
Feature Extraction of Unstructured Cocktail
Recipes

Sigurd Sippel
Hamburg University of Applied Sciences, Department of Computer Science,

Berliner Tor 7, 20099 Hamburg
sigurd.sippel@haw-hamburg.de

July 4, 2015

1 Introduction

A recommender system of cocktail recipes helps a
bartender to find recipes that are out of his mind.
Distance functions are the core of a recommender
system and are described in [Sip15]. The distance
functions need extracted features.
Good quality features are fundamental for a pre-

cise recommendation. A recommendation needs a
large number of recipes to ensure that a wide range
of recommendable recipes are available. There-
fore, a manual extraction is not useful. This paper
considers the feature extraction of unstructured
cocktail recipes, such as from books or blogs.
The section 2 considers the architecture im-

provements and the used libraries. The changes
in target structure are described in section 3. The
features extraction of section 4 is separated into
several phases. The preprocessing and normaliza-
tion transform the text into raw tokens. The num-
ber recognition contains rules to recognize num-
bers. The entity recognition uses the ontology to
find known items. The logic combining eliminates
negations. The context analysis finds ingredient
declarations. The feature reasoning uses ontology
to find missing features. The validation metric de-
cides whether a recipe is plausible or not. Section
5 contains an experiment of parsing books. It in-
cludes recipe recognition and the parsing results.
The section 6 deals with the conclusion and future
work.

2 Architecture

In the first approach ([Sip15]), the architecture is
designed to use pre-extracted recipes, which are
stored in the XML format. The features were
identified by ontology and enriched with addi-
tional information, such as the super category.
The recommendation module used these extracted
features to calculate the distance function.
Now, the pre-extraction is replaced with an au-

tomatic feature extraction. In the input data is a
collection of unstructured recipes. The feature ex-
traction is a expensive process, which has to work
once for one recipe. It is an independent process
that extracts the features and stores the retrieved
data in an extended XML format. The data struc-
ture is described in the next section.
The featured extraction contains several phases

that are used to identify tokens and refine them.
The output comprises a collection of validated
recipes. These recipes are prepared for the rec-
ommendation, which uses one recipe of the collec-
tion as an example to find other recipes from the
collection that are classified as recommendations.

�������������

������������������

������������������������ ������������������

����������������

�����������������

�����������������

��������������

����� �����

Figure 1: Architecture

The ontology is used to identify the named enti-
ties. An indexing is necessary to find named enti-
ties or part of that with high performance. Apache

1

Jena 2.13.01 is used to call SPARQL queries on
the RDF ontology. The module Apache Jena Text
1.1.22 is used to integrate Apache Lucene 4.6.13 as
an indexer in a SPARQL query. Apache Lucene
replaces banana-rdf, because no Lucene integra-
tion is possible. Scala parser combinators 1.0.34

are used for context analysis. The library itext
5.065 is used to transform the PDF format to plain
text.

3 Target Structure
The target structure describes one cocktail recipe.
The target structure in [Sip15, p. 2] contained the
extracted features. They only have to be identi-
fied with their in the ontology. It contained a list
of ingredient declarations with the quantities, a
unit, and one ingredient name. Further, it con-
tained exactly one preparation and one glassware.
This target structure represents the ideal cocktail
recipe.
The chosen sources, such as cocktail books, con-

tain recipes as raw text, which do not always con-
tain a preparation or glassware. An ingredient
declaration could be optional or could contain al-
ternatives. The quantity could be a range, such
as one or two dashes.
The extracted features represent the internal

representation (Equation 1). It is a technical pre-
sentation, which is necessary for the recommenda-
tion.

trait Item{ val uri : String } (1)

The URI guarantees unique identification. Dif-
ferent spellings, which are extracted to the same
identifier, could be interpreted as the same. The
user needs to understand and classify the recipe
meta information, such as the name, the original
spelling of an ingredient declaration, and the au-
thor. The representation, which contains infor-
mation for the user, is the external representation
(Equation 2). The result is one data structure that
represents the internal and the external data.

trait V alueItem{ (2)
val i : Iitem,

val name : String }
1https://jena.apache.org
2https://jena.apache.org/documentation/query/text-
query.html

3https://lucene.apache.org/core
4https://github.com/scala/scala-parser-combinators
5http://itextpdf.com

The ingredient declaration (Equation 3) contains
a sequence of ingredient items and a quantity. The
sequence declares that only one has to be chosen.
This sequence is defined as an or − relation of
ingredients.

Ingredient(items : Seq[V alueItem[Item]], (3)
quantity : Quantity)

The quantity contains a unit and a value.
NumV al is an Item that also contains a numeric
value. The NumV al could also be a NumRange
that contains a minimum and a maximum value.

traitQuantity{ (4)
val numV al : V alueItem[NumV al]

val unit : V alueItem[UnitItem] }

The publication contains meta information. It
could be a book or a collection. Some books pro-
vide references to the source of a recipe. A collec-
tion contains the original book additionally.

Publication extends Item{ (5)
val name : String

val author : String

val published : Int }

The cocktail data structure (Equation 6) combines
all information of a cocktail. A name of a cock-
tail is required, but all other values are optional.
Preparation and glassware are Item, which repre-
sents one taxonomy in the ontology.

Cocktail(name : String, (6)
ingredients : Seq[Ingredient],

prepare : Seq[V alueItem[Preparation]],
glassware : Seq[V alueItem[Glassware]],

publication : Option[Publication])

4 Phases of Extraction
The five phases of extraction are designed to ex-
tract the target data structure.

4.1 Preprocessing and Normalization
The sources of recipes are books or blogs that are
written in English. The set of expecting characters
(Equation 7) is manageable because it is a small
set.

[a− zA− Z0− 9] (7)

2

Of course, there are special characters in a text
such as ? or −, but these either have a special
impact or have to be ignored. The books are con-
verted to raw text with optical character recog-
nition (OCR); therefore, a special character could
also show an error. In the first instance, the words
and special characters have to be separated into
single tokens because these characters have to be
processed explicitly. If a special character is com-
bined with a word, neither can be recognized.

()| ∗ /− \”$%∧{}§ (8)

For normalization, every member of the defined
set of special characters (Equation 8) will be re-
placed with itself with additional white spaces
(Equation 9).

character → whitespace chracters whitespace (9)

The result contains words and special characters
are separated by white spaces. A splitting by
white spaces results in a list of raw tokens. New
lines are explicitly a token, because it is valuable
information for separating the token before and
after. A defined set of stop words, such as of or
in, are removed because these are not required.
The result is a preprocessed and normalized list
of tokens. Stemming is done by synonyms in the
ontology.

4.2 Number Recognition
The raw set of tokens contains information, such
as ingredient names or units, but these are not rec-
ognized yet. The ontology is the knowledge. All
literals in the ontology can be recognized. Fur-
ther numbers can be recognized, such as written-
out names or digits. The following rule set is de-
fined to map the raw tokens to recognized tokens
called V alueItem. The original value is combined
with a chosen item. A slash could be a part of a
fraction; therefore, it is mapped to a slash item.
As the word or could also be a part of a range
or connect two ingredient names, it is mapped to
an or value item. The symbol % could be de-
scribe a number as a percent value; therefore, it
is mapped to a percent value item. Since a hy-
phen could be a part of a numeric range, such
as 1 − 2, it is mapped to a hyphen value item.
Written-out numbers, such as three or digits, are
mapped to a numeric value item called NumV al.
Indefinite articles, indefinite pronouns, and qual-
itative declarations (Equation 10) are mapped to
a special numeric value of a value item of type

A. These words do not mean the same thing, but
are imprecise. Items such as a lemon could also
be a small or a big one. An such as big lemon
is also imprecise because the size of a big lemon
is not specified. The main information given is
that about one lemon should be used. It must be
seasoned, but this cannot mapped in a value.

a, an, some, any, small, big (10)

4.2.1 Number Combining

Numbers are also written as fractions, such as 1/2.
Of course, there are special characters, such as 1

2 ,
but in the used OCR results, there are only num-
bers combined with slashes. Following the rule
map, a number with a slash and a following num-
ber to one item of type NumV al.

NumV al(n1) :: Slash :: NumV al(n2)→ NumV al(n1
n2) (11)

Numbers are used as ranges (Equation 12).

one or two dash (12)
4 − 5 cl

Recognized numbers will be mapped to a range if
an or item or a hyphen item connect two numbers.
One number with a following percent item is

mapped to the representation as a fraction.

NumV al(n) :: Percent→ NumV al(1
100) (13)

If the recipe contains half-sentences (Equation 14),
the number recognition needs additional rules be-
cause there are more than two number values, but
only one of them is interesting.

use a half of a lemon (14)
a big lemon

one of a big lemon

The words use and half are stop words, but there
is more than one item of type NumV al. The type
A is a NumV al too. The following rule set (Equa-
tion 15) reduces the items to one item.

NumV al(n) :: A :: A→ NumV al(n) (15)
A :: NumV al(n) :: A→ NumV al(n)
A :: A :: NumV al(n)→ NumV al(n)

A :: NumV al(n)→ NumV al(n)
NumV al(n) :: A→ NumV al(n)

3

The number of combined Equation 14 is applied
in the Equation 16.

A :: NumV al(0.5) :: A→ NumV al(0.5) (16)
NumV al(1) :: A→ NumV al(1)

NumV al(1) :: A :: A→ NumV al(1)

A fraction combination (Equation 17) has to be
combined with other combinations; therefore, the
fraction combination has to be completed before
the other rules can work. For example, the frac-
tion is mapped to one NumVal (Equation 17) and
only then is a number reduction possible.

1/2 of a lemon→ 0.5 lemon (17)

4.3 Named Entity

At first, the empty string is ignored and a newline
is mapped to an item called HardSeperator. If no
previous rule is matched, the token is searched in
the ontology to find named entities such as ingre-
dients. A Lucene index is used to find a literal or
a part of a literal with high performance. A small
ontology (Listing 1) is used to declare a Lucene
index called text with the key uri and the value
text. The URI represents the URI of a property
and the text declares a literal. The literal is also
connected to the rdf : type to identify the taxon-
omy.

<#indexLucene> a text:TextIndexLucene ;
text:directory "mem" ;
text:entityMap <#entMap> ;
.

<#entMap> a text:EntityMap ;
text:entityField "uri" ;
text:defaultField "text" ;
text:map (
[text:field "text" ; text:predicate rdfs:Literal ;
text:predicate rdf:type]

) .

Listing 1: Mapping of Index to ontology fields,
written in Turtle

The SPARQL query (Listing 2) to find named
entities uses text, which is the previous de-
fined Lucene query, and a chosen literal, such as
Strawberries. The allowed taxonomies are ingre-
dient, preparation, glassware, and unit. One of
them has to be bound to prevent ingredient su-
perordinates.
The found raw token could contain lexical er-

rors or represent only a part of the appropriate lit-
eral. Therefore, the result is sorted by ascending
Levenshtein distance. The item with the small-
est Levenshtein distance is used as V alueItem, if
the acceptance criteria (Equation 18) is complied

SELECT ?uri ?label ?type {
?uri text:query (rdfs:Literal "Strawberries") ;

rdfs:Literal ?label
OPTIONAL{

?uri rdf:type ?type .
?type rdfs:subClassOf "cocktail://ingredient" }

OPTIONAL{
?uri rdf:type ?type .
?type rdfs:subClassOf "cocktail://preparation" }

OPTIONAL{
?uri rdf:type ?type .
?type rdfs:subClassOf "cocktail://glassware"
}

OPTIONAL{
?uri rdf:type ?type .
?type rdfs:subClassOf "cocktail://unit"
}

FILTER(BOUND(?type))
}

Listing 2: Named entity recognition written in
Sparql

with.

Levenshtein(lowerCase(s1), lowerCase(s2)) <= 2 (18)

The found uri of type represents the type of item.

cocktail : //preparation/cocktail→ Preparation(uri) (19)

If the acceptance criteria is not complied with, the
next token will be concatenated with a white space
in between. The new string is evaluated with the
named entity query. The tokens are concatenated
until the acceptance criteria is complied with or
all tokens are concatenated. In this case, the first
token is declared as an unknown item.

4.3.1 Entity Combining

There are entities, such as lemon zest, which con-
tains at first lemon, which is also a entity, but a
lemon is a short version of lemon juice and repre-
sents a quantity of about 4−5cl. If the token zest
is after lemon, then lemon is already recognized.
For such cases, the combinations of the original
values of recognized entities are concatenated as
a string. This string is evaluated as one named
entity. If the acceptance criteria is complied with,
the items will be merged. The combinations con-
tain two or three items.

4.4 Logic Combining
There are recipes that use phrases such as do
not shake. Shake is a method of preparation.
There are only two different preparations — stir
or shake. In this case, it means that should be
stirred. Therefore, rules (Equation 20) are needed
that convert the negation. If this conversion is not
done, a wrong preparation will be parsed.

Not :: Shake→ Stir (20)
Not :: Stir → Shake

4

4.5 Statistical Recognition of Preparation
and Glassware

Because of the logic combining, the processing of
preparations and glassware items can be identified
by the type of the item. The preparations can
be filtered easily and interpreted as a list which
describes or-relation. The glassware are handled
in a similar way.

ABSINTHE COCKTAIL
(Use a large bar glass.)
Fill up with ice;
3 or 4 dashes of gum syrup;
1 dash of bitters (Boker’s genuine only);
1 dash anisette;
4 wine-glass of water or imported selters;
wine-glass of absinthe.
Shake well until almost frozen or trapped; strain
it into a fancy cocktail glass squeeze a lemon peel
on top, and serve.
This drink is liked by the French and hy the Amer-
icans; it is an elegant beverage and a splendid ap-
petizer; hut see that you always hae the genuine
absinthe only for mixing this drink.

Listing 3: Recipe with more than one glassware
items

The example above (3) is a long recipe with
many unnecessary items. Two preparation meth-
ods are used here (Equation 21).

(shake, cocktail glass or large bar glass) (21)

The result is correct, but the large bar glass is
probably used for the preparation rather than as
the drinking glass. This must be decided be the
user.

4.6 Context Analysis
The context analysis is needed to find ingredient
declarations with a unit and a number. For this
case, the preparation and glassware is filtered be-
cause it is unnecessary. For the context analysis,
the recipe is considered as an example of a domain-
specific language, which has to be described by the
grammar. For context analysis, the Scala parser
combinators are used. This library parses a string
using EBNF grammar. The items are represented
as a list of typed items. Therefore, the list is seri-
alized. Every item is serialized with an identifier
of type and an index of the list of items (Equa-
tion 22). With this information, the original item
can be found and the type can be used for the
parsing.

@ typeidentifier index (22)

Some types are not relevant, such as Preparation
or Glassware. Some occurrences of types, such as
Hyphen or Slash, are converted to other types,

but these types could still be in the item list. The
type hierarchy of items (Figure 2) shows the rele-
vant subset of types for the context analysis. The
orange ones are mapped to the serialized format.
Subtypes of the orange ones are transparent for
the context analysis. The most prominent type is
ProbablyUnknown, because items that could be
important can be transformed if a rule matches,
but this is not necessary.

Or → @O (23)
ProbablyUnknown→ @U

MeasurementUnitCategory → @M

IngredientCategory → @I

Preparation→ @P

Glassware→ @G

NumV al→ @N

HardSeparator → @S

The orange types (Figure 2) are mapped in a
specific order (Equation 23). The item Or is
important for the context analysis and will be
mapped to itself even though it is probably un-
known. HardSeperators are used to separate two
ingredients from each other.
The parser is defined by an EBNF grammar.

The notation is adapted to enable writing it di-
rectly in Scala. The concatenation is represented
by a tilde. If a rule matches, a type transformation
is possible and is written as two circumflexes. At
first (Listing 4), the index id and all identifiers are
declared as tokens. Regarding the identifier, it is
only important to find it; therefore, the mapping
is always to the unit type (written as ()).

def id = """(\w+)""".r ^^ { _.toString }
def unknownId = """(@U)""".r ^^ { _ => () }
def measurementId = """(@M)""".r ^^ { _ => () }
def ingredientId = """(@I)""".r ^^ { _ => () }
def glasswareId = """(@G)""".r ^^ { _ => () }
def preparationId = """(@P)""".r ^^ { _ => () }
def numId = """(@N)""".r ^^ { _ => () }
def separatorId = """(@S)""".r ^^ { _ => () }
def hyphenId = """(@Y)""".r ^^ { _ => () }
def orId = """(@O)""".r ^^ { _ => () }

Listing 4: Recognition of internal identifiers

The identifier with index is mapped to the orig-
inal item (Listing 5). With the declared rules, the
items can be identified.
An ingredient declaration is a sequence of items

(Listing 6). There are four types. The first type
contains only one ingredient name (such as lemon
zest). There is no unit or numeric value. The
second type is a number with an ingredient name.

5

��

���������������

����

����������������������� ������������������ ����������� ��������� ������

�������������

���������

������� ������ ������ ������� ��� ��������� ��������� ��������

Figure 2: Type hierarchy of items

def separator = separatorId ~ id ^^ { case _ ~ i => item(i) }
def unknown = unknownId ~ id ^^ { case _ ~ i => item(i) }
def measurement = measurementId ~ id ^^ { case _ ~ i => item(i) }
def ingredient = ingredientId ~ id ^^ { case _ ~ i => item(i) }
def glassware = glasswareId ~ id ^^ { case _ ~ i => item(i) }
def preparation = preparationId ~ id ^^ { case _ ~ i => item(i) }
def num = numId ~ id ^^ { case _ ~ i => item(i) }
def or = orId ~ id ^^ { case _ ~ i => item(i) }

Listing 5: Mapping of identifier with ID of original
items

The number is interpreted as part of the quantity
of the ingredient. The third contains a unit and an
ingredient name, such as dash bitters. The num-
ber is missing. This case is realistic, but could
also be an error because the number was not rec-
ognized. The last type contains a number, a unit,
and an ingredient name. That is the perfect case,
because all the information is found.

def i1 = ingredient ^^ { case n => I1(List(n))}
def i2 = num ~ ingredient ^^ { case q ~ n => I2(q,List(n))}
def i3 = measurement ~ ingredient ^^ { case u ~ n => I3(u,List(n))}
def i4 = num ~ measurement ~ ingredient ^^

{ case q ~ u ~ n => I4(q,u,List(n))}

Listing 6: Rules for ingredient declarations

Recipes could contain multiple ingredient
names in an ingredient declaration. Multiple in-
gredients could be or−relations or and−relations
(Listing 7). The and − relation describes a list
of tokens that do not contain the word or or a
number or a unit. The result is a list of names
that are probably known. Since an ingredient
could be missing in the ontology, the parser would
have to work with unknown items if possible. The
list contains more than one name. The list is
mapped to one unknown item. The or − relation
describes a list of ingredients or unknown words,
which are separated by the word or. This rule
recognizes ingredients such as rum or gin. The
mapping filters the word or, while the result list
contains only names. The list needs one element.

These rules of ingredient declarations are ex-
tended with multiple ingredient names (Listing 8),

def mi = andList | orList
def andList = (ingredient | unknown) ~ ((ingredient | unknown)+) ^^

{ case f ~ l => {
val u = Unknown(l.foldLeft(f.value)((h,i) => h + " " + i.value))
List(ValueItem(u,u.name))

} }
def orList = (ingredient | unknown) ~ (orTail?) ^^

{case i1 ~ i2 => i1 :: i2.getOrElse(Nil)}
def orTail = ((or ~ (ingredient | unknown))+) ^^

{ case x => x.map(x => x._2)}

Listing 7: Rules for multiple ingredient names

which are described by the rule mi. In this case,
unknown names are allowed. This is possible only
if exactly one line is parsed. Therefore, a newline
separator has to be consumed.

def i1m = mi ~ separator ^^
{ case n ~ _ => I1(n)}

def i2m = num ~ mi ~ separator ^^
{ case q ~ n ~ _ => I2(q,n)}

def i3m = measurement ~ mi ~ separator ^^
{ case u ~ n ~ _ => I3(u,n)}

def i4m = num ~ measurement ~ mi ~ separator ^^
{ case q ~ u ~ n ~ _ => I4(q,u,n)}

Listing 8: Rules for ingredient declarations with
multiple ingredient names

All rules of ingredient declarations are combined
in one rule i (Listing 9). The rules are ordered by
the numbers of necessary tokens. A recipe con-
tains a list of ingredient declarations, which is de-
scribed by the rule il. Between two ingredient dec-
larations, it is possible to consume any separators
or unknown items. This rule helps to parse recipes
with errors or missing items in the ontology.

def i = i4m | i4 | i3m | i3 | i2m | i2 | i1m | i1
def il = i ~ ((unknown | separator)*) ~ il ^^
{ case h ~ _ ~ t => h :: t } | success(List())

Listing 9: Rules for list of ingredients

The cocktail name (Listing 10) is a list of items
that do not contain a unit. The cocktail rule con-
tains the name and the ingredient list.
Some recipes contain the preparation and glass-

ware information after the cocktail name (3). The
recognized items are removed, but not all items.
For example, an additional separator remains.

6

def name = (num | unknown | ingredient) ~ name ^^
{ case h ~ t => h :: t } | success(List())

def cocktail = name ~ ((separator | unknown)*) ~ il ~ (unknown*) ^^
{ case n ~ _ ~ in ~ _ => C(n,in)}

Listing 10: Rules for a cocktail recipe

Other recipes contain information of the author
after the name (Listing 11). Therefore, any sep-
arators and unknown items can be consumed be-
tween the cocktail name and the ingredient list.
The parser parses ingredient declarations for as
long as it works because long descriptions after
the ingredient list should not stop the workflow of
parsing.

ROBERTA
Invented by
G. Newman
Juice of 1/2 a small \change{Lime}{lime}.
1/3 \change{Maraschino}{maraschino}.
2/3 \change{Daiquiri Rum}{daiquiri rum}.
Shake.

Listing 11: Rules for a cocktail recipe

If all items are recognized, then the parse pro-
cess is very simple. In this case, the requirements
of the recipe are the lowest. In the following
recipes, there are only known items. For all in-
gredient declarations, Rule i4 is used, because a
number, a unit, and a name are always found.
This recipe does not need a separator to be parsed
successfully.

Manhattan Sweet 1 part Italian Ver-
mouth 2 part Whisky 1 dash Angostura
1 piece Maraschino cherry (stir, cocktail
glass)

As recipes are different, not all items can be recog-
nized. This parser is designed to parse recipes in
the worst case. The worst case of a parsable recipe
is that an item sequence is found, which contains
a classifiable one and an unknown one in an alter-
nating manner (Equation 24). A classifiable item
is an item that matches in the context.

classifiable unknown classifiable (24)
unknown classifiable....

If a measurement unit is found and is followed
by three unknown items and a separator, then
the conclusion is acceptable to map the unknown
items to one ingredient. If the first ingredient dec-
larations contain only an ingredient name, such as
orange zest, then a separator between the cocktail
name and the first ingredient declaration is neces-
sary to conclude where the cocktail name ends. If

there are two ingredient declarations that contain
only one name, such as orange zest and egg, then
a separator is also needed to conclude that there
are two ingredient declarations.

4.7 Feature Reasoning

The ingredient declarations are mapped to the
types I1, I2, I3 or I4. The type I4 contains all
information that is necessary for the distance func-
tion: a number, a measurement unit, and one or
more ingredient names. The other types have to
be converted to I4. The missing information is re-
trieved by default values, which are stored in the
ontology. A category such as a bitter contains a
default quantity with a unit and a volume (Listing
12).

<c:defaultQuantity c:unit="cocktail://unit/dash" c:volume="1" />

Listing 12: Default quantity in RDF

The SPARQL query (13) for the default quan-
tity needs the URI of the ingredient, the volume,
and the unit to be bounded for a successful result.

SELECT DISTINCT ?type ?kindof ?volume ?unit WHERE {
?kindof rdf:defaultQuantity ?default .
?default rdf:volume ?volume .
?default rdf:unit ?unit

FILTER (str(?kindof) =
"cocktail://ingredient/bitters") }

Listing 13: Default quantity query written in
SPARQL

If the query was unsuccessful, it is used as a de-
fault value (Equation 25). The most frequent case
is that the number is not written if it is 1. The
units for solid ingredients, such as piece for the
ingredient egg, are stored in the ontology; there-
fore, it has to be a relative unit, such as part. It
is possible that the measurement unit goes unrec-
ognized, in which case this conclusion is wrong.

Quantity(1, part) (25)

Every ingredient declaration can contain more
than one ingredient name; in this case, all de-
fault values of these ingredients have to be the
same. Otherwise, the default value (Equation 25)
is used. The ingredient declarations are mapped

7

to I4 with default values (Equation 26).

I1(n)→ I4(default(n), n) (26)
I2(num, n)→ I4(num, default(n).u, n)

I3(u, n)→ I4(default(n).num, u, n)
I4→ I4

An example is the Hot Spiced Rum recipe,
which contains ingredient declarations with and
without a measurement unit. The reasoned fea-
tures are in brackets.

HOT SPICED RUM6

1 or 2 lumps of sugar
4 teaspoonfuls allspice
(1) (part) water
1 (part) Jamaica rum
1 (prise) nutmeg

4.8 Validation Metric

After a parsing of a cocktail recipe, the recipe has
to be validated. A recipe needs a name. This
is not important for the recommendation process
but is important for reasons of clarity and compre-
hensibility. Recipes usually contain a name; there-
fore, it is an indication that the parsing process
was wrong or the input does not contain a com-
plete recipe. A cocktail recipe needs two or more
ingredients. If there is only one ingredient, then
the recipe would be useless. If there is no ingredi-
ent declaration, then this is another indication of
a parsing error or wrong input data. Preparation
and glassware could be missing. These are op-
tional features. The last part of the validation is
a consistency check. With feature reasoning, the
ingredient declaration was complete, but not all
combinations of ingredient declarations are useful.
There are two ways of using measurement units.

Qualitative units are used if an ingredient such as
bitters requires the use of small quantities or is
a solid ingredient. If all ingredient declarations
with qualitative units are hidden, then there are
only relative units, such as in the Brandy Crusta
Recipe, or quantitative units, such as in the Man-
hattan recipe.

BRANDY CRUSTA.7
3 dashes Maraschino.
1 dash Angostura Bitters.
4 dashes Lemon Juice.

61882 Harry Johnson — Bartender’s Manual
71937 William J. Tarling — Approved Cocktails

25% Curacao.
75% Brandy.
Stir and strain into prepared glass,
adding slice of Orange.

MANHATTAN COCKTAIL8

1 dash of gum syrup, very carefully;
1 dash of bitters (orange bitters);
1 dash of curacao, if required;
1/2 wine glass of whiskey;
1/2 wine glass of sweet vermouth;
stir up well; strain into a fancy cocktail
glass;

It is a validation criterion that only qualitative
and quantitative units or qualitative and relative
units be used. If this criterion is not accomplished,
the feature reasoning was not correct. For a rec-
ommendation, all items have to be known; if one
item is not known, then the distance is wrong.

5 Experiment of Parsing Cocktail
Books

For an experiment of parsing cocktail books, seven
books are chosen, which are used in a PDF format
with the underlying text. This is added by OCR
techniques. These books are written in English
and focus on cocktail recipes.

• 1862 Jerry Thomas — How to Mix Drinks:
The Bon-Vivants Companion (New York,
USA)
• 1882 Harry Johnson — Bartender’s Manual
(Chicago and New York, USA)
• 1884 George Winter — How to Mix Drinks
(New York, USA)
• 1917 Tom Bullock — The Ideal Bartender
(St. Louis, Illinois, USA)
• 1936 Frank Meier—The Artistry of Mixing
Drinks (Paris, France)
• 1937 William J. Tarling — Approved Cock-
tails (London, England)
• 1937 William J. Tarling — Cafe Royal (Lon-
don, England)

All these books are converted from PDF to plain
text using the PDF library itext. The result is
text in the correct order. This is not trivial, be-
cause the books partially contain a layout with two
columns, which is correctly recognized by OCR.
Nevertheless, there are errors in words; often,

special characters are not recognized or the noise
81882 Harry Johnson — Bartender’s Manual

8

of the photocopy was recognized as a symbol, such
as a dot, or a random single special character, such
as $ (Equation 27). These errors are manageable,
because a word with one wrong character is recog-
nizable with the Levenstein distance or one sense-
less character between two words can be removed.

Cr£me de Cacao (27)
$ Shake

There are cases of hardship (Listing 14), how-
ever, which cannot be completely recognized. Ex-
ternal services services for a misspelling check
could help but is not considered here.

ORGEAT LEMONADE.
(Use a large bar glass.)
1$ wine glass of orgi~l syrup;
4 tiiblcsl)o~7ii’iil of ~ugar;
(1 to 8 di~sln.~s of Iriiion juice;
2 glass of sliavril ire;
Fill the gli~i-s with water;
Mix up vvtlll ;mil orniiriient with grapes, berries, etc.,
in season, in 11 ti~steful manner ariil serve with a
straw.
r 1

Listing 14: Example for a case of hardship

These books contains many recipes but they
contain areas without recipes as well. Each book
has an introduction, a table of contents, an in-
dex of ingredients, and explanations for prepa-
rations, glassware, and ingredients. For parsing
these books, all areas without cocktails are manu-
ally removed. The recipe area remains unchanged.

5.1 Recipe Recognition

For parsing a collection of cocktails, the start of a
recipe has to be recognized. These historic books
contain headlines that are written with only capi-
tal letters. Not every headline has to be a cocktail
name, but most do. The plain text is separated
by the character of newline to get a list of lines.
Every line contains one or more words. The met-
ric to classify a line as a headline (Equation 28) is
that a minimum of one word is only written with
capitals. Often, a headline ends with a dot and
commas could also be present in a headline.

(\s ∗ [A− Z][A− Z − .,′ \s]+) (28)

Every recipe starts with a recognized headline
and stops before the next one is recognized. The
lines of a recipe are converted back to one string.
If the cocktails are sorted alphabetically, there

are cross-headings between the recipes that con-
tain the next character area.

AD-AL.
ADAM.
50% Jamaica Rum.
25% Lemon Juice.
25% Grenadine.
Shake with ice.

Therefore, the first plausibility check is the
length of string to classify headings such as AD−
AL. to an too small recipe. A parsed cocktail
recipe from the chosen books has a median per
book between 135 and 365 characters (Figure 3).

����

�
���
��
�
��
��
�
�
��
��
�
��
��
�
�
��
�
�
�
��
�
�
�
��
���

�
��
�
�
��
�
��
��
��
�
�
�
��
��
��
��
�
��
��
�
��
��
�
��
��
�
�
�

�
�
��
�
��
�
�
�
�
�
��
��
�
�
��
�
��
��
��
��
�
�
�

�
���
��
�
��
��
�
�
��
��
�
��
��
�
��
��
�
�
�
�

�
�
�
��
�
��
��
��
��
��
�
�
�
��
�
��
��
��
��
�
�
�

�
�
�
��
�
���
�
�
��
��
�
�
��
�
�
�
���
�
��
�
�
�
�
�

�
�
��
�
��
�
�
�
�
�
�
��
��
�
��
�
�
�
�
��
�
��
�
�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
�
��
�
�
�
��
�

Figure 3: Size of recipe distribution

The smallest recipe is for Oyster Bay with a size
of 50. If the length is lower than this, then the
probability of it being a recipe is too low. These
strings are filtered.

OYSTER BAY.
40% White Curasao.
60% Gin.
Mix.

Recipes could be very long if the description is
very long. It is more difficult to set a maximum
limit. The longest recipes are about 700 charac-
ters. Longer ones contain more than one recipe be-
cause the heading was not recognized since there
are special characters or some lower case letters.

5.2 Parsing Result

The recipe recognition resulted in 3,294 poten-
tial recipes, 30 % of which are classified as too
small and 6 % as too high. 21 % are invalidated
by the validation metric and 42 % are validated.

9

Too small recipes potential recipes don’t contain
a recipe. A better recipe recognition would be
better, but these can be filtered without prob-
lems. Recipes that are classified as too high are
very critical, because there are headings that were
not recognized. These recipe collections cannot be
parsed. The invalidated recipes are either of very
bad data quality or recipes that can be parsed with
optimization of the parser or ontology.

The error rate of books (Figure 4) shows that
the book with the lowest validation rate has the
highest rate of too big recipes. The recipe recog-
nition does not work because most recipes begin
with a number, which is not supported. On the
other hand, the two books with the lowest invalid
rate and a very low rate of too big recipes also
have a very big valid rate. These books are well-
supported by the parser because the data qual-
ity is very high and the recipes are simple. The
rest have a very high rate of invalidation because
the recipe recognition works but the recipes of-
ten contain one or two specialties, which are not
supported by the parser.

����

�
�
��
�
��
�
�
�
�
�
��
��
�
�
��
�
��
��
��
��
�
�
�

�
�
�
��
�
���
�
�
��
��
�
�
��
�
�
�
���
�
��
�
�
�
�
�

�
��
�
�
��
�
��
��
��
�
�
�
��
��
��
��
�
��
��
�
��
��
�
��
��
�
�
�

�
�
�
��
�
��
��
��
��
��
�
�
�
��
�
��
��
��
��
�
�
�

�
�
��
�
��
�
�
�
�
�
�
��
��
�
��
�
�
�
�
��
�
��
�
�
�
�
�

�
���
��
�
��
��
�
�
��
��
�
��
��
�
��
��
�
�
�
�

�
���
��
�
��
��
�
�
��
��
�
��
��
�
�
��
�
�
�
��
�
�
�
��
���

�����

�������

���������

�������

�����������������

������

�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��

�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��

�
�
���

Figure 4: Error rate of book parsing

The parser can be optimized with additional
features: Some recipes contain fillers. Fillers are
ingredients, such as soda or ginger ale, which are
used to fill up the glass. This is not supported
yet, because there are two challenges: The first
is that the quantity must be in proportion to the
size of cocktail glass. The second is that a sim-
ilar case involves recipes that have declarations,
such as filll up with ice. Information about ice
is usually unnecessary for the recipe, because the

preparation method, such as stir or shake, is suf-
ficient. But this declaration is very similar to an
ingredient declaration; therefore, the parser tries
to recognize it as a ingredient. Explicit support
would prevent that. Optional ingredients are not
supported yet. Additionally, or − relations that
contain commas (Equation 29) are not supported.
This is often used in meta recipes, which contain,
at the most, superordinates and no measurement
unit or numbers.

rum, gin or whiskey (29)

Some recipes contain, besides an ingredient dec-
laration, some additional information, such as the
origin of the ingredient or an alternative that is
not supported. If these features can be used, the
number of invalidations will decrease. Poor qual-
ity of data is another challenge. A word correction
service could help.
The parsing process needs 72 s for 1,415 vali-

dated recipes. 51 ms per recipe is a very good
performance, which is the result of using indexer
and caching mechanisms.

6 Conclusion and Future Work
For the feature extraction of unstructured recipes,
a knowledge-based approach is used to find known
items. Rules are used to transform items to items
with a higher abstraction level, such as ranges.
The context analysis is used to find ingredient dec-
larations with a domain specific language.
The variety of recipes is high and the data qual-

ity can be very low. The result is that recipes con-
sidered as item lists need alternating parsing be-
tween a known and an unknown item. The experi-
ment of feature extraction of unstructured recipes
shows that recipes are recognizable. Nevertheless,
there are many challenges for optimization, such
as support of different heading types, fillers or op-
tional ingredients.
The next step is to combine the distance func-

tions with the feature extraction and the evalua-
tion of the recommendation with domain experts.

References
[Sip15] Sippel, Sigurd: Distance functions for

knowledge-based cocktail recommenda-
tion. (2015). http://users.informatik.
haw-hamburg.de/{~}ubicomp/
projekte/master2015-proj/sippel.
pdf

10

http://users.informatik.haw-hamburg.de/{~}ubicomp/projekte/master2015-proj/sippel.pdf
http://users.informatik.haw-hamburg.de/{~}ubicomp/projekte/master2015-proj/sippel.pdf
http://users.informatik.haw-hamburg.de/{~}ubicomp/projekte/master2015-proj/sippel.pdf
http://users.informatik.haw-hamburg.de/{~}ubicomp/projekte/master2015-proj/sippel.pdf

	Introduction
	Architecture
	Target Structure
	Phases of Extraction
	Preprocessing and Normalization
	Number Recognition
	Number Combining

	Named Entity
	Entity Combining

	Logic Combining
	Statistical Recognition of Preparation and Glassware
	Context Analysis
	Feature Reasoning
	Validation Metric

	Experiment of Parsing Cocktail Books
	Recipe Recognition
	Parsing Result

	Conclusion and Future Work

