Natural Language Processing and Deep Learning

Table of content

- Natural Language Processing + Deep Learning
- Feed-forward Network
- Word2vec (Mikolov et al. 2013)
- Recurrent Neural Network
- Long short-term memory (Schmidthuber 1997)
- Neural Machine Translations (Wu et al. 2016)
- Neural Programmer (Neelakantan et al. 2016)
- Course of Action

Natural Language Processing

Goal: Understand and represent meaning of languages to do useful tasks.

- AI Complete (Human level cognition, Multimodal)
- Semantics: Machine translations, Sentiment Analysis, Question-Answering

What is Deep Learning?

Example for a classification problem. This applies generally for distributions as well.

What is Deep Learning?

 N > 1 layers of nonlinear processing units that extract features in an unsupervised fashion

 Minimize or maximize a cost/loss function for a given model

Learning an implicit algorithm that largely outperforms classical methods on specific tasks (not all!)

Feed-forward Networks

Gradient Descent

Word2Vec (Mikolov et al. 2013)

Unsupervised Word embedding method

Sliding window learn with context of center word.

Example: "I am a software developer from

Hamburg"

Window: 2

Center: "Software"

Context: "am a developer from"

Other Models: Glove, doc2vec

Word2Vec (Mikolov et al. 2013)

Recurrent Neural Networks

http://cs224d.stanford.edu/lectures/CS224d-Lecture8.pdf modified with bptt and parameters

Long short-term memory

- Idea from Schmidthuber (1997) and is still state of the art
- Instead of RNNs use LSTMs!
- vanishing gradient for very large sequences
- More complex learning structure
- Some extensions to the original (attention, memory, multilayers)

Long short-term memory

The repeating module in an LSTM contains four interacting layers.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Neural Machine Translations

$$= \prod_{i=1}^{N} P(y_i|y_0, y_1, y_2, ..., y_{i-1}; \mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3}, ..., \mathbf{x_M})$$

- End to-end-learning + expensive
- Deep LSTM Networks (8 layers) encoder (source language) – decoder (target language)
- Attention mechanism
- Parallelization + Low precision arithmetic units (Tensor Processing Units - TPUs)
- Word pieces instead of characters or words

Neural Machine Translations

Google's Neural Machine Translation System 2016

Neural Machine Translations

Table 4: Single model results on WMT En \rightarrow Fr (newstest2014)							
Model	Model BLEU CPU decodir						
		per sentence (s)					
Word	37.90	0.2226					
Character	38.01	1.0530					
WPM-8K	38.27	0.1919					
WPM-16K	37.60	0.1874					
WPM-32K	38.95	0.2118					
Mixed Word/Character	38.39	0.2774					
PBMT [15]	37.0						
LSTM (6 layers) [31]	31.5						
LSTM (6 layers $+$ PosUnk) [31]	33.1						
Deep-Att [45]	37.7						
Deep-Att + PosUnk [45]	39.2						

Neural Programmer

- Map natural language to logical form and execute discrete operations on a database
- 15 operations (e.g. count, min, max) are augmented to a Neural Network
- Input a question and output a program

ID	Question		Step 1	Step 2	Step 3	Step 4
1	what is the total number of	Operation	_	+	_	count
	teams?	Column	-	-1	-	-
2	how many games had more	Operation	-	-	>=	count
	than 1,500 in attendance?	Column	-	-	attendance	

Neural Programmer

Neural Programmer

Method	Dev Accuracy	Test Accuracy					
Baselines from Pasupat & Liang (2015)							
Information Retrieval System	13.4	12.7					
Simple Semantic Parser	23.6	24.3					
Semantic Parser	37.0	37.1					
Neural Programmer							
Neural Programmer	34.1	34.2					
Ensemble of 15 Neural Programmer models	37.5	37.7					

Test on WikiTableQuestions Dataset (not synthetic)

Course of Action

- Gain "deep" understanding of architectures and hyper parameters
 - CNNs + GANs as well
- Interested in multiple input sources
 (Multimodal) combining vision, text, speech
- Learn to use GPUs for computation
- Working knowledge of TensorFlow

- Annual Meeting of the Association for Computational Linguistics (ACL) - http://acl2018.org/
 - Melbourne, Australia (July 15-20 2018)
- Neural Information Processing Systems Conference (NIPS)
 - o 2017, December 04-09.2017, California, Long Beach
- International Conference on Learning Representations (ICLR)
- SIGKDD Conference on Knowledge Discovery and Data Mining

- **M. Abadi, et al.** (2016). 'TensorFlow: A system for large-scale machine learning'.
- **D. Andor, et al.** (2016). 'Globally Normalized Transition-Based Neural Networks'.
- **D. Chen & C. D. Manning** (2014). 'A Fast and Accurate Dependency Parser using Neural Networks'. In Conference on Empirical Methods in Natural Language Processing, pp. 740–750.
- **I. Goodfellow, et al.** (2016). Deep Learning. MIT Press. http://www.deeplearningbook.org.
- **S. Hochreiter & J. Schmidhuber** (1997). 'Long Short-Term Memory'. Neural Computation 9(8):1735–1780.

- Q. V. Le & T. Mikolov (2014). 'Distributed Representations of Sentences and Documents'.
- **A. Neelakantan, et al.** (2016). 'Neural Programmer: Inducing Latent Programs with Gradient Descent'.
- **A. Neelakantan, et al.** (2017). 'Learning a Natural Language Interface with Neural Programmer'.
- **J. Pennington, et al.** (2014). 'GloVe: Global Vectors for Word Representation'.
- **I. Sutskever, et al.** (2014). 'Sequence to Sequence Learning with Neural Networks'.
- Y. Wu, et al. (2016). 'Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation'.

Useful additional resources

- Stanford NLP with Deep Learning 2016 Manning / Socher https://www.youtube.com/watch?v=OQQ-W_63UgQ
- spaCy https://explosion.ai/blog/
- Intuition about DL + NLP http://sebastianruder.com/#open
- TensorFlow https://www.tensorflow.org/get_started/get_started
- Great papers overall http://colah.github.io/
- Great source for many basics http://www.wildml.com/
- Understandable DL posts http://distill.pub/
- Stanford Researcher: http://karpathy.github.io/

Thanks!

Any questions?

matthias.nitsche@haw-hamburg.de