
Approaches for Quantifying Multicast Complexity

Nora Berg

AW2 - SS2014

Contents

1 Introduction 1

2 Graph Transformation 2

3 Measuring Robustness with Percolation Theory 5

4 Stability of a Multicast Tree 9

5 Summary and Outlook 11



1 INTRODUCTION

1 Introduction

Network Complexity describes the influence of network elements with all their operations and local configu-
ration in mutual interaction on the functionality of the network. One of the problems of network complexity
is that it is not formally defined yet.

This work takes a look at three theoretical environments, which overlap in certain aspects with complexity
and offer a way to quantify them. The goal is winning information how to quantify similar aspects of network
complexity.

The first topic is graph transformation, which formalizes changes of graphs on basis of so called produc-
tion rules. Graph transformation overlaps with network complexity, because networks evolve after defined
rules, which can lead to unpredictable behavior of a network. This works takes a look to find some theoretical
results of graph transformation which can be adapted to network complexity.

Another topic, which shares aspects with network complexity is percolation theory. It introduces the
calculation of connectivity of a network on the basis of the probabilistic link existence. It can be used
to describe the robustness of a network, which is mainly influenced by complexity. The third topic is
a mathematical approach to quantify the change of a multicast distribution tree, if the number of group
members changes. It overlaps with network complexity insofar as the change of a network can reflect network
complexity.

The complexity of analyzing network complexity increases enormously with the amount of distinct
behaving participants. This work is focused on networks, in which all participants follow the same control
loop, as in case of many multicast or peer-to-peer algorithms. Complexity influences many characteristics
of a network. Two examples are robustness and resilience. While robustness describes how long and under
which conditions the functions of a network sustain in the presence of failures, resilience describes the ability
of a network to adjust to a changing environment. This work focuses on robustness.

Topology

Data Plane

Maintenance

Control Plane
(Dependencies) Reconfiguration

result in

initiate

change

States

(trigger)

check

Figure 1: Control loop consist of states and methods for maintenance and reconfiguration

The origin of complexity lies in the control loops of single elements of the network, because they imple-
ment the protocols which result in the network operations. The elements of control loops can be matched
to recurring components. As visualized in Figure 1, control loops include static information in form of
states. States of the data plane include forwarding information, thereby the sum of all data plane states in
the routers form the distribution topology. Control plane states may include information for maintenance
of networks. The sum of all control plane states form the distribution of the control information. The
maintenance methods in control loops check states for inconsistencies, and initiate reconfiguration methods,
if necessary. Reconfiguration methods are responsible for gaining all necessary information to calculate and
update states.

Note that the topics in this work, often calculate network properties on the basis of graph theory
(Section 3 and 4). In this context the words nodes and vertices are used interchangeably. This comes from
the distinct origins of the the words. While node is often used in network related topics, vertex comes from
graph theory. Analogously is the usage of links, edges and hops. In addition, any figures which are not cited
in the captions are self-provided.

This report is structured as follows. Section 2 focuses on graph transformation and shows two common
graph transformation approaches. Section 3 takes a look at percolation theory and Section 4 is about the
calculation of the change of a multicast distribution tree. At the end of each section the relation between
the obtained insights and network complexity is discussed. In the last section a short summary and outlook
for future work is given.

1



2 GRAPH TRANSFORMATION

2 Graph Transformation

Graph transformation is a formal way to describe the change of a graph. There are several approaches to
define graph transformation rules. In contrast to graphs themselves, which are static and passive structures,
graph transformation is interesting for multicast complexity, because complexity and unpredictability do
not emerge from static passive graphs, but from changes within the network.

Graph transformation rules describe changes of a graph G = (V,E, s, t) by using subgraphs as input
and change them into a new form. With V as the set of vertices, E the set of edges and s : E → V and
t : E → V , which map the edge to its source and target vertex.

Many applications can be modeled as graphs, e.g. multicast networks or software. In the context of
such a model the sequential application of the production rules describes the behavior of the model. Graph
transformation rules can be expressed in two common forms: Single Pushout (SPO) and Double Pushout
(DPO).

This section approaches graph transformation starting from the paper Graph Transformation in a Nut-
shell [10]. The paper describes graph transformation with single pushout rules, which is an algebraic
approach. Thereafter an introduction to the Double Pushout approach is given based on the first chapter
of Fundamentals of Algebraic Graph Transformation [7]. Additional Information comes from Algebraic Ap-
proaches to Graph Transformation, Part I: Basic Concepts and Double Pushout Approach [6]. Subsequently,
these production rules are illustrated by applying them to a graph model of a Pacman game resp. a normal
graph.

Since complexity arises from evolving structures, the goal is to obtain information about these structures
by looking at basic rules.

2.1 Single Pushout

The Single Pushout method (SPO) uses a production rule in the form of ps = (L,R) between the two
graphs L = (VL, EL) and R = (VR, ER). The L represents the precondition and left side of the rule (before
application) and the R is the result of applying ps. To apply a production rule, a match of L has to be
found in G. A match is a structure preserving graph homomorphism m : L → G. Structure preserving
homomorphism means, that all adjacent vertices in L stay adjacent after the mapping to graph G. If
available, also labels or types of edges and vertices must be preserved.

Figure 2: Schematical application of an SPO production rule.

The application of ps to G is schematically shown in Figure 2. The production ps is defined only between
the exact R-Graph to the exact L Graph. With the application on a graph, the L-Graph is mapped to
the graph G with the match m and the change in the actual graph G is called co-production p∗s. The
homomorphism from R to H is called co-match m∗.

To apply a production rule to G, the mapped elements in L, which do not recur in R are removed from
G. Subsequently, the elements of R, which did not occur in L are added to G. The new graph can be roughly
seen as H = (G \ (L\R))∪ (R\L). The algorithm to transform graph G into H using a SPO-production ps
works as follows:

1. Find a match m of L in G

2. Delete vertices and edges m(L\R) from G

3. Copy new edges and vertices (R\L) to G to derive H and m∗.

An Example is given in Figure 3. L is a graph with the vertices VL = {f1, f2, pacman, ghost} with f1,f2
representing the position where Pacman and the ghost are located. The edge between f1 and f2 indicates
that the fields are adjacent and so Pacman and the ghost are located on adjacent fields in the game. With
this production rule the ghost is able to kill Pacman by moving forward to the Pacman field f1. Therefore
the R side of the rule shows the ghost connected to f1, Pacman’s prior location.

2



2 GRAPH TRANSFORMATION

Figure 3: Single pushout rule for killing pacman

The algorithm is applied as shown by example in Figure 4. The upper left figure shows the current stage
of the game, in which Pacman is located on a field with the coordinates (x, y) and the ghost right next to it.
This complies to the L side of the kill rule with a mapping m(f1) and m(f2) to the coordinates and Pacman
and the ghost as adjacent vertices (Step 1). In Step 2, all nodes which are removed by the rule (L\R) are
deleted in G. This concerns the Pacman vertex, because Pacman dies, so the vertex and the connecting edge
will be deleted. Also the connection between the ghost and the underlying field will be deleted, because the
ghost moves, and this edge represents the position of the ghost. In Step 3 the additional Elements (R\L)
are added to G. This concerns only the edge between the ghost and the former Pacman field, because the
edge represents the new position of the ghost on Pacmans former position (x, y).

ghost is not 
connected to
field )

Figure 4: SPO production rule is applied to a graph

The SPO approach does not guarantee, that the outcome is a valid graph. This happens, if a vertex in
L, which will be deleted, is mapped to a node in G which has more adjacent edges than specified in the
rule. If this node was deleted, the adjacent edge would not have an endpoint. So it can produce dangling
edges. The reason is that SPO does not check surrounding edges with the rule. Although it is possible
to just delete all dangling edges after applying a production rule to obtain a valid graph, there is no way
to prevent dangling edges in the first place. Another problem in the SPO-Approach is the conflict, if two
nodes of L are mapped to the same node in G, but one of the nodes in L is deleted during the derivation
process, while the other one is preserved. In this situation it is not specified, if this node should be deleted
or not. The Double Pushout method solves these problems of SPO.

2.2 Double Pushout

In the Double Pushout method (DPO), production rules pd = (L,K,R) consists of an additional element
K including all the vertices which are preserved by the production. Furthermore, the DPO production

contains two homomorphism L
l←− K r−→ R based on K .

As represented in Figure 5, there are three mappings to apply productions to a graph. Similar to SPO,
the homomorphism m : L→ G maps the elements of L injectively and in a structure-preserving way to G,
analogous is the homomorphism m∗ : R → H. In addition, a homomorphism d : K → D exists, from the

3



2 GRAPH TRANSFORMATION

interface graph K to the context graph D. The interface graph represents all elements which are preserved
by the rule.

Figure 5: Schematic represantion of the DPO approach.

To prevent the problems described for SPO the gluing condition is checked before applying a rule. The
gluing condition consist of two parts. The first part of the gluing condition prevents dangling edges with
the requirement, that each vertex x in L, such that m(x) is source or target of an edge e in G\L must be
in K. Hence no vertex can be deleted which is source or target of an edge from outside the match.

The second part of the gluing condition states that vertices which are deleted during the production
must have exactly one pre-image in L. This prevents the conflict whether to delete a vertex or not, if it has
two pre-images in L and one of them will be deleted. The algorithm to transforms graph G into H using a
DPO-production pd works as follows:

1. Find a match m of L in G which fulfills the gluing condition

2. Replace m(L) with m(K) to create context Graph D := (G\m(L)) ∪m(K))

3. Copy new edges and vertices R\K to D, to derive H and m∗

is not in k
violates gluing
conditionedge in

G\L

(a)

(b)

(c)

Figure 6: DPO production (b) rule is applied to graph G. In (a) the gluing condition prevents dangling
edges. (c) shows the successful application of (b).

The effect of the gluing condition in Step 1 is illustrated in Figure 6. In (a) the nodes (1) and (2) are
mapped to the red highlighted nodes. The elements G\m(L) is the last vertex and the edge connecting to
(2). If (2) was to be deleted by the applying the rule, this edge would become a dangling edge. So the
condition states that (2) must be in K, because all nodes in K will be preserved by definition. This is why
in (a) the gluing condition is not matched and the rule cannot be applied. In (c) the gluing condition is
matched because the mapping m is chosen in a way, that G\m(L) does not contain any edges which are
not in K.

In Step 2, the context graph D is created by removing all elements m(L) and adding all preserved
elements from K. In Figure 6c this is vertex (1). In Step 3, the final graph H is created by adding new
elements R\K to the context graph D. In the production rule of Figure 6 are no new elements, so H stays
like D.

2.3 Discussion

The initial motivation to look at Graph Transformation for multicast complexity, is based on the natural
way of changing graphs over time with specific rules. Such changes happen in networks, when reconfigu-
ration methods are applied. The goal was to look for theoretical predictions of complexity based on graph
transformation rules.

4



3 MEASURING ROBUSTNESS WITH PERCOLATION THEORY

An approach for this comes with the theory of graph rewriting systems. It focuses on applying a set of
production rules (graph grammar) and the expressive power of the resulting graphs (graph language)[8].

In this context complexity of graph transformation algorithms is defined over embedding conditions of
the L and R site of the production [8, 11]. Embedding conditions describe restrictions of the surrounding
graph, under which the transformation step can be applied. With the embedding conditions, categories for
complexity are defined, based on the Chomsky hierarchy. Examples for categories are Unrestricted which
allows any description about the embedding graph, and Depth 1 which allows only direct neighbors of the
concerning nodes. As an example, the gluing conditions makes DPO more complex than SPO.

It would be nice to have categories to predict the complexity of network algorithms. The problem is,
that graph transformation complexity is defined over the embedding conditions, which do not fit to the
main problem for network complexity. The embedding conditions describe the influence (on the L-side) and
the change of information (on the R side) for a single derivation step. This is relevant for the computation
of graph transformation, but does not help with the main question of network complexity. The problem
for network complexity is, in which states a network can get by the interplay of multiple transformations.
Because this question differs from the orientation of graph transformation complexity, the usage of graph
transformation for network complexity seems not to be a promising approach.

3 Measuring Robustness with Percolation Theory

The paper Catastrophic Cascade of Failures in Interdependent Networks [4] examines the mutual impact of
coupled networks in case of a malfunction. A specific algorithm is used, which simulates the consecutive
breakdown of nodes in interdependent networks. This behaviour is examined using percolation theory to
determine on which conditions interdependent networks incur a complete breakdown, such as in the giant
Italian power blackout of 2003.

In this section an introduction to basic percolation theory for networks is given. It is basis for the
subsequent special case of percolation theory for interdependent networks as introduced by the paper [4].

3.1 Percolation Theory

Percolation theory is originated in physics and material science, where it is used to calculate the filtering of
liquids through porous materials. The mathematical model for percolation theory is based on graphs and
stochastic and can be applied to complex networks. The following aspects of percolation theory for single
networks are based on the paper Statistical mechanics of complex networks [1].

Percolation theory is based on calculations working on a d-dimensional grid. With a probability p a link
exists between two crossing points in the grid. In classical percolation theory the main question is, at which
value of p there exists a way from one side to the other. Transferred to networks it is interesting at which
value of p the so called giant component emerges. A giant component is a connected subgraph which spans
nearly every vertex in the graph. As in classical percolation theory, it can be observed that the change of
a graph from a number of connected components into a giant component does not increase linearly with
p, but converges against a step function. The step function is shown in Figure 7, at a lower value of p the
probability that a giant component exist is zero. At a certain value of p the connectivity takes a jump, so
that the probability of a giant component is 1. This value is called percolation threshold pc.

that a node 
belongs to
the giant
component

that a node is connected
to grid neighbor

Figure 7: The probability of a node belonging to a giant component converges to a stepfunction with step
at the percolation threshold pc.

An example for the giant component is shown in Figure 8. At Figure 8a, with a low value of p, the graph
consists of several small unconnected subgraphs, whereas 8b has connected nearly all existing vertices. This
example shows the bond percolation. There also exists site percolation, which includes all edges in the grid
but the nodes are occupied with probability p.

5



3 MEASURING ROBUSTNESS WITH PERCOLATION THEORY

(a) p = 0.315 (b) p = 0.525

Figure 8: The emergence of a giant component depends on the probability p of existing bonds between two
(or more) junctions [1]

.

A major difference between d-dimensional grids and networks is that grids have a static maximum node
degree. However, a network graph can be associated with an underlying grid of infinite dimension and most
of the results from classical percolation theory can be generalized to infinite dimension. Thereby percolation
theory becomes usable for networks.

The analysis of complex network graphs with percolation theory follows two main questions in the
subcritical phase (p < pc). The first one analyzes the size of the connected components, the other analyzes
the probability that a way exist between two randomly chosen nodes. Both proberties decrease exponentially
with p → 0 in the subcritical phase. These are interesting results for network, which indicate that below
the percolation threshold the probability of two randomly chosen links are able to communicate is rather
small. So either their is a good connection between all nodes in the supercritical phase, or nearly none in
the subcritical phase.

It leads to the questions which properties in a control loop influence the percolation threshold and which
kinds of failures can put the network in the subcritical phase.

3.2 Percolation Theory on Interdependent Networks

The paper Catastrophic Cascade of Failures in Interdependent Networks [4] analyzes the decay of networks,
in which the proper functioning of network A depends on network B and vice versa. The analysis is based
on percolation theory and the percolation threshold for interdependent networks is derived and simulated.
The paper concludes with a short overview about an analytical method to describe the specified behavior
by using generating functions. However, the focus of this section is on the characteristics of the decay, the
measured results and expected effects on network complexity.

Percolation theory in single networks is based on nodes, which do not have any further impact on each
other, than the loss of single local links, if a node disappears. In contrast, in interdependent networks two
nodes depend on each other to function properly. Each node in network A is connected to a node in network
B and will not work properly without it (A↔ B-links). So a malfunction of one node in network A reduces
the functionality of the interdependent node in network B, which in turn reduces the functionality in its
own network. This ends in a cascade of failures jumping back and forth between the networks and can
fragment them into small disconnected components. Subsequently, this is called the decay of the networks.

The following procedure abstractly reproduces the cascading failures following a malfunctioning of nodes.
The connected components which emerge in the process are subsequently called clusters. Links within the
A or B Network are noted as A-links and B-links, links between the two networks are A↔ B-links.

1. Remove a fraction of 1− p nodes in network A

2. Remove bidirectionally coupled nodes (A↔ B links)

3. Remove stepwise links within network B, which connects different clusters in A (and vice versa)

The procedure is illustrated in Figure 9. In (a) a small fraction of nodes in A is removed. Because
the A ↔ B links represent nodes which only work together correctly, in (b) the corresponding neighbor is
removed. At this state (Stage 1 ) network A is split into several a1 clusters (c). In Step 3 (d) the b-links
are removed which connect different a1 clusters, which lead to Stage 2 with b2 clusters. Step 3 is now
alternately applied to network A and B until no more removal of edges is possible. In the end, the graph is
fragmented into so called mutually connected clusters (e).

The mutually connected cluster is defined as a set of a- and corresponding b-nodes which fulfill the
following conditions and cannot be enlarged by adding a- or b-nodes without violating them:

6



3 MEASURING ROBUSTNESS WITH PERCOLATION THEORY

(a) (b)

a1 clusters
(c)

b 2 clusters
(d)

a /b clusters3 2

(e)

Figure 9: Removal of 1 − p nodes (a) and their A ↔ B neighbours (b,c), followed by stepwise decay into
mutually connected clusters (d,e)

1. each pair of nodes in this set belonging to A is connected via a path consisting only of a-links

2. each pair of nodes in this set belonging to B is connected via a path consisting only of b-links

The main question in the paper [4] is, with which value p = pc the interdependent networks decays
into fragments. Only a giant mutually connected cluster, a mutually connected cluster which spans (nearly)
the entire network, is considered fully functional. It is possible that one giant mutually connected cluster
emerges together with a few very small mutually connected clusters. In this case, only the giant mutually
connected cluster is functioning, whereas the small ones stop working. Hence the small mutually connected
clusters are not considered any further.

The simulation of the procedure shows probability of the existence of a giant component after the decay
procedure converges towards a stepfunction similar to the single networks. Figure 11 shows the probability
of the existence of a giant component P∞(p,N). N is number of nodes per network and p determines the
fraction of 1 − p · N removed nodes in the first step of the procedure. After the procedure the existence
of a giant component is calculated by determining the fraction of nodes in the largest mutually connected
cluster. The probability of the existence of a giant component can be measured by applying the simulation
multiple times and counting the fraction of tests, in which a giant component emerges.

2.36 2.38 2.4 2.42 2.44 2.46 2.48 2.5
p〈k〉

0.0

0.2

0.4

0.6

0.8

1.0

P
∞

N = 1,000
N = 2,000
N = 4,000
N = 8,000
N = 16,000
N = 32,000
N = 64,000

pc = 2.4554/〈k〉

a

(a) The probability of a giant component de-
pends on p and converges with N → ∞ to a
step function with a jump at the percolation
threshold pc [4].

P
∞

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
p

0.0

0.2

0.4

0.6

0.8

1.0b

RR
ER
SF, λ= 3
SF, λ= 2.7
SF, λ= 2.3

(b) The influence of random graph struc-
ture (random regular (RR), Erdös-Renyi (ER),
scale free (SF)) on the percolation threshold.
All networks have an average degree of 〈4〉 and
50000 nodes [4].

Figure 10: The existence probability of a giant component is influenced by the number of Nodes (a) and
the structure of the underlying network (b).

Figure 10a shows the convergence of P∞(p,N) towards a stepfunction with percolation threshold pc
while N →∞. Two interdependent Erdös-Renyi networks with the same average node degree 〈k〉 were used
for the measurement. The x-axis represents p rescaled with the 〈k〉 because the explicit calculation of pc
reveals a dependency to the average node degree 〈k〉 as pc = 2.4554/〈k〉 (calculation in [4]).

Another characteristic, which influences the percolation threshold is the structure of the underlying
network. Figure 10b shows the change of the percolation threshold subject to the type of the underlying
network topology.

Considered are three kinds of networks (Figure 11). In random regular graphs, each vertex has the
same node degree but random adjacent neighbor vertices [3]. The main characteristic of the Erdös-Renyi

7



3 MEASURING ROBUSTNESS WITH PERCOLATION THEORY

networks is that each possible edge exists with a specific probability p, similar to the ∞-dimensional grid
from the previous section [1]. While Erdös-Renyi networks are an easy way to create random graphs, real
existing networks like the Internet show different graph characteristics.

(a) (b) (c)

Figure 11: The difference in structure between a random regular network (a), an Erdös-Renyi network (b)
and a scale free network with the Albert-Barabasi method (γ ≈ 3) (c) . All graphs consist of 300 Nodes
and an average node degree of 3 (a) , 1.933333 (b) and 1.993333 (c)

The internet can be approximated as a scale free network, in which the node distribution follows a
power law. This means that there exist very few nodes with an exceptionally large node degree (hubs),
and many nodes with a very small node degree. The probability P (k) for a node being a large hub with k
connections to other nodes asymptotically follows P (k) ∼ k−γ . In comparison between a scale free network
and an Erdös-Renyi network with an equal number of nodes and the same average node degree, the scale
free network contains many more nodes of very low node degree and a few larger hubs (Figure 11).

In most cases (e.g., for Internet-like graphs) random scale free networks are modeled with γ as 2 ≤ γ ≤ 3.
Examples for scale free networks are links on the world wide web (γ ≈ 2.1/2.7), autonomous systems of the
Internet (γ ≈ 2.5) or distinct peer-to-peer networks (γ ≈ 2.1) [5].

The decay procedure for interdependent networks has substantial consequences for the stability of the
coupled scale free networks. Figur 10b shows the probability that a node is connected to the giant component
changes strongly with the structure of the graph 1. Single networks gain robustness through the scale free
structure, so that there exist a giant component for all p > 0, if 2 ≤ γ ≤ 3. The reason for that lies in the
broad node degree distribution. If a random number of nodes is removed of a single network, the probability,
that a hub is being removed is relatively small, because there are only few hubs. These hubs give increase
the stability of single networks.

In interdependent networks, hubs become a vulnerability. There are two reasons for that:
If a node has a malfunction in Step 1 of the decay procedure, directly a second node (the corresponding node)
in the second network is removed (Step 2 ). This increases the probability of removal of a hub significantly,
because either the node in network A or in network B, can be a hub.

The second reason for hubs as vulnerabilities for scale free networks comes from Step 3 of the procedure.
Hubs become separated, when the corresponding neighbor node in the other networks gets separated into
a small cluster during the decay procedure. The vulnerability comes from the high probability, that a hub
on one network, is connected to a low degree node over an A ↔ B-link. In general, low degree nodes get
easier separated into very small clusters, because they have only few links to connect to other nodes. If the
corresponding low degree node to a hub is separated, the hub will directly loose most of its links. Since the
hubs are the nodes, which hold the network together and only a few of them exist, the network decays into
very small clusters at once. Hence hubs become a vulnerability in coupled scale free networks.

As a consequence, random regular networks, with their lack of large degree nodes, turn out to be most
stable (Figure 10b), while broader degree distributions are more vulnerable.

3.3 Discussion

Percolation theory for single and interdependent networks is an interesting topic from the network complexity
point of view. There are two reasons for that.

The first one is that the percolation threshold is a number which describes robustness of a network in a
formally defined way. Robustness is one of the main characteristics which is influenced by complexity. By

1The paper does not mention how regular random and Erdös-Renyi algorithms were used to create connected graphs. The
algorithms themselves do not guarantee connected graphs, but there are several possible workarounds.

8



4 STABILITY OF A MULTICAST TREE

observing the change of the percolation threshold, the influence from specified properties on robustness can
be made visible. This can be done similar to the measurement of the percolation threshold subject to the
different network topologies.

The second reason derives from the decay procedure of interdependent networks. In multicast networks,
the change of one state can affect a large number of nodes, if it starts a chain of reconfiguration methods
which spreads through the network. An example for this can be found in the NICE-algorithm [2], in which
the clusters are periodically checked for their sizes. If a cluster is too small, its nodes will be devided and
integrated into other clusters. Since there is now one clusterleader less in layer above, this cluster is also
checked for its size, and possibly devided. This behavior can spread through the network.

The procedure of decay for interdependent network provides a similar chain and can possibly be adapted
to represent the effects of reconfiguration methods.

4 Stability of a Multicast Tree

The paper Stability of a multicast tree [13] uses graph theory and stochastics to quantify the change of
multicast distribution trees if a group member joins or leaves. The paper states that in large graphs the
number of changed links follows a Poisson distribution. Furthermore, it devises a formula to approximate
the change of the tree depending on the number of all nodes and the number of members in the multicast
group. The simulation supports the calculations and in addition the influence of the link weight distribution
on the stability is discussed.

This section concentrates on the main result, which is the change of links as a Poisson distribution, the
explanation for this characteristic and the simulation results. These topics of the paper are the basics to
get an idea how the change of a multicast tree can be quantified. Further results like the influence of the
link weight distribution or the exact formulas for the calculation can be found in the paper.

A multicast distribution tree is constructed as a shortest path tree withm group members, on a connected
random graph Gp(N) with N vertices and independently chosen links with probability p (similar to Erdös-
Renyi graphs). On the basis of such a graph gN (m) describes the expected hopcount in the shortest path
tree from the source to m distinct group members.

Figure 12: In a finite network the expected number of new links with a joining node decreases with the
increasing number of group members.

The number of new links after a node joins, depends on the fraction of nodes in the network which
already joined the network. The more nodes of the network already joined the distribution tree, the less
new links are needed to connect an addition node to the distribution tree. So the mapping m → gN (m)
is considered concave. An example is shown Figure 12. The join of the first member m1 leads to 4 new
links while the m2 and m3 need only a few new links until they reach an already joined routing node on the
shortest path.

The number of new links if the mth members joins in a network with N nodes is denoted as ∆N (m). If
the number of members changes by one, the expected change of the tree is E[∆N (m)] = gN (m)−gN (m−1)
links. It is the difference of links between a distribution tree with m and m−1 members. Since m→ gN (m)
is concave, E[∆N (m)] is always decreasing. A multicast tree is considered stable, if E[∆N (m)] < 1), in
other words that an average of less then one link changes, if a node joins or leaves. This happens, if about
1
3 of all nodes in a graph have joined the multicast group. Since this is an highly unrealistic setting, the
behavior below this step is analyzed.

The paper states that below a number of N
3 group members, the distribution of changed links in a

tree with m members over a graph Gp(N) with uniformly distributed link weights and large N , follows a
Poisson distribution. A property of the Poisson distribution is the independence of the number of events
per fixed interval [9]. In this case the number of events are the number of new hops due to the joined
node m. Considering two members m and the nearest joined member m − 1 (Figure 13), and the random

9



4 STABILITY OF A MULTICAST TREE

variables HN (m) resp. HN (m − 1) counting the hops between the source and the receiver nodes. HN (m)
and HN (m−1) are not independent, and m and m−1 have an overlapping path to the source. This changes,
if we consider the subtree rooted at the last node on this path (node B in Figure 13).

m-1

m

Root

A

B

D

Figure 13: The nodes m and m− 1 are independently chosen in the subtree rooted at b (dotted line). [13]

Shortest path trees of Gp(N)-Graphs with sufficiently large N are uniform recursive trees [12]. A uniform
recursive tree is a tree on which each node n is connected to one of the n− 1 nodes randomly with uniform
probability. A subtree in a uniform recursive tree is also a uniform recursive tree.

Since Gp(N)-graphs are used in this case, the subtree rooted at B, has this exact property. So the paths
and hopcount from the subtree root to m resp. m−1 can be considered independent and within the subtree
m and m − 1 are uniformly chosen. The probability distribution has a mean of E[∆N (m)], which gives

the Poisson distribution formula Pr[∆N (m) = k] ∼ (E[∆N (m)])k

k! · e−E[∆N (m)]. The conclusive proof and a
formula to calculate E[∆N (m)] can be found in the paper [13].

the number of changed edges k

0 2 4 6 8 10 12 14

P
r

[Δ
N
=

k]

0.0001

0.001

0.01

0.1

1

m=8
m=16
m=32
m=64
poisson (m=8)
poisson (m=16)
poisson (m=32)
poisson (m=64)

N=200

(a) SPT: Pdf Pr[∆N = k] and m < N/3

multicast group size m

0 20 40 60 80 100 120

E
[Δ

N
], 

va
r[
Δ

N
]

1

2

3

E[Δ
Ν
]

var[Δ
Ν
]

E[Δ
Ν
] computed

N=200

(b) Expectation Value and Variance of ∆N

Figure 14: Simultation results for ∆N over a graph with 200 Nodes [13]

The validity of the Poisson distribution for the change of links is supported by measurements. Figure
14a shows the changed number of links between a shortest path tree (SPT) with m receivers and the same
tree with one member less. The change of links is shown as probability density function (pdf) with m joined
nodes and measured below the critical stability property of N

3 nodes. The measured pdf (dotted line) and
the calculated Poisson distribution based on the formula for E[∆N (m)] show nearly the same values.

A property of the Poisson distribution is, that expectation value and variance tend to the same value.
They are compared in Figure 14b and show this behavior especially for the lower values of m. At values of
m > N

3 expectation value and variance drift apart. At this time, the tree is considered to fulfill the above-

mentioned stability criteria E[∆N (m)] ≤ 1. So the measurement supports that ∆N for m < N
3 follows a

Poisson distribution.

4.1 Discussion

In summary, the number of changed links initiated by the departure and arrival of the multicast receivers
is quantified. It is shown that the number of changed links follow a Poisson distribution for “unstable”
considered networks.

10



5 SUMMARY AND OUTLOOK

The paper develops the calculation for networks which run IP-Multicast algorithms. Some assumptions
are made, so that the results cannot be transferred one-to-one to other multicast algorithms. The first
assumption is that multicast trees are considered stable, if the expected link change is < 1 per join/leave.
This is only possible, if the last links to the receiver endpoints are not counted. Otherwise the criteria value
for stability would have to be > 1. This means for other multicast algorithms (e.g. overlay algorithms) that
m does not correlate to the number of receiver nodes, but the number of forwarding nodes.

Furthermore, the formula, which calculates the expectation values includes the number of nodes in the
underlying network. For overlay algorithms there is not necessarily an underlying network, where the nodes
can change its state between “member” and “not-member” of the distribution tree. So the the stability and
change of a network created with such an algorithm would depend on other things than the ratio between
the number of members and the number of all nodes.

From the network complexity point of view the paper is interesting, because it shows how many nodes
are effected by a joining or leaving node. These nodes would be the ones, which are subsequently responsible
for the optimization of the network, and therefore the starting points for possible chains of reconfiguration
which can lead to unpredictable behavior in the network.

5 Summary and Outlook

In this work three approaches were introduced to formalize and evaluate distinct aspects of graphs and
networks.

The graph transformation approach formalized the change of a graph on the basis of production rules.
Although production rules have a direct mapping to the reconfiguration methods of distributed algorithms,
the focus of the evaluation with graph grammars and graph languages do not fit to the goals of network
complexity.

In percolation theory the cohesion and decay of networks is quantified for single and interdependent
networks. Cohesion and decay of a network is influenced by complexity, insofar as some complexity is
needed to create a robust network, but with too much complexity, a networks robustness decreases. So by
comparing distinct reconfiguration methods, the impact on the network can be measured by the change of
the percolation threshold.

The stability of a multicast tree is quantified by the number of changed links when a group member joins
or leaves. It is shown that the number of changed links follows a Poisson distribution and the average value
can be approximated via a formula. This quantification shows the reach of the reconfiguration methods join
and leave. The reach is important to analyze the impact on other nodes and the interplay between control
loops on multiple nodes.

The next step is to analyze a range of distributed algorithms. The constraint of this work, to analyze
only multicast algorithms turns out to allow too much variety in the algorithms. A better restriction would
be to analyze algorithms which build spanning trees and in which all nodes follow the same control loop.
This increases the comparability of the algorithms. Within the control loops the reconfiguration methods
will be analyzed for the influence on robustness. The goal is to find recurring characteristics which influence
the robustness.

11



REFERENCES

References

[1] Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Reviews of modern
physics, 74(1):47, 2002.

[2] Suman Banerjee, Bobby Bhattacharjee, and Christopher Kommareddy. Scalable Application Layer
Multicast. In Proc. of SIGCOMM ’02, pages 205–217, New York, NY, USA, 2002. ACM Press.

[3] Béla Bollobás. Random Graphs. Cambridge Univ. Press, 2006.

[4] Sergey V Buldyrev, Roni Parshani, Gerald Paul, H Eugene Stanley, and Shlomo Havlin. Catastrophic
cascade of failures in interdependent networks. Nature, 464(7291):1025–1028, 2010.

[5] Reuven Cohen and Shlomo Havlin. Complex Networks: Structure, Robustness and Function. Cambridge
University Press, 2010.

[6] Andrea Corradini, Ugo Montanari, Francesca Rossi, Hartmut Ehrig, Reiko Heckel, and Michael Löwe.
Algebraic Approaches to Graph Transformation-Part I: Basic Concepts and Double Pushout Approach.
In Handbook of Graph Grammars, pages 163–246, 1997.

[7] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamentals of Algebraic Graph
Transformation, volume 373. Springer, 2006.

[8] Hoda Fahmy and Dorothea Blostein. A Survey of Graph Grammars: Theory and Applications. In
Pattern Recognition, 1992. Vol. II. Conference B: Pattern Recognition Methodology and Systems, Pro-
ceedings., 11th IAPR International Conference on, pages 294–298. IEEE, 1992.

[9] Peter Hartmann. Mathematik für Informatiker: Ein praxisbezogenes Lehrbuch. Vierte Auflage, 2006.

[10] Reiko Heckel. Graph Transformation in a Nutshell. Electronic Notes in Theoretical Computer Science,
148:187–198, 2006.

[11] Manfred Nagl. A Tutorial and Bibliographical Survey on Graph Grammars. In Graph-Grammars and
Their Application to Computer Science and Biology, pages 70–126. Springer, 1979.

[12] Piet Van Mieghem. Performance Analysis of Communications Networks and Systems. Cambridge
University Press, Cambridge, New York, 2006.

[13] Piet Van Mieghem and Milena Janic. Stability of a Multicast Tree. In INFOCOM 2002. Twenty-First
Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE,
volume 2, pages 1099–1108. IEEE, 2002.

12


