
Recommendations for cocktail recipes
Sigurd Sippel

Hamburg University of Applied Sciences, Department of Computer Science,
Berliner Tor 7, 20099 Hamburg

sigurd.sippel@haw-hamburg.de
August 28, 2014

1 Introduction

When cooking, people tend to use a limited collection
of recipes, which they try to remember. In a fam-
ily with only a single cook, known as the nutritional
gatekeeper [PGK11, p. 105], he is limited by this
circumstances. A huge quantity of cooking recipes
is available in the form of books or on the Internet
and it is possible to select a new meal every day by
using these sources [STIM09, p. 9]. Because of such
a diverse, dizzying range of choices, a system of au-
tomatic recommendations can help deal with such
diversity [XYL10, p. 254].
Recommender systems [RV97] make it possible for

a user to identify a context and use specific rec-
ommendations. Cocktail recipes are simple cooking
recipes, with a small list of ingredients and a sin-
gle action — stir or shake. This paper considers
the main aspects of recommender systems, including
the algorithm of and modeling techniques for recipes.
Since there are no papers on cocktails, theoretical ap-
proaches to cooking recipes will be applied to cocktail
recipes.
The following application can be envisaged: In a

bar, a guest seeks a recommendation for a drink. As a
nutritional gatekeeper, the bartender can go beyond
the limited choices at hand and can use a recom-
mender system to make a less subjective and more
convenient recommendation to the specific guest.
The focus is on learning things that are similar

to another in a database that might be quite large.
Learning is an aspect of artificial intelligence. Cur-
rently, when large amounts of data, called big data,
are considered, it is common to call this as a black
box. The next sections will consider big data as a
white box.
What is learning? It is not enough to say that

learning is a process in which one becomes better with
the next attempt [WMJ03, p. 518]. A knife that has
been ground will cut better, but has not learned any-
thing new. It is necessary to know the goal to ground
a system in the right way. It is simpler to define a
learning task that works in a single area. If there is a
specified input and an expected output, a system will

successfully learn under the following condition: The
input corresponds to particular specifications and the
system is able to automatically produce the expected
output. The learning task forms guidelines for the
following sections.
Section 2 explain the idea behind a recommender

system [RRSK10]. In the following section 3, the
KDD process [FPSS96a] is described, which enable
comparisons between data sets and detects correla-
tions between them. It follows the example of a
feature extraction with an ontology. Based on this,
clustering algorithm and Euclidean distance measure
[JMF99] are considered in accordance with the cock-
tail domain. Section 4 shows the modeling of a fea-
ture vector with combination and substitution of in-
gredients on the basis of a connected graph [TLA12].
An alternative shows section 5 with computed bal-
ance [KF10] to represent a recipe in an abstract form,
which is independent of any special ingredient. In
section 6 an analysis for obtaining user preferences
with ratings follows [HLE12]. Based on this, a user
profiling approach with Folksonomies [YGS08] is de-
scribed in Section 7. It includes a nearest-neighbor
classification [AJOP11]. An approach to cooking
recipes uses Folksonomies [XYL10]. Finally, the con-
clusion and future works are in section 8.

2 Recommender systems
A recommender system — called RS — assists a user
in finding something [RRSK10, p. 2]. For example,
in a web shop, a user gets a recommendation of some
products, which are similar to the last added item
in his shopping basket. From the shop-owner’s point
of view, an RS increases the number of items sold.
Another way of motivating a user is to give him the
opportunity to select a item from a huge catalog, but
it is necessary to know what the user likes.
An RS is strongly connected to a user [RRSK10,

p. 6]. If a recommendation is accurate, it will sat-
isfy him more. If a user gets what he wants, he will
come back. The recommender system will have to
learn how to improve itself with each user visit. The
service owner can optimize his service (like stocking

1



management), if an RS tells him what users are inter-
ested in. Because of user satisfaction and loyalty, an
RS is a part of human-computer interaction. Search
engines could be considered as recommender systems
and used in two ways: A user can find a interesting
website with a search engine, and he can also check
how important a website is, in accordance with his
interest.
At the center of data are users and items [RRSK10,

p. 10], the relation between them enables to predict
how useful a item is for a user. With an estimation
R(user, item)→ Real, a limited set of items with the
best estimation can be assigned as a prediction to a
user. In order to predict an item for a user, the item
has to be comparable to other items. The concept
is as follows: If a user likes item x, he will probably
like an item y near to x. Because the recommenda-
tions contains only user-related items, recommender
systems are also called collaborative filtering [RV97,
p. 56]. Comparison depends on the quality of knowl-
edge. Knowledge is extracted out of simple text or
heavily structured relational databases.

3 Knowledge discovery in database
and data mining

Manual analysis of huge volumes of data is a slow,
expensive and also subjective process [FPSS96a, p.
28]. Knowledge discovery in database and data min-
ing process — called KDD process — aims at auto-
matically extracting useful knowledge from huge vol-
umes of data [FPSS96a, p. 27]. A company’s peri-
odic report, based on facts in relational databases,
is an example of an application of KDD. The com-
puted knowledge, in this case, is: Sales of a prod-
uct in a quarter are lower than the last five-year pe-
riod. Raw data in a database contains much informa-
tion [MHC06, p. 3]; the end product of the process
of information discovery is the knowledge extracted
[FPSS96b, p. 39].
Preconditions for the KDD process (Figure 1) are:

Understanding a domain, locating available back-
ground knowledge, and identifying a goal. In the
domain of cocktails, the background knowledge could
be an ontology of ingredients. For example, a goal is
to find duplicate recipes from different sources. The
KDD process is divided into five steps [FPSS96a, p.
30]: The first step is selecting a target data set, which
will be used to extract knowledge. The set of facts in
the database comprises the data [FPSS96b, p. 41].
In a recipe database, these could be titles, authors’
names and ingredients of recipes. For identifying sim-
ilar ingredients, information such as titles and au-

Figure 1: KDD process [FPSS96a, p. 29 Figure 1]

thors’ names are not relevant. Only relevant informa-
tion should be in the target data set. The next step
is the preprocessing for reducing noise and outliers.
Removing a set of stop words, which is not relevant,
is a good method of reducing noise. If a plausibility
check of the remaining data is undertaken, then use-
less data can be weeded out. A recipe without any
ingredient is useless. In the third step, data is trans-
formed into patterns. For example, an ingredient, as
a raw string, can be transformed into an ingredient
by finding the string in an ingredient database — the
background knowledge. A pattern is a feature vector;
each component of a pattern is a feature [JMF99, p.
269f]. With a distance function like an Euclid (sub-
section 3.2), the distance between two feature vectors
are computable. A pattern should be useful and as
simple and understandable as possible, since other-
wise the distance would be arbitrary.
The next step is data mining. In accordance with

the model, the composition of the target data, and
the goal, there are four possible model functions:
Regression, clustering, classification and summariza-
tion.
A regression analysis is used to find a function

to describe the feature vectors. For example, in a
time sequence, the regressions are able to predict
the future trends because of the known feature vec-
tors [FPSS96b, p. 44]. Clustering computes dis-
tance with each feature vector combination and cre-
ates a group of feature vectors — a cluster — with
a smaller distance than a specific threshold [JMF99,
p. 274]. Classification maps feature vectors to pre-
defined classes [FPSS96b, p. 44]. A summarization
process detects the most important parts of a docu-
ment and computes the correlations to other docu-
ments [CWML13, p. 527]. For example, it reduces
a document to only the words most frequently used.
After a function is chosen, a concrete algorithm has
to be selected and run for data mining. The result is
the correlation of the input feature vectors.
The last step is the evaluation and interpretation

of the mining results. Feature vectors which do
not have any correlation or domain-specific seman-
tic sense have to be removed. The technical feature
vector cannot be easily read by a user. A visualiza-
tion, as in a connected graph, makes it readable. If
the accuracy of the result is good enough, potentially

2



useless features can be removed to optimize the per-
formance. A feature is useless, if accuracy without
this feature is at least as good as with the feature.
KDD as a development process is not a downfall

model. The steps can be repeated at every moment,
if it is necessary to make the knowledge extraction
process more accurate.
Data mining is a statistical method of analyzing

data. In statistics, a random sample is considered
significant if it is collectively valid [FKPT07, p. 33].
A problem is that if someone searches long enough
in a set of statistical data, he might find a significant
pattern, which may not have any link with reality
[FPSS96b, p. 40].
KDD is a timeless and adaptive approach for ex-

tracting knowledge out of data because no algorithm
is predefined and it is domain independent. It is a
process with loosely coupled steps. Not every step is
sophisticated, but these steps are necessary. The dis-
advantage is that every developer, who wishes to use
KDD, will have to find his own focus, like distance
measurement or data visualization. Every step is a
potential money sink.

3.1 Feature extraction of cocktail recipes
Two recipes, r1 and r2, are at a distance between
each other. It is necessary to convert these recipes,
which exist as raw strings, into a comparable form.
These comparable forms have to be as precise as pos-
sible to get a usable distance [JMF99, p. 271]. In the
next example, only the quantities of ingredients are
considered. These two Manhattan recipes are out of
historic cocktail books and have been a bit simplified.
The texts with instructions for making the prepara-
tions have been removed. In the second recipe, con-
crete measurement units have been added because
then it would be possible to say something about the
volume.

Manhattan Cocktail
(1882 Harry Johnson, Bartenders Manual p. 182)

1 dash of gum syrup, very carefully;
1 dash of bitters (orange bitters);
1 dash of curacao, if required;
1/2 wine glass of whiskey
1/2 wine glass of sweet vermouth

MANHATTAN COCKTAIL, SWEET
(1937 W. J. TARLING, Cafe Royal p. 127)

1/2 oz Martini Sweet Vermouth.
1/2 oz Rye.
Serve Maraschino cherry.
A dash of Angostura may be added, if de-
sired.

A Levenshtein distance [PROA12, p. 706] gives the
number of characters that have to be changed to
transform a string into another one. The transforma-
tion entails addition, removal and switching of char-
acters. The distance between two strings Rye and
Whiskey is higher than between Rye and Gin (Equa-
tion 1), though in a semantic way, a rye is a special
kind of whiskey and rye and gin are absolutely differ-
ent. So, when characters are considered, no semantic
comparability is possible.

levenshtein(rye, whiskey) = 8 (1)
levenshtein(rye, gin) = 3

For preprocessing, the stop words are removed to
reduce noise (Equation 2).

stopwords = {of, very, carefully, (, ), ; , ., (2)
may, be, added, if, desired,A, Serve}

The result is:

Manhattan Cocktail
1 dash gum syrup
1 dash bitters orange bitters
1 dash curacao
1/2 wine glass whiskey
1/2 wine glass sweet vermouth

MANHATTAN COCKTAIL, SWEET
1/2 oz Martini Sweet Vermouth
1/2 oz Rye
Maraschino cherry
dash Angostura

In transformation steps, the background knowl-
edge is used. Background knowledge contains syn-
onyms such as gum is sugar [TLA12, p. 302]. The
other part of the knowledge background is an ontol-
ogy [PGK11, p. 108] for recognizing mappings like
bitters → orange bitters, bitters → Angstura or
Whiskey → Rye.

Manhattan Cocktail
1 dash [sugar]
1 dash [bitters, orange bitters]
1 dash [curacao]
1/2 wine glass [whiskey]
1/2 wine glass [sweet vermouth]]

MANHATTAN COCKTAIL, SWEET
1/2 oz [sweet vermouth]
1/2 oz [rye]
[maraschino cherry]
dash [bitters, angostura]

3



The ingredients have been transformed, but the
units of measurement and the quantities are miss-
ing. The measurement units have to be recognized
to transform it into a single unit: 1 wine glass =
3 cl = 1 oz. The ontology is also used to decide
whether a unit is scalable or not. Units that are not
scalable remain unaffected. Quantities that are not
explicit are added as 1 to identify dash as 1dash and
maraschino cherry as 1maraschino cherry.

Manhattan Cocktail
1 dash [sugar]
1 dash [bitters, orange bitters]
1 dash [curacao]
1/2 cl [whiskey]
1/2 cl [sweet vermouth]

MANHATTAN COCKTAIL, SWEET
1/2 cl [sweet vermouth]
1/2 cl [rye]
1 [maraschino cherry]
1 dash [bitters, angostura]

3.2 Clustering with Euclidean distance
measure

A process of clustering detects groups — called clus-
ters — in a set of feature vectors [JMF99, p. 265].
Clustering is unsupervised learning, since it is not
necessary to have a specific learning set. Depending
on the quality of feature extraction, groups contain
feature vectors that are more similar to each other
than to outside feature vectors. Similarity is defined
as a distance function such as a Euclidean distance
(Figure 2). The extracted features are components of
the feature vector. A Euclidean distance computes
the difference between each component, squares it
and takes the 2-nd root of the sum.

Figure 2: Euclidean distance [JMF99, p. 271]

The validity of the result — the located clusters —
have to be meaningful and comprehensible, but this
is subjective [JMF99, p. 268]. An indication of this
is that clusters might be too big or too small, which
are noticed as an annoying artifact. Another way
of understanding this is through data abstraction. A
cluster, as a set of feature vectors, has a centroid. For
example, a centroid is a feature vector closest to the
center of a triangle, which describes the center (Fig-
ure 3). A centroid is also a compact representation
of a cluster.

Figure 3: Centroid of a cluster [JMF99, p. 282]

The initial state of a clustering algorithm is either
agglomerative or divisive [JMF99, p. 274]. An ag-
glomerative algorithm creates for each feature vector
a new cluster. The clusters will merged together. A
divisive algorithm creates one cluster for all feature
vectors, which will be split. Both these methods need
a stopping criterion, a threshold, to decide whether
to merge or split.
For computing clusters, there are hierarchical and

partitional algorithms. The hierarchical and agglom-
erative approach seeks the nearest pairs and uses
these pairs to find the nearest pairs of pairs. The
result is a nested cluster — a tree (Figure 4). One
of the clusters is useless, but this cluster can be cut
at every depth to get the end result. It has a high
complexity in time and space [JMF99, p. 277].

Figure 4: Hierarchical clustering [JMF99, p. 276]

The partitional approach considers the feature vec-
tors as one partition [JMF99, p. 278]. The k-means
algorithms is an example. For initialization purposes,
it chooses a feature vector randomly for k clusters and
considers the feature vector as the centroid, because
it is the only one. Then a loop starts: The clusters
are split or merged. The centroid of each cluster is re-
computed. The loop will stop if the clusters are not,
or only minimally, changed. The k-means algorithm
has a low complexity of O(n), but it needs isotropic
features for delivering a good result.
Up to this point, a feature vector is in only one clus-

ter. The clusters are disjunct sets. This is called hard
clustering; the alternative is fuzzy clustering [JMF99,
p. 281]. The main difference is that the assignment

4



of a feature vector to a cluster is not finished if the
closest cluster is found. It needs a set of clusters that
are close enough (Figure 5).

Figure 5: Clustering [FPSS96b, p. 45 Figure 5]

In order to use a clustering algorithm, the feature
vectors have to be constructed. For computing the
distance between two feature vectors, domain depen-
dent knowledge is needed for selecting the features
and distance function [JMF99, p. 289].
The preprocessed and transformed (subsection 3.1)

recipes are converted to feature vectors r1 and r2.
The ingredients are the components. For measuring
the Euclidean distance, the dimensions of both have
to be equal [PGK11, p. 108]. If a component does
not have a counterpart in the other recipes, an empty
ingredient [_] will be added on the side. Equally, the
acidity is normalized: [whiskey, rye] has an counter-
part such as [whiskey,_].

[whiskey,_]
[sweet vermouth]

[bitters, orange bitters]
[_]

[sugar]
[curacao]

[lemon peel]





[whiskey, rye]
[sweet vermouth]

[bitters, angostura]
[maraschino cherry]

[_]
[_]
[_]


For computing a Euclidean distance, each component
of r1 is subtracted by the same component of r2.
An ingredient is not a number, so the subtraction
has to be defined. This is first done for one element
(Equation 3).

sub(x, y) := if(x == y) : 0 else 1 (3)
sub(bitters, bitters) = 0

For a component, the average of all elements is com-
puted (Equation 4).

sub([bitters, angustura], [bitters,_]) = (0 + 1)/2 = 0.5 (4)

The Euclidean distance between r1 and r2 is com-
putable with a defined subtraction (Equation 5).

d(r1, r2) = (0.52 + 0 + 0.52 + 1 + 1 + 1 + 1)1/2 = 2.25 (5)

Two recipes that are equal have a distance of d =
0. The recipes r1 and r2 are not equal, but very
similar. For this reason, a low distance is expected.
All features have the same weight. A specific weight
for every feature, which indicates how important it
is, makes the distance more precise.
There are three types of features [JMF99, p. 270].

Ordinals, such as military rank or sound intensity
(loud, quiet), can be represented by a defined or-
dered list. Qualitative features like colors or ingredi-
ents have arbitrary, probably unordered, values, and
quantitative features like discrete values, weights or
volumes are scalable.
Ingredients with quantities and units are usually

scalable. Some units are unscalable, such as dashes.
With quantities as feature weight and a standard
weight of 0.1 for unscalable units, it is possible to
calculate a more precise distance (Equation 6).

d(r1, r2) = (0.5 ∗ 0.52 + 0.5 ∗ 0 + 0.1 ∗ 0.52 (6)
+0.1 ∗ 1 + 0.1 ∗ 1 + 0.1 ∗ 1 + 0.1 ∗ 1)1/2 = 0.75

Of course, quantity is not equal to intensity. If the
aim is to recommend an appropriate flavor, an inten-
sity is needed. It is difficult to consider each ingre-
dient as a new feature, because the correct order is
needed. It is an intuitive, but not a very efficient way,
of comparing two recipes.

4 Recipe modeling with combination
and substitution

A recipe modeling approach [TLA12, p. 298] uses in-
gredient networks for obtaining a more efficient rec-
ommendation. A database of recipes, available on
the Internet — these are posted by a big social com-
munity — are considered to be sources that contain
what people like. They collect recipes from their fam-
ilies and put these into the database, where they are
discussed by others.
The database contains recipes in the form of un-

structured text. The recipe contains ingredients,
steps for preparing them, quantities, temperatures
and cooking times. Additional information includes
user-based reviews and ratings. There is also a list
of users’ favorites and a classification of the recipes,
which lists the meal times that are suitable and the
regions from which they come.
The goal is to find the ingredients and remove

all the additional information [TLA12, p. 299].
For identifying the ingredients, they removed the
stop words, and obtained background knowledge
to recognize synonyms such as Bush′s Original =
baked beans. The background knowledge does not

5



contain a list of ingredients, since an attempt failed
as too less ingredients were identified. The list was
always too small. Additional information, such as
quantities and temperature, were also removed for
merging similar ingredients. The following are equal:
10g cold butter = 100g smooth butter.
As a consequence, there are many ingredients

that are very similar, such as cheddar cheese and
shared cheddar cheese. Such ingredients are merged
in to a single ingredient based on string similarity.
As the next step, the ingredient list is sorted by fre-
quency, because the top 1,000 ingredients are being
sought. The ingredients that are removed are the
special brand names, misspelled items or very spe-
cial items (like yolk-free egg noodles).

Figure 6: Point wise mutual information [TLA12, p.
300]

Based on the frequency of the ingredients, statisti-
cal mutual information is computed for every ingre-
dient (Figure 6): P (a) is the probability of how often
an ingredient a appears in the recipe database. The
frequency of the ingredients is divided by the recipe
count. P (a, b) is the probability of the combination
(a, b). The probability of the combination, divided
by the multiplied single ingredients, is the point wise
mutual information, called PMI (Figure 6).
The result of an PMI for every ingredient combi-

nation is a connected graph (Figure 7). An edge rep-
resents a combination where the PMI has to exceed
a threshold. The font size of a node represents the
size of the PMI. On the left side, the graph contains
more sweet ingredients, and on the right side, there
are more herbal ingredients. In the middle, there are
ingredients such as water, oil, salt and lemon juice,
which link both sides. A clustering analysis detects
a big cluster on the sweet side, which contains only
the ingredients for mixed drinks, such as lime juice
or spirits [TLA12, p. 300].

Figure 7: Connected graph for combination [TLA12,
p. 301 Figure 2]

On the basis of user reviews or comments, which

contain modifications, it is possible to find out how
flexible a recipe is. There are signaling words such
as add, extra or instead, which make it easy to rec-
ognize a modification. A PMI(a → b) computes
the probability of substituting an ingredient a with b
(Figure 8).

Figure 8: PMI for substitution [TLA12, p. 303]

A substitution graph (Figure 9) represents substi-
tutions as edges a → b, which connected the nodes.
The nodes are the ingredients.

Figure 9: Connected graph for substitution [TLA12,
p. 302 Figure 5]

Combination and substitution are two kinds of
summarization methods, which can be used in KDD.
PMI is a measure. In a database with huge volumes
of data, a PMI of the combinations indicates how
common it is. It is an indicator of how well they go
together. A PMI can be used for a feature vector for
characterizing a recipe. This is particularly simple
for the purposes of transfer to cocktail recipes, be-
cause they have a smaller list of ingredients. When
transferred to a graph, the number of combinations is
equal to the number of edges. It is a complete graph,
because all nodes are connected to all other nodes.
If there are n nodes, there are Kn = n(n−1)

2 edges.
The recipe r2 contains five ingredients and because
of that a manageable number of 10 ingredient com-
bination. An occurrence of rye in combination with
sweet vermouth is then a ratable fact. A threshold
can be defined to prevent the number of occurrences
from becoming too few (Equation 7).

(rye, sweet vermouth) (7)
→ PMI(rye, sweet vermouth)

6



5 Balance with a nutritional pyramid
Another modeling approach is on the basis of nutri-
tional balance [KF10, p. 56:1]. The goal is to gen-
erate healthy meal plans. The user can get a com-
pletely auto-generated meal plan and can choose fa-
vorites, including self-monitoring of balance changes.
It is based on the Japanese nutritional pyramid (Fig-
ure 10). The pyramid is divided into six food groups:
Water, grains, vegetables, fish/meat, milk and fruits.

Figure 10: Japanese nutritional pyramid [Jap14]

With the help of a domestic science handbook, a
dictionary is created, which contains foods classified
into food groups such as meat → pork [KF10, p.
56:4]. Because all the ingredients of a cooking recipe
are classified and the quantities are available, it is
possible to compute the ratio of every food group re-
ferred to in a recipe. All the ratios of ingredients of
a particular food group are computed and summa-
rized. All six food group ratios are together a recipe
balance, which is visualized as a red rhombus (Fig-
ure 11).

Figure 11: Balance [KF10, p. 56:4 Figure 4]

The meal planning uses the balance to find meals,
which together represent an optimal intake of foods
per day. The intake per day is specific to age, gender
and food group. It is a part of the Japanese food
standard.
This is an approach toward optimizing diets from

the point of view of healthfulness. The question that
arises is this: How can the balance of such a recipe

be characterized to make it comparable to another
one? It is useless to know that an ingredient of a
huge database does not exist in a specific recipe. But
if the ingredients are classified into a small number
of groups and only the groups are considered. The
knowledge is important that one group does not ex-
ist in a recipe. This can be computed, because all
ratios are available, and the sum of all ratios is 1.
It is important that this group covers as many ar-
eas as possible. It is an indicator in the Figure 7
that the biggest ingredient nodes, such as water or
milk, represent the food groups. Meat and fish are
exceptions. These nodes are smaller, because there
are more nodes, each of which represents a specific
kind of meat or fish. User don’t distinguish between
several kinds of milk.
A cocktail recipe is more restricted, since there are

no ingredients like fish and meat. Milk products are
rare in classical cocktail recipes. Acid from fruits,
water (like soda or melting ice), sweets (like liqueur,
syrup) and alcohol (like spirits) are groups of ingre-
dients that are frequently used. For a cocktail recipe,
it is possible to compute the ratios in an ingredient
group. All the ratios together form the balance. For
example, in a Collins recipe (Equation 8), there are
ingredients with quantities and ratios of groups.

Collins = {5 cl Gin (47 % alcohol, 53 % water), (8)
3 cl lemon juice (5 % acid, 95 % water),
2 cl sugar syrup (2/3 sugar, 1/3 water),

20 cl soda (100 % water)}

The total volume is 30 cl; hence the group ratios can
be computed in a simple way (Equation 9). The ratio
is not an intensity; it has to be normalized for attain-
ing greater precision. The feature vector balance−1

contains only numerical values, as the subtraction has
already been defined. A balance is available for ev-
ery recipe and a similarity measure with a balance
does not depend on special ingredients like rye or
sweet vermouth.

c(alcohol) = (5 ∗ 0, 47)/30 = 0, 078 (9)
c(sugar) = (2 ∗ 2/3)/30 = 0, 044
c(acid) = (3 ∗ 0, 05)/30 = 0, 005
c(water) = (5 ∗ 0, 53 + 2 ∗ 0, 95+

2 ∗ 1/3 + 20)/30 = 0, 841
balance = (c(alcohol),

c(sugar), c(acid), c(water)))

7



6 User preferences for
recommendation

It is necessary to know the user’s preferences for mak-
ing an appropriate recommendation [HLE12, p. 18].
One way of getting to know what people like is to
ask them: Users rated a randomly chosen recipe be-
tween one and five stars. A rating shows what users
like. Apart from the recipe rating, user modification
options in the comments show that the user has iden-
tified and worked with a recipe [TLA12, p. 300]. User
activities on a website — such as page visits and fa-
vorite recipes — are also a part of a fingerprint, which
can be used to know what users like [WGH11, p. 50].
Following this, the users should explain their rat-

ings in three categories. The categories are: Health,
preparation and individual preferences, which have
the reasons in the form of a check box like too many
ingredients or my favorites ingredients. The rea-
sons are divided into positives and negatives. The
recipes are not randomly chosen — basically meta
data is available for filtering recipes for vegetarian
or lactose-intolerant users. It is assumed that the
user consumes the food immediately; hence, there is
a time-dependent filter. Only those dishes are chosen
that are appropriate for the actual time of the day,
such as breakfast in the mornings. The learning data
comprises the results, the ratings and the reasons.

Figure 12: Frequencies of reasons [HLE12, p. 21 Fig-
ure 2]

The diagram shows the frequencies of the reasons
(Figure 12). The gray bars on the left side are the
negative reasons, the white bars on the right side
are the positive reasons. The ingredients that are
disliked catch the eye in the diagram, while wrong
combinations and preparation time that are too long
are also often selected by the users. One the posi-
tive side the kind of dishes, preparation time and
easy preparation are used frequently.
The problem with this result is that the depen-

dencies of the data are not clear. preparation time
and easy preparation are dependent on the actual
context; the reasons are not always valid. In a linear
model analysis, ingredients and combination are the

most significant factors [HLE12, p. 20].
Another example of data dependencies are the rat-

ings of correlated calories (Figure 13). Users who se-
lect health reasons are often classified as being part of
the health-conscious user group, while the rest com-
prise the unhealthy group. As a result, unhealthy
users give high ratings to recipes with more calo-
ries, while the healthy users give low ratings to such
recipes.

Figure 13: Correlation between calories and ratings
[HLE12, p. 21 Figure 3]

Because the recommendations based on the most
important ingredients and ingredient combinations
are more precise, they are independent of the actual
context [HLE12, p. 21].
Let us consider a cooking recipe with a preparation

time of 0.5h. A user b might say that the prepara-
tion time is too long. Then a rule can be created
(Equation 10). The rule represents a user profile. If
a user matches the user profile fastfood, then the
user is classified under fastfood. All recipes with
small preparation times match users who are classi-
fied under this rule.

user(b, preparation(< 0.5h)) (10)
⇒ like(b, fastfood)

When the connection between a user and his/her fa-
vorites is known, a recommender system can recom-
mend recipes that are similar to the user’s favorites.
Instead of using just a single user, a user profile can
be generated to obtain all the favorites of the classi-
fied user. The recommendation requires a minimum
distance, but the distance has to be as small as pos-
sible. It is an appropriate learning task to identify
clusters, since it is then possible to recommend a
neighboring cluster.
But there is no further information about the users,

as this is only a collection of users. It does not contain
personalized information, such as demographic infor-
mation (age or gender) or culture or origin [PGK11,

8



p. 110]. An extension to this model includes the con-
textual information, such as the weather or the sea-
son, which are used in recipes [PGK11, p. 113]. With
supporting services, such as a calendar or a weather
service, such contextual information can be added to
the fingerprint of a user. A recommendation in a bar
works in a similar way: A guest (such as a business
man) in an actual context (summer, 30◦C) seeks a
recommendation. If the RS knows a recipe with such
a personalization and context, it has the ability to
recommend a cocktail.

7 Folksonomies for user profiling
Folksonomies is the approach of a personalized search
engine to documents [YGS08, p. 70]. A user can
choose keywords to search documents. A keyword
can have more than one meaning. A bank could be a
financial institution or a seat. The meaning depends
on the context. A consequence is that the users have
to ferret out the relevant documents from a long list
of results. The position on a results page is wasted
because of irrelevant documents. If a user context
is provided, the search engine can filter the results
page. The idea is this: Users with the same context
use words with the same meanings. Keywords are
considered tags, which describe documents and are
used by known users. Because of this, Folksonomies
is also called collaborative tagging. Folksonomies F
are a tuple and contain users U , tags T , documents
D and a relation A called annotation (Equation 12).

F = (U, T,D,A) (11)
A ⊆ U × T ×D

Documents that are connected to the same tag t are
in a set Dt. The document sets are grouped by the
users who used the tag. A cluster Xt,i represents
documents with one tag t and one user i. For every
Xt,i, there is a set Tt,i of tags, which are used for a
document. The clusters X are very small and there
are clusters that contain tags with the same meaning.
Because of this, the most frequent tags are searched

and the referenced clusters are merged, if they over-
lap above a specific threshold α. The overlap is de-
fined as the count of the intersection of tags used by
the users i and j and divided by the count of both
tag sets. A high overlap means that two users mostly
used the same tags for the same documents.

Figure 14: Overlap [YGS08, p. 72]

If overlap(Tt,i, Tt,j) > α, the document clusters
(Xt,i, Xt,j) are merged together. These clusters are
used as classes for classifying the nearest neighbor
[YGS08, p. 72]. The idea is as follows: Documents
that are indexed by a search engine are represented
by tags. If a user searches with a tag, there is a re-
sult set St that contains documents, which contains
this tag. Based on the document tags, a distance
to the document classes is computable. The search
result can be classified in accordance with the differ-
ent meanings. This classification works only if the
context is contained in the learning data.

7.1 Nearest neighbor classification
Classification is different from clustering. It requires
learning data, which map feature vectors to labels.
Because it uses learning data, classification is a kind
of supervised learning [AJOP11, p. 48]. Learning
describes a function that determines whether or not a
randomly chosen feature vector is in a class [WMJ03,
p. 523].

trainingset = {(x1, l1)...(xn, ln)} (12)
neighbours ⊆ trainingset (13)

neighbours = {(y1, l1)...(yk, lk)| (14)

min(
k∑
1
d(q, yk), trainingset)} (15)

The k-nearest neighbor classifier — called k-NN —
is an instance-based algorithm, which uses the train-
ing set only for classification [WMJ03, p. 534]. An
unclassified feature vector q is classified with its near-
est neighbors [AJOP11, p. 48]. The k defines how
many neighbors are being considered. Assuming that
the training set has a size n and contains tuples of
feature vectors x and mapped labels l, the k neigh-
bors are a subset of trainingset with the following
condition: The sum of all distances d between q and
the neighbors is minimal.

Figure 15: Example of an query on K-nearest neigh-
bor classifier [AJOP11, p. 49]

If k is too small, the classifier may yield a bad re-
sult because there might be too much noisy data in

9



the neighborhood. If k is too high, too many different
neighbors come into the neighborhood. With k = 1
in the example (Figure 15), the feature vector is clas-
sified as a square label; with k = 5 the result is a
circle label. This algorithm is a lazy learner because
it does not run a training phase before a random fea-
ture vector is classified, it just uses the neighborhood
of an query q.

7.2 Hybrid semantic item model

The hybrid semantic item model combines four mod-
ellings to recommend cooking recipes, including Folk-
sonomies [XYL10, p. 257]. The first model, called
cooking flow graph, is represented by a directed
graph. Its ingredients and actions are nodes and
cooking actions, and ingredient flows are different
kind of edges. Additionally, there are some con-
straints, like cooking temperature or cooking time.

Figure 16: Cooking flow graph [XYL10, p. 256 Fig-
ure 2]

The next model is on eating, and represents taste,
textures and temperatures. But that depends on a
subjective point of view, and is very difficult to verify.
Because of this difficulty, eating is not explicitly rep-
resented, it is represented through user fingerprints,
such as ratings and comments on recipes. The last
models have nutritional information and media, such
as images. For every model, a distance function ex-
ists, which has been summed to a single distance.
The eating model is an application of Folk-

sonomies. The documents are recipes and the tags
are represented by a user’s fingerprint [XYL10, p.
256]. The fingerprint connects the user with the
recipes.

These models cover a broad semantic space; they
are not just ingredient models or only user models.
That is why it is called a hybrid semantic model. In
particular, the use of a personalization, which does
not model a user explicitly and is not dependent on a
domain, makes this approach adaptable to a cocktail
recommender system. The cooking flow graph is too
sophisticated for a cocktail model, because a cocktail
recipe is smaller, and has only two actions: Shake
and stir.

8 Conclusions and future work
The term recommender systems is a good guide for
defining an area where one can work. It shows that a
recommendation depends on users and needs compa-
rable items. The KDD process contains the develop-
ment steps required to obtain the knowledge about
the items by making items comparable and finding
correlations. Future works will focus on feature ex-
traction. Data visualization is not in focus. The
model functions like clustering and classification are
the central part for recommendation because it has
the ability to detect similar items.
Modeling, such as combination, substitution and

balancing, are important to make the model func-
tion in a more precise manner. The key is to find
a model that can characterize a recipe with as little
information as possible. A big feature vector does
not correspond to a precise result, because the noise
is bigger and the danger of redundant information is
higher. Of course, substitution requires many user
comments, which contain suggestions about the sub-
stitution of ingredients. Experiments with modeling,
different data sets such as recipe books or social me-
dia content, and algorithms for model functions will
show how much precise it can be.
Explicit user modeling is very disillusioning be-

cause, as the study shows, just ingredients are signif-
icant in getting to know what people like or dislike.
Implicit user modeling with a user fingerprint is more
attractive, but also needs a great deal of user data
for good results. Folksonomies are an interesting ap-
proach for obtaining user profiles for every domain.
With user profiles, a recommender system would be
able to easily classify a recipe in accordance with a
user class. But a recommender system, which only
gets a single recipe to find similar ones, is an easier
approach, and does not depend on users or user pro-
files. Because of this, future work will concentrate on
recipes and not on users.

10



References
[AJOP11] Amatriain, Xavier ; Jaimes, Alejandro ; Oliver, Nuria ; Pujol, Josep M.: Data mining

methods for recommender systems. In: Recommender Systems Handbook. Springer, 2011, S.
39–71

[CWML13] Chang, Yi ; Wang, Xuanhui ; Mei, Qiaozhu ; Liu, Yan: Towards Twitter Context Summa-
rization with User Influence Models. In: Proceedings of the Sixth ACM International Conference
on Web Search and Data Mining. New York, NY, USA : ACM, 2013 (WSDM ’13). – ISBN
978–1–4503–1869–3, 527–536

[FKPT07] Fahrmeir, Ludwig ; Künstler, Rita ; Pigeot, Iris ; Tutz, Gerhard: Statistik. Springer-
Verlag Berlin Heidelberg, 2007 (Springer-Lehrbuch). http://books.google.de/books?id=
ZinjP103iRcC. – ISBN 9783540697398

[FPSS96a] Fayyad, Usama ; Piatetsky-Shapiro, Gregory ; Smyth, Padhraic: The KDD Process for
Extracting Useful Knowledge from Volumes of Data. In: Commun. ACM 39 (1996), November,
Nr. 11, 27–34. http://dx.doi.org/10.1145/240455.240464. – DOI 10.1145/240455.240464.
– ISSN 0001–0782

[FPSS96b] Fayyad, Usama M. ; Piatetsky-Shapiro, Gregory ; Smyth, Padhraic: Advances in Knowl-
edge Discovery and Data Mining. Version: 1996. http://dl.acm.org/citation.cfm?id=
257938.257942. Menlo Park, CA, USA : American Association for Artificial Intelligence, 1996.
– ISBN 0–262–56097–6, Kapitel From Data Mining to Knowledge Discovery: An Overview,
1–34

[HLE12] Harvey, Morgan ; Ludwig, Bernd ; Elsweiler, David: Learning user tastes: a first step
to generating healthy meal plans? In: First International Workshop on Recommendation
Technologies for Lifestyle Change (LIFESTYLE 2012) (2012), S. 18

[Jap14] Japanese Food Guide Spinning Top. Website, 2014. – Online Abruf (06.06.2014)
www.mhlw.go.jp/bunya/kenkou/pdf/eiyou-syokuji5.pdf

[JMF99] Jain, A. K. ; Murty, M. N. ; Flynn, P. J.: Data Clustering: A Review. In: ACM Comput.
Surv. 31 (1999), September, Nr. 3, 264–323. http://dx.doi.org/10.1145/331499.331504. –
DOI 10.1145/331499.331504. – ISSN 0360–0300

[KF10] Karikome, Shihono ; Fujii, Atsushi: A System for Supporting Dietary Habits: Planning
Menus and Visualizing Nutritional Intake Balance. In: Proceedings of the 4th International
Conference on Uniquitous Information Management and Communication. New York, NY, USA
: ACM, 2010 (ICUIMC ’10). – ISBN 978–1–60558–893–3, 56:1–56:6

[MHC06] Maulik, U. ; Holder, L.B. ; Cook, D.J.: Advanced Methods for Knowledge Discovery from
Complex Data. Springer, 2006 (Advanced Information and Knowledge Processing). http:
//books.google.de/books?id=OOOSx1X2-_sC. – ISBN 9781846282843

[PGK11] Pinxteren, Youri van ; Geleijnse, Gijs ; Kamsteeg, Paul: Deriving a Recipe Similarity
Measure for Recommending Healthful Meals. In: Proceedings of the 16th International Con-
ference on Intelligent User Interfaces. New York, NY, USA : ACM, 2011 (IUI ’11). – ISBN
978–1–4503–0419–1, 105–114

[PROA12] Papaioannou, Thanasis G. ; Ranvier, Jean-Eudes ; Olteanu, Alexandra ; Aberer, Karl: A
Decentralized Recommender System for Effective Web Credibility Assessment. In: Proceedings
of the 21st ACM International Conference on Information and Knowledge Management. New
York, NY, USA : ACM, 2012 (CIKM ’12). – ISBN 978–1–4503–1156–4, 704–713

[RRSK10] Ricci, Francesco ; Rokach, Lior ; Shapira, Bracha ; Kantor, Paul B.: Recommender
Systems Handbook. 1st. New York, NY, USA : Springer-Verlag New York, Inc., 2010. – ISBN
0387858199, 9780387858197

11

http://books.google.de/books?id=ZinjP103iRcC
http://books.google.de/books?id=ZinjP103iRcC
http://dx.doi.org/10.1145/240455.240464
http://dl.acm.org/citation.cfm?id=257938.257942
http://dl.acm.org/citation.cfm?id=257938.257942
http://dx.doi.org/10.1145/331499.331504
http://books.google.de/books?id=OOOSx1X2-_sC
http://books.google.de/books?id=OOOSx1X2-_sC


[RV97] Resnick, Paul ; Varian, Hal R.: Recommender Systems. In: Commun. ACM 40 (1997), März,
Nr. 3, 56–58. http://dx.doi.org/10.1145/245108.245121. – DOI 10.1145/245108.245121. –
ISSN 0001–0782

[STIM09] Shidochi, Yuka ; Takahashi, Tomokazu ; Ide, Ichiro ; Murase, Hiroshi: Finding Replaceable
Materials in Cooking Recipe Texts Considering Characteristic Cooking Actions. In: Proceedings
of the ACM Multimedia 2009 Workshop on Multimedia for Cooking and Eating Activities. New
York, NY, USA : ACM, 2009 (CEA ’09). – ISBN 978–1–60558–763–9, 9–14

[TLA12] Teng, Chun-Yuen ; Lin, Yu-Ru ; Adamic, Lada A.: Recipe Recommendation Using Ingredient
Networks. In: Proceedings of the 3rd Annual ACM Web Science Conference. New York, NY,
USA : ACM, 2012 (WebSci ’12). – ISBN 978–1–4503–1228–8, 298–307

[WGH11] Wagner, Juergen ; Geleijnse, Gijs ; Halteren, Aart van: Guidance and Support for Healthy
Food Preparation in an Augmented Kitchen. In: Proceedings of the 2011 Workshop on Context-
awareness in Retrieval and Recommendation. New York, NY, USA : ACM, 2011 (CaRR ’11). –
ISBN 978–1–4503–0625–6, 47–50

[WMJ03] Wrobel, Stefan ; Morik, Katharina ; Joachims, Thorsten: Maschinelles lernen und data
mining. In: Handbuch der künstlichen Intelligenz 3 (2003), S. 517–597

[XYL10] Xie, Haoran ; Yu, Lijuan ; Li, Qing: A Hybrid Semantic Item Model for Recipe Search by
Example. In: Multimedia (ISM), 2010 IEEE International Symposium on, 2010, S. 254–259

[YGS08] Yeung, Ching-man A. ; Gibbins, Nicholas ; Shadbolt, Nigel: A k-Nearest-Neighbour Method
for Classifying Web Search Results with Data in Folksonomies. In: Proceedings of the 2008
IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technol-
ogy - Volume 01. Washington, DC, USA : IEEE Computer Society, 2008 (WI-IAT ’08). – ISBN
978–0–7695–3496–1, 70–76

12

http://dx.doi.org/10.1145/245108.245121

	Introduction
	Recommender systems
	Knowledge discovery in database and data mining
	Feature extraction of cocktail recipes
	Clustering with Euclidean distance measure

	Recipe modeling with combination and substitution
	Balance with a nutritional pyramid
	User preferences for recommendation
	Folksonomies for user profiling
	Nearest neighbor classification
	Hybrid semantic item model

	Conclusions and future work

