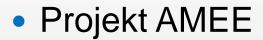
Sicheres Navigieren in unwegsamem Gelände

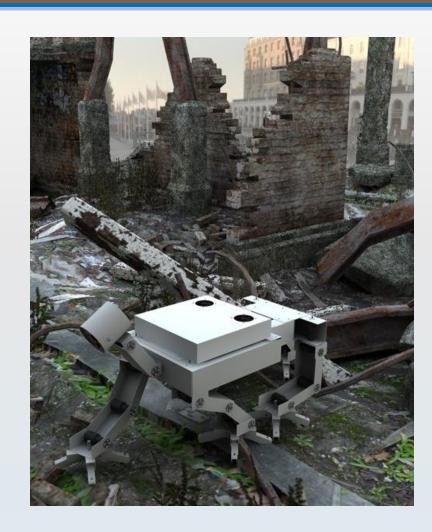
Bewegungsplanung für den vierbeinigen Roboter AMEE

Björn Bettzüche

Gliederung

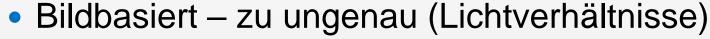

- Einleitung
- Vergleichbare Arbeiten
- Zusammenfassung
- Referenzen

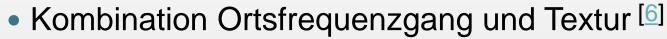
Einleitung

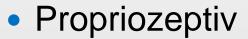


Sicheres Navigieren

Legged Robots



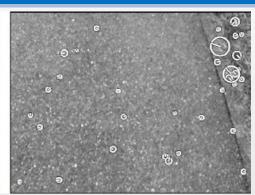



Merkmals-Extraktion

- Bodendruck, Haftung, Energieverbrauch,...
- Statische Verteilung Sensordaten Bodenart [4,5]
- Principal Component Analysis
- Klassifizierung
 - Neuronale Netze
 - Support Vector Machine [4,5]
 - Hidden Markov Model [4]

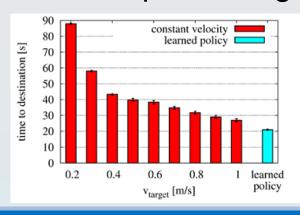
Vergleichbare Arbeiten

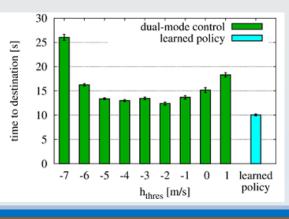
Effizenzgewinn durch Reinforcement Learning



- Kamera basierte Navigation
- Bewegungsunschärfe
- Gegeben:
 - Nav- und Kollisionsvermeidungs-Komponente
- Ziel: Finde optimale Geschwindigkeit
 - Zuverlässige Lokalisierung
 - Ziel schnell erreichen

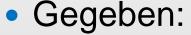
Effizenzgewinn durch Reinforcement Learning (2)



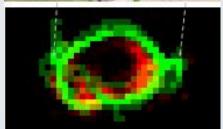


- Zustand:
 - Distanz & rel. Ausrichtung zum Ziel, Lokalisierungsunsicherheit
- Aktion v = 0.1 1.0 m/s
- Belohnung $R = -\Delta t$ bzw. +100 bei Ziel erreicht
- Gelernte Strategie durch Clustering komprimiert
 - Alternative Optimierung mittels neur. Netze

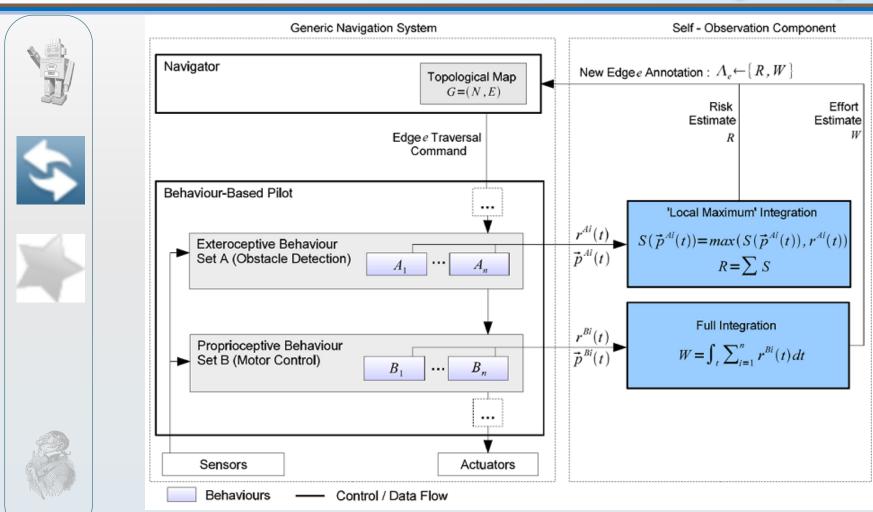
Online Kosten-/Risiko-Analyse



- Anreicherung topologischer Karte mit metrischen Information:
 - Online Routenoptimierung anhand von aktuellen Kosten / Risiken



- Navigator und Pilot mit Subsumption
- Energieverbrauch = Aufwand
- Hindernis = Risiko
- Zusammen = Kantenkosten


T. Braun

Online Kosten-/Risiko-Analyse (2)

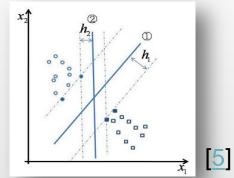
Mobilitäts-Charakterisierung

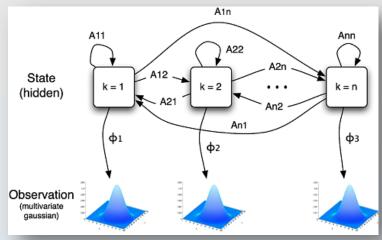
- Yeti Bodenradarerhebung in Arktis
- Problem:
 - Viele Eis-/Schnee-Varianten
 - Schwer visuell zu klassifizieren
- Lösungsansatz:
 - Überwachtes Lernen
 - Klassifizierung anhand propriozeptiver Daten

tmann L. Ra

[4]

Mobilitäts-Charakterisierung





- Prä-Immobilitäts-Erkennung mit Stützvektormethode
 - Motorstrom, Radschlupf, opt. erfasste Geschw. und Beschl.

- Identifizierung der Bodenbeschaffenheit
 - mit Hidden Markov Model
- Parametrisierung des HMM durch überw. Lernen
 - Baum-Welch-Algorithmus

Einordnung & Abgrenzung

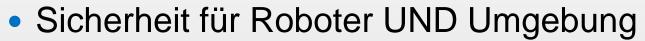
Zusammenfassung der Kernaussagen

Bewertung / Relevanz

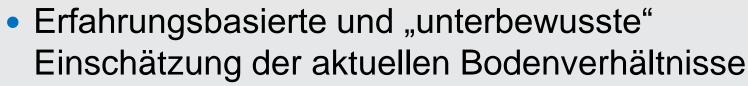
- Reinforcement Learning [2],[1]
 - Gute Bewegungsoptimierung, anpassbar
 - Eignung Bodenklassifizierung / Routing ?
- Online Kosten-/Risiko-Bewertung [3]
 - Flexible Routenoptimierung
 - Ausnutzung propriozeptiver Daten
 - Auf ein Einsatzszenario beschränkt
- Mobilitäts-Charakterisierung [4],[5]
 - Merkmalsextraktion / Klassifizierung
 - Reaktion auf propriozeptive Daten
 - Überw. Lernen auf beschränkten Datensatz


Zusammenfassung

Aspekte die weiter verfolgt werden

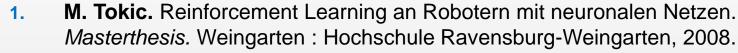


Weitere Ziele



Routenoptimierung mit RL und SLAM

 Semantische Zusammenhänge Beschaffenheit/Verhalten



Kontinuierliche Lernfähigkeit

Quellen (References)

A. Hornung, M. Bennewitz, H. Strasdat. Efficient vision-based navigation. 2. Autonomous Robots Vol. 29, S. 137-149. Springer Berlin / Heidelberg, 2010

T. Braun. Cost-efficient global robot navigation in rugged off-road terrain. 3. RRLab dissertations, Verlag Dr Hut, 2009. ISBN: 978-3-86853-135-0

E. Trautmann, L. Ray. Mobility characterization for autonmous mobile robots 4. using machine learning. Autonomous Robots Vol. 30, S. 369-383. Springer Berlin / Heidelberg, 2011

5. K. Kim, K. Ko, W. Kim; S. Yu. Performance Comparison between Neural Network and SVM for Terrain Classification of Legged Robot. SICE Annual Conference 2010, S. 1343-1348

L. Lu, C. Ordonez, E.G. Collins, E.M. DuPont. Terrain Surface Classification 6. for Autonomous Ground Vehicles Using a 2D Laser Stripe-Based Structured Light Sensor. IEEE Conference on Intelligent Robots and Systems 2009, S. 2174-2181

VIELEN DANK FÜR DIE AUFMERKSAMKEIT