/TR/tenthold-2

	Introduction
	Overview and Related Work
	Transaction Models
	Extended and Relaxed Transaction models
	Web Service and Business Transactions
	Transaction Internet Protocol
	Business Transaction Protocol (BTP)
	Tentative Hold Protocol (THP)
	Web Services Transaction

	Web Service Tentative Hold and Compensation Composition Transaction Model
	State Transition
	Reactive relational service composition

	Negotiation During Composition
	Conclusion
	References

