
Distributed Stream Processing
(Real-Time Stream Processing For Big Data)

Dirk Löwenstrom
dirk.loewenstrom@haw-hamburg.de

Hamburg University of Applied Sciences, Department of Computer Science
Berliner Tor 7

20099 Hamburg, Germany

Abstract—Stream processing is used to handle large sets of
unbounded data, typically referred to as events, that arrive
with high velocity in a mostly semi- or unstructured form. To
obtain reliable information from these events, various window
operations are used to group related events over a period of
time, even if the events do not reach the processing pipeline
in the order they occurred. To build a high-performance but
reliable Data Stream Processing System (DSPS) tools like Apache
Kafka are used to enhance the overall capabilities of the stream
processors. In this paper, we will briefly glance over the basics of
(distributed) stream processing, the architectures in which they
are used, as well as open questions and interesting research topics.

Keywords—distributed stream processing, Big Data, streaming
machine learning, benchmarking

I. INTRODUCTION

Stream processing engines (SPE) have become an important
part of enterprise Big Data architectures by extracting business
value from data in motion, reducing the processing time of
an individual item and offer near real-time decision making.
Data from the ever-growing list of IoT sensors, smartphones,
wearables and other connected devices emphasize the velocity
part of Big Data handling which led to a shift from traditional
batch oriented processing such as MapReduce [28] on Hadoop
[53] towards a more ad-hoc approach because the amount
of data and the speed at which it is generated rules out
other approaches. In addition, the value of data provided from
such sources decays quickly, making high latency in those
problem domains unacceptable. Despite the urge for real-time
processing, SPE must be able to cope with the amount of
rapidly generated data. Therefore, high throughput is also
an essential property of a SPE in order to keep up with
incoming data streams. For example Twitter [14] needs to
handle more than 2.8 billion write requests per minute, storing
4.5 petabytes of time series data. LinkedIn [64] generating
over 1 trillion messages per day using Kafka [40] and recently
Steven Wu mentioned the use of the Apache Flink [4] system
for the data platform at Netflix which handles over 3 trillion
events per day. Other common use cases for stream processing
include clickstream analysis or enrichment, ETL workloads
and predictive analytics (fraud, pattern recognition) using
incremental updated prediction models [20].

However the interest in processing data in motion is not
new. Many advances (algorithm improvements, querying on
streams or machine learning) in event processing (EP) and

complex event processing (CEP) were made a decade ago
[15, 19, 30] and SPE has gone through a long evolution.
From an extension of traditional DBMS as main-memory
database systems or rule engines triggering on new events,
over using SQL on streams by exploiting the relation between
streams and relations (TelegraphCQ [23], STREAM [15]), to
engines like Aurora [19] that use a directed acyclic opera-
tor graph (DAG) based approach for processing streaming
data on a single or multi-node system with fault tolerance
and distribution capabilities (Borealis [10]). Although those
systems can provide continuous query capabilities, high-level
SQL-like interfaces and latency in the order of milliseconds
their deployment usually only spawns a few nodes and lack
support to maintain a high-scalable system needed to solve
aforementioned requirements for throughput and latency [63].
This has led to the development of a number of recent systems
with their own trade-offs that cover the requirements [56] of
large-scale distributed stream processing engines on big clus-
ter environments. A not exhaustive list includes: MillWheel
[12], Kafka Streams [6], Cloud DataFlow [13], Apache Apex
[1], Apache Spark Streaming [3], Apache Flink [4], Apache
Storm/Trident [8], Apache Heron [45] and Apache Samza [7].
Several SPE also support both batch and stream processing
capabilities, leading to a simpler architectures than the wide-
spread Lambda Architecture [47] using a single SPE for data
processing. Recent work on the Apache BEAM [2] project
goes even further by providing a unified programming API
based on the work of Akidau et al. and the dataflow model.
In BEAM batch or stream workloads can be described using
an abstraction of stream with different runners, while the
”real” implementation using one of the previous listed SPEs.
Notwithstanding using BEAM or the underlying SPE directly,
these systems still remain challenging to use in practice and
place significant demands on things like debugging, mainte-
nance, elasticity, scalability as well as performance evaluation
[17, 18, 27, 33]. The rest of this paper is organized as follows.

First we will glance over the basics of stream processing
engines and the critical characteristics needed to use them in
large-scale systems. The main part will look at the different
SPEs, describing their architectural and execution model as
well as comparing the trade-offs they make. Finally we briefly
summarize open issues and interesting topics in the area of
distributed stream processing.

II. BASICS & CHALLENGES

Before we dive into the details of some of the modern SPEs,
we take a look at architectures that are used in Big Data
systems. A general data processing pipeline consists of the
following parts: data sources emit data to the system where
they are stored in a distributed, fault-tolerant file system like
HDFS [53] or queueing system like Kafka [6] followed by
arbitrarily processing, serving and some form of visualization.
In this paper we focus on the processing step, especially
what options exists to realize stream processing. To better
understand the trade-offs, we first need to distinguish batch
and stream processing.

Batch vs. Stream Processing
Batch processing handles the volume part of Big Data by
periodically execute batch jobs on large potion of the incom-
ing data in a cost-effective and efficient way [31]. Because
batch jobs operate on the complete data, optimized parallel
algorithms like MapReduce [28] can be used to get correct
results at the cost of overall higher latency due to the delayed
execution. In contrast, streaming systems tackle velocity and
provide a low end-to-end latency by processing events at-
motion. However the benefits introduce a series of challenges
[56] that need to be solved when reasoning about distributed
stream processing systems (DSPS) and unbounded streams of
events:

• scaling: the system must be able to scale-out from a
single-node to a multi-node cluster and provide a way
to deploy processing logic to that cluster.

• availability: in contrast to batch processing, streaming
uses long-running jobs to process items immediately,
making downtime unacceptable.

• stragglers: since the system can process data only as
fast as its slowest component, it need a way to handle
stragglers by rebalancing or replacing misbehaving com-
ponents.

• backpressure: is important because it defines how the
system responds to overload and maintain operational.

• fault-tolerance: the DSPS must be fault tolerant and
automatically return to the normal state in the event of a
fault.

• state management: for stateful stream processing the
system need to maintain state of calculated results and
provide a way to recover the intermediate results on
cluster failure.

• out-of-order processing: the DSPS need techniques to
reason about the skew between event time (the time where
the event actually occurred) and processing time (the
time at which the event is observed by the system) [60].
Network latency or hardware errors can cause events to
arrive late and out-of-order. Therefore a way to re-order
late events and process them in the right time window
is essential for workloads that require strict ordering
to output correct results. In addition, the system only
operates on partial data and cannot make assumptions
on the completeness of events in a certain time period.

 Daten-
integration

Master
Dataset
(all data)

Processing
Transformation
Model Training

Batch-Layer

Speed-Layer

Stream
Processing

Updating
Views

Serving-Layer

Real-Time Views

Batch-Views

Fig. 1. Lambda Architecture [47]

Therefore, it must be able to work on incomplete data,
leading to approximate results compared to batch process-
ing. Handling late events is always a trade-off between
result latency and result accuracy [63].

• processing guarantees: as part of fault-tolerance a DSPS
defines delivery guarantees for the processed items: at-
least-once, at-most-once and exactly-once [60]. At-most-
once provides the lowest guarantee since messages are
delivered zero or at most once. No attempts are made
to retry or retransmit events which may cause messages
to be lost. At-least-once guarantees that a message will
be processed even in the presents of failures by using a
replayable source like Kafka to retry processing. As the
name implies the SPE may process an event twice, thus
allowing duplicates to occur. In exactly-once processing
messages can neither be lost nor duplicated. Famous
approaches include at-least-once plus dedupluciation and
distributed snapshots that periodically checkpointing pro-
cessing state to a durable backend. The term exactly-once
however is misleading for what it ensures, because it
cannot guarantee that arbitrarily user-defined logic ex-
ecuted for an event happens only ”exactly-once”, instead
it ensures that the state of the data processing pipeline
is only affected once by an event and that this state is
recovered correctly [51]. Most systems that offer exactly-
once also rely on a replayable data source to replay events
past the latest checkpoint.

• latency: achieved by SPE only display a portion of
the overall end-to-end latency for Big Data processing
systems. When the event is generated at the source it
need to be sent to the ingestion system which forwards
the event stream to the streaming processing layer. After
processing, results are passed to downstream systems for
storage and serving. All these steps contribute to the
overall latency of the pipeline.

Lambda & Kappa Architecture
As an attempt to merge the benefits of both worlds, Marz
proposed the Lambda Architecture that combines batch and
stream processing in one architecture. Distilled to its essence,
the Lambda Architecture complements the slow, but correct re-
sults form batch processing with a real-time layer for fast, but
not necessary correct results. As shown in Figure 1 incoming
data flows two paths. The batch layer’s job is to persist data to
a fault-tolerant, highly scalable storage system like HDFS [53]
and periodically execute batch jobs on large datasets, while
the speed layer operates on recent data, providing low-latency
results. Finally the serving layer merges the output from both
layers to build a complete result. However using this kind
of architecture essentially means maintaining two systems,
their individual computation logic and the not trivial effort
to merge the results. Although hybrid tools that support batch
and stream processing exists [3, 4, 50], most systems rely on
Hadoop and need to employ a separate streaming system [63].
Duplicated logic can be minimized using higher abstractions
like Summingbird [21], but this still requires managing two
separate systems. In contrast, the Kappa Architecture [39]
makes no distinction between batch and stream processing by
treating everything as a stream (batch is just a special case of
stream over a fix window of historical data). Mainly all data is
stored in a highly scalable messaging systems like Kafka [6]
which provides an ordered, fault-tolerant stream of events that
can be replayed into the system as needed. The core of the
data processing pipeline is a SPE that must be able to cope
with incoming data at high rate and achieving high throughput.
Instead of having two data paths, all data processing takes
place in the SPE, with the results being recalculated only for
computation logic updates by replaying historical data using
the aforementioned messaging system [39]. Also the Kappa
Architecture come with disadvantages. The effort to replay the
entire history is proportional to the stored data volume, placing
a lot of complexity on the ingestion system to retain large
datasets. Though the Kappa Architecture has a limited use
case for application that do not require unbounded retention
times of data [63].

III. DISTRIBUTED STREAM PROCESSING SYSTEMS

The following sections will focus on the current state of
distributed stream processing engines, concentrating on their
architectures, state handling and processing guarantees.

A. Apache Storm

The first SPE we analyze is Apache Storm [8] that pro-
vides an abstraction for stream processing, like MapReduce
[28] did for batch processing. Storm [59] defines a data
processing pipeline as an indefinitely running topology, a
directed computation graph that defines how incoming data
(unbounded sequence of tuples) flow through the system and
what processing should be applied to it. The topology itself
consist of spouts and bolts as seen in Figure 2. Spouts handle
the ingestion part by reading data from external sources or
pull tuples from message queues like Kafka [6] and emit them

Streaming
Sources

Spout

Se
rv
in
g

Bolt

Spout

Spout
Bolt

Bolt

Fig. 2. Storm topology [59].

to the downstream bolts which execute the computation logic
(e.g. filtering or user-defined functions (UDFs)), write results
to external storage or pass data subsequent bolts.

For clustering storm uses a master-slave architecture, com-
posed of Zookeeper [9] a distributed key-value store for
reliable coordination and cluster state, a master node, called
Nimbus that is responsible to observe cluster members,
distribute tasks among slave nodes and take action in case
of failing nodes by rescheduling tasks or restarting worker
processes [18, 59, 63]. Each Storm slave node has a supervisor
to orchestrate workers (JVM processes) which execute the
actual tasks (the implementation of a spout or bolt described
in the topology).

State Management & Fault-Tolerance
To prevent data loss Storm [8] is able to back up the progress
of tuples by persisting state in-memory or synchronously
forwarding the current state to an external key-value store
like Redis. While this ensures that no intermediate result is
lost, it will introduce very high-latency penalties as the size
of the state increases, making it only feasible for small state to
preserve the low-latency guarantees [31]. In case of a failing
worker, the Nimbus simply restart it or if the whole slave is
misbehaving it reschedules tasks as necessary. To cope with
system overload, Storm can generate backpressure when the
input buffer of a bolt exceed a defined watermark, throttling
the previous steps until the system recovers [8].

Guarantees
Storm offers neither exactly-once semantics nor guarantees
the order in which tuples are processed, but is able to
achieve at-least-once by tracking the lineage of each tuple
and acknowledging in each spout and bolt that the tuple was
processed. This doubles the message overhead causing an
enormous impact on performance [26].

Being a native stream processor Storm generally provides
low-latency results at the cost of losing certain processing
guarantees. In production use cases however the minimal
achievable end-to-end latency is usually above 50ms due
to network latency and garbage collection [32]. In addition,
Storm is only able to express stream operations via a limited,
low-level API which resulted in the Trident extension.

B. Storm Trident

Trident introduces an abstraction layer on storm that pro-
vides a higher-level API for processing stateful streams (e.g.
joins, aggregates, grouping) and through the use of micro-
batching a way to implement exactly-once processing as well
as ordering guarantees between each batch. In contrast to
Storm, Trident topologies are DAGs and tuples are processed
in batches, not one-at-a-time, thus increasing throughput at
the cost of increased latency. Each batch is the result of
splitting the dataset into partitions, subdividing each partition
into batches that are processed by one node in the cluster [31].

Guarantees
To realize exactly-once processing Trident uses the acknowl-
edgment feature of Storm and guarantees that each tuple exists
only once by storing additional information alongside the
maintained state and updating it transactionally [63]. In order
to maintain these guarantees, state updates must be performed
in strict order, making this mechanism similar to Storm only
feasible for small state.

C. Heron

Heron [41] is the direct successor of Storm at Twitter to
address critical challenges related to scalability, isolation and
debugging while maintaining compatibility with the Storm
API. One of the main problems associated with Storm is the
fact that workers from different topologies could interfere each
other on the same machine, leading to a separate infrastructure
for topologies in order to achieve isolation at the expense
of inefficient use of resources. [45]. To solve this problem,
Heron provides a cleaner mapping of logical units to physical
execution processes instead of bundling multiple components
of a topology into a single operating system process. In
contrast to Storm, Heron topologies are process-based running
each process in isolation and it is possible to specify fine-
grained resource allocation for individual components to avoid
over-provisioning the cluster as well as running a topology
alongside other critical services [41]. Heron follows the same
data model as Storm describing stateful topologies of spouts
and bolts, optionally acknowledging the processing state of
tuples for fault-tolerance and at-least-once guarantees [58].
Much like Storm, using this mechanism increases the overall
latency, while disabling it only offers at-most-once guarantees.

Figure 3 shows the overall architecture of Heron, which
in its basis consists of a Topology Master, Containers, Stream
Manager, Heron Instance, Metrics Manager, Zookeeper [9] and
one of the supported schedulers [5] that spawns the topology.
When submitting a topology the scheduler allocate required
resources, spawns several worker containers and a dedicated
container marked as Topology Master that acts as the master
node for the topology. The workers contain a Stream Manager
for internal and external routing of tuples to or between Heron
Instances and a Metric Manager exporting metrics to a central
monitoring system. Stream Managers notify their Topology
Master about scheduled containers that distribute the combined

Topology
Master (TM)

Stream
Manager

(SM)

Topology
Master (TM)
(Standby)

Zookeeper

Heron
Instance

(HI)

Heron
Instance

(HI)
Heron

Instance
(HI)

M
et

ric
s

M
an

ag
er

Stream
Manager

(SM)

Heron
Instance

(HI)

Heron
Instance

(HI)

M
et

ric
s

M
an

ag
er

container

container

M
on

ito
rin

g
Sy

st
em

Fig. 3. Heron topology architecture [41].

physical execution plan to all known Stream Managers which
form a fully connected graph [45]. Individual processing is
done by a Heron Instance that either runs a spout of bolt task
and internally uses two threads to receive tuples and gather
metrics. Because Heron Instances only run a single process,
debugging malfunction tasks becomes easier since logs are
written to their own file providing a time order view of events.
In case of system overload, Heron uses TCP windowing to
propagate back pressure to upstream Heron Instances or spout
back pressure to throttle the incoming data flow when Heron
Instances start slowing down [45].

D. Samza

Samza [50], similar to Storm and Heron, uses a one-at-a-
time continuous processing model and only provides at-least-
once semantics. It offers [7] a low-level API comparable to
Storm, a SQL-like API for batch processing and unified API
to describe stream and batch processing by adopting concepts
of the data flow model [13]. Samza itself relies heavily on
Kafka [40] for reliable storage, ingestion and replayability of
events in case of failing tasks. Samza can either operate on an
unbounded data stream (e.g. Kafka topic) or bounded stream
(e.g. input files). Independent of the streaming type, a stream is
partitioned into an ordered, replayable sequence of records and
each message in a partition can be identified given a specific
offset [40, 50, 63]. An application in Samza is composed of
jobs that contain one or more tasks for processing. In contrast
to Storm/Heron, each job is independently deployable and a
single-threaded process [18]. Samzas main abstraction is a Job
(similar to Storm/Heron Bolt) that executes on data pulled (as
a single message item) from Kafka and emit data back to
Kafka after processing (as shown in Figure 4).

Similar to Heron, Samza divides the execution plan in a
logical and physical representation. The logical plan is a job
represented as a directed graph of operators and streams of
data. For physical execution and to increase the throughput of
the system, a job is divided into multiple parallel, independent,
and identical tasks and the input stream is divided into
partitions, where each task execute the same logic on its own
input partition [50].

Kafka

Samza
Job

Samza
Job

Kafka

Samza
Job

Kafka

Samza
Job

Fig. 4. Samza data flow [63].

Parallelism can be tuned by running more instances of
the Job, but because data is always written back to Kafka
between each step in the pipeline, the resulting latency is
generally higher compared to systems like Storm. Despite the
disadvantages of this approach, it allows for an easy way of
sharing data between jobs like combining results of previous
stages. Also due to the log semantic, Samza provides ordering
of messages across all Kafka partitions [31].

State Management & Fault-Tolerance
Samza guarantees at-least-once processing by giving each task
a local, durable state store (key-value store) used to record
state and periodically persisting the last processed offset for its
input stream partition [7, 50]. As seen in Figure 5 checkpoints
are flushed incrementally, only emitting the delta since last
checkpoint. They are also replicated to other machines for
reliability. On task failure, a new task is spinned up and
the old state is restored by replaying the changelog and
processing all events after the last offset [7]. Due to the local
state, each task is able maintain more data that could fit in
memory and because the store is attached directly to each task,
lookups are generally faster than remote backends, resulting
in lower tail latency and higher throughput. In addition, the
enforced buffering of data between processing steps eliminates
the need for backpressure since Kafka, given a large scaled
deployment, makes sure that the system preserve its stability
even if overload occurs. Noghabi et al. also argue that incre-
mental checkpointing is more efficient than full checkpointing
considering large state (100TB), but it performs worse than
checkpointing in case of smaller state (100GB - 10B), although
this is compensable using optimized batching.

Unified API
Instead of using a Lambda Architecture, Samza uses a unified
model for batch and stream processing by treating batch as a
finite stream and marking the end of the batch with a special
token. Samza also splits the processed data into windows
(tumpling, session [13]) to avoid reprocessing the entire stream
on failures. By default, Samza [7] can reason about processing
time of events and provides event-time based processing by its
integration with Apache BEAM [2].

Fig. 5. Samza local state for fault-tolerance [50].

When late or out-of-order events arrive, the particular window
is re-processed fixing previous results [50].

E. Spark Streaming

Spark Streaming [66] enables stateful stream processing and
exactly-once guarantees by using the micro-batch approach,
resulting in high throughput, strong consistency guarantees
due to the batch mechanism and latencies in the upper mil-
liseconds to seconds. The key concepts of Spark are RDDs
and DStreams. RDDs are distributed and immutable collection
(resilient distributed datasets) that are manipulated through
deterministic operations (transformations) which always pro-
duce a new RDD [65]. To shield against process errors
or machine failures, Spark keeps track of the full lineage
of how a RDD evolves (the sequence of operations that
created it), checkpointing expensive RDDs so that they can
be reused faster in later computation stages [65, 67]. In that
way a lost partition can easily be rebuild by replaying saved
transformations on the base data, resulting in much faster
recovery time compared to syncing state over network from
external storage [67]. Streaming computations are expressed
as a DStream (discretized streams), a collection of RDDs
computed periodically using Spark batch jobs at small time
intervals. RDDs are processed in order, whereas the contained
data item are processed in parallel, without any ordering
guarantee [63]. Figure 6 shows the overall process. In each
time interval incoming datasets are stored reliably across the
cluster to form an immutable, partitioned dataset [66]. Once
the time interval completes, transformations are applied in
parallel producing outputs or intermediate results, whereas the
latter is stored as a stateful RDD for next batches. If a batch
fails, the last RDD can be used to perform the calculation again
or if the whole DStream fails, the used dataset is replayable
using systems like Kafka.

F. Spark Structured Streaming

Structured Streaming [17] is an improved version of the
Spark Streaming extension based on the Spark SQL engine
and offers a higher-level API to express batch and stream
computations under the same set of API primitives. It offers
end-to-end exactly-once semantics and fault-tolerance through

immutable
 dataset

immutable
 dataset

t = 1 Input

immutable
 dataset

t = 2 Input

D-Stream 1 D-Stream 2

Fig. 6. Spark streaming model [65, 66].

checkpointing and write-ahead logs (WAL) [3]. By default,
the engine runs in micro-batch mode [66], providing high
throughput and exactly-once at the expense of higher latency.
In addition, it is able to run long-living operator tasks in
continuous processing mode, achieving latencies in the lower
milliseconds while softening the guarantees to at-least-once,
although exactly-once semantics can be achieved by placing
restrictions on sources and sinks [17]. First, the source must
be replayable in the case of failure and second, the sink has
to handle events idempotently. To maintain state in this mode,
Spark asynchronously stores the processed offset to the WAL
when reading a so called epoch marker which is injected into
the input stream. This allows for periodic state checkpointing
without interrupting processing. Like Samza, Spark adopted
the concepts of the data flow model [13] and is able to express
windowing operators as well as higher-level operations like
aggregation or joins on streams. [17].

G. Flink

Flink [4] is a stream-only processing engine that enables
low-latency, stateful stream processing, exactly-once seman-
tics and fault-tolerance through asynchronous snapshots [22]
which maintain a global state of all operators. Flink adopts
the data flow model [13], where batch is only a special case
of streaming under fixed window operator to work on a finite
dataset. Flink applications are structured as a DAG containing
operators which apply transformations onto streams [22]. As
core model, Flink uses two abstract data types. DataStreams
for unbounded streams and DataSets for bounded streams. For
stateful stream processing, each stream operation in Flink is
able to declare its own state to keep track of data seen [22]. The
state can reside on heap memory, backed up by a file system or
outsourced to an external key-value store (e.g. RockDB) [46].
However, the heap approach has strong limitations in terms of
available resources, especially when large aggregates have to
be hold in memory.

Figure 7 shows an overview of the Flink architecture,
consisting of workers, called TaskManager which are respon-
sible to execute tasks and a JobManager that holds informa-
tion about active pipelines, coordinates scheduling, observes
snapshotting and triggers recovery mechanisms. As seen in
Storm and Heron, Flink also relies on Zookeeper [9] to keep
metadata, task information and cluster state.

Job
 Manager

Job
 Manager

Task
 Manager

Task
 Manager

snapshot
store

managed state

Zookeeper

Client
Program

dataflow
 graph

physical
tasks

local
snapshots

Fig. 7. Flink architecture [22].

Fault-Tolerance
Based on the famous algorithm developed by Chandy and
Lamport, Flinks asynchronous snapshots offers a way to
back up pipeline state without stopping the current execution.
Therefore each operator persists data between two barrier
items that get injected into the data stream. When a barrier
is read, the current state is asynchronously persisted to a local
database. To obtain a global backup, all local states are pulled
into an external data backend, resulting in a global snapshot
that can be used to recover the entire pipeline state in the event
of an error.

IV. INTERESTING TOPICS

Although SPEs have a long list of improvements behind
them, there are still a number of open problems to solve and
interesting application areas that arise with the new generation
of SPEs. Since a detailed consideration of all cases would go
beyond the scope of this paper, we will briefly look at the
following topics:

1) benchmarking: Due to the constantly growing list of
SPEs that use a variety of architectural approaches, it
is difficult to provide a generic method for evaluating
and comparing these systems. Things get even worse
because as complexity of these systems increases, small
misconfigurations or wrong tuning can lead to a signif-
icant change in the benchmark outcome. Hence equal
tuning must be applied to the systems under test to get
meaningful results [38]. Existing streaming benchmarks
often do not cover real-word use cases and provide
limited metrics. For example the Linear Road [16]
benchmark is an application benchmark that simulates
a variable tolling system of a metropolitan area for
motor vehicle expressways. Besides live data, historical
data covering ten weeks of tolling history is generated
that need to be combined with the used live queries
to produce correct outputs [33]. Linear Road reports
a so called L-rating metric which is used to compare
the stream data management system with relational
databases. StreamBench [44] is a benchmark suite that
contains several micro-benchmarks (e.g. word count or
projection) which focus on benchmarking distributed
SPE. Due to its limited scope, it is well suited for

operator comparisons since only relevant parts of the
system under test are used. Being a micro benchmark,
it has generally limited validity, making it inappropriate
to evaluate performance for real-world applications [33].
The queries used in StreamBench vary from simple
stateless filter or extraction tasks to complex stateful
multi-step queries. However, windowing functions are
not included. As input data, StreamBench uses real-
word datasets as seed for a more sophisticated data
generation and therefore does not work with a com-
plete representation of reality. To cope with generated
messages, a broker like Kafka [40] is used to separate
generation from consumption. Instead of a self-defined
metric, StreamBench measures throughput and latency
as well as the penalties resulting from node failures [44].
Ivanov et al. proposed an extension of the well know
BigBench for adding stream processing support to the
existing big data storage and batch processing bench-
marking capabilities. To achieve an end-to-end appli-
cation benchmark, they outlined a benchmark that has
configurable streaming modes for real-time or historic
processing use cases. However, it lacks the ability to test
windowing, out-of-order, and reprocessing and the sup-
ported queries are limited to simple applications. Other
notable (but not exhaustive) benchmarks are SparkBench
[43], which uses real Twitter data to test the Spark
engine, RIotBench [52], a benchmark for SPE at the
edge hosting IoT applications and yahoo benchmark
[26], which was a first attempt to measure the differences
between next generation SPEs like Storm or Flink. It
simulates an advertisement analytical pipeline where
the SPE’s task is to read data provided by Kafka,
identify relevant events and store the windowed count
of the results to a Redis deployment. In summary, the
landscape of up-to-date stream processing benchmarks
that are able to cope with the rapid movement of
today’s SPEs is limited. Only some of them consider
the distribution in the exposed metrics and are able to
provide a sufficient end-to-end application benchmark
for real-word scenarios. While there have been good
proposal for this topic [33, 35, 38], there is still a
high demand for end-to-end application-level streaming
benchmarks with good tooling support.

2) streaming machine learning: In the batch-oriented
way, machine learning algorithm train a model on large
given dataset and the resulting model is used for clas-
sifications or predictions. When looking at streaming
data, machine learning algorithm cannot iterate over a
complete dataset, but must be dynamically (incremen-
tally) updated online. In general, streaming or online
machine learning covers algorithms that are distributed
and have limited historical data access to correct or
evaluate decisions made. Therefore they must be able to
work on fresh data only. This essentially means that the
model must learn a concept step by step by processing
labeled training examples one after the other [62].

In addition, there are a number of requirements and
challenges for streaming learning. In order to cope with
the data volume, calculations must be distributed and
thus need to be implemented using a distributed stream
processing system which comes with its own complex-
ity [20]. Since the processing depends on examples
generated from the continuous, non-stationary flow of
data, the model must be adaptable to overcome potential
conceptual drifts [62].
Once the above problems have been solved, an inevitable
question immediately arises. How does distributed, par-
allel machine learning work? One way to do parallel
learning is to use a parameter server [54] that allows
access to shared parameters as key/value pairs. Thereby
each training point is split into its constituting attributes
and each attribute is sent to a different processing ele-
ment [20]. Using this mechanism, a linear model trained
via gradient descent, for example, can be implemented
by storing and updating the coefficients in a distributed
store [42]. Popular frameworks that support parallel
model training are TensorFlow [29] or MXNet [25].
In the field of distributed stream processing systems,
Spark [3] and Flink [4] offer functionality for machine
learning algorithms and distributed learning. Spark with
its Spark MLLib provides a rich set of batch-oriented
machine learning algorithms, but has a limited number
of algorithms that take streaming data into account.
However Spark has support for several parameter server
implementations. A parameter server with recent activity
is Angel [36, 37] that has support for linear regression,
support-vector-machines and more. In contrast to Spark,
Flinks MMLib is less extensive, but also supports model-
parallel machine learning with its own implementation
of a parameter server. Although there is a adequate
support for machine learning, SPE are not specifically
tailored towards parallel and scalable incremental model
training and inference on event streams [48]. Thus this
area of research need more investment. Despite using
pure online training approaches, combining batch and
online training is also a valuable approach in practice by
training a model on precompiled data sets and applying
prediction to live data online [20].

3) performance optimization: In the past there have been
attempts to summarize issues related to performance
[34] optimization in the field of stream processing. Due
to special use cases and tuning needs, their is still a
fair investment in optimizing various aspects of large-
scale DSPE deployments. There is a suit of recent
papers [57, 61, 68] addressing things like scheduling
or processing algorithms, while others evaluate the per-
formance impact of processing guarantees across SPE
[11]. In addition, with the increasing number of low-
level tuning options and complex streaming operations
such as advanced windowing, it is necessary to improve
usability, transparency and debugging to cope with the
growing complexity.

4) streaming graph processing: With real-world graphs
such as a social media graph of Twitter interactions
ranging the size of millions to even billions of nodes
and edges, there is still an interest in handling massive
streaming graph deployments [49]. The main areas of
focus are concerned with implementing and improving
graph streaming algorithms, efficient graph partitioning
(process of dividing a graph into a predefined number
of subgraphs for distributed computing) and streaming
graph processing on linked data like RDF stream pro-
cessing [27].

V. CONCLUSION

In this paper, we have looked at the state of the art
of distributed stream processing engines by analyzing their
architectures, state handling and processing guarantees.

Before that, we devoted the first chapter to the differences
between batch and stream processing and the challenges of
processing events at-motion, which resulted in the develop-
ment of two widely used architectures. While the Lambda
Architecture was designed to compensate for the approxi-
mate results of streaming layers by effectively running the
calculation logic twice, the next generation DSPE features
high performance and throughput characteristics as well as
strong processing guarantees for stateful workloads. This led
to the idea of the Kappa Architecture which treats streaming
as a first-class citizen and uses systems like Kafka to have a
reliable, scalable and most importantly repeatable streaming
data source. Although Lambda and Kappa Architecture had
their moments in the early days of immature DSPEs, the
distinction between them will fade as DSPEs become more
advanced and powerful. Projects like Apache BEAM continue
to support this development.

After glancing over the basics, we focused on the analysis
of current SPEs. In general, these systems can be divided into
two types. Systems like Apache Spark and Apache Trident
use the micro-batch model, trading latency for throughput. In
contrast, Apache Storm, Apache Heron, Apache Samza and
Apache Flink use the continuous operator model that uses
an operator graph of long-running tasks and process events
on-at-a-time. In order to achieve fault-tolerant execution, the
above systems use a variety of mechanisms that are directly
related to their processing guarantees. While Storm/Heron
achieve at-least-once through per-record acknowledgement
and fault-tolerance by synchronously backing up processing
state to an external key-value store, Spark Streaming is able
to provide exactly-once semantics based on the discretized
streams and RDD abstraction in combination with barrier
synchronization to checkpoint expensive calculations.

Samza embraces the idea of local state and continuously
checkpoints the state differences into a changelog instead
of communicating with a remote storage system. Flink
also provides exactly-once by using local state and global
asynchronous snapshotting to be able to recover processing
on failures. This pushes the complexity outside the system,
relying on high-performance key-value stores and optimized

network infrastructure. Consequently using this approach for
recovering is expensive, because the state for all operators
must be reset, resuming computation to the last known
checkpoint.

Lastly, we have shown that despite the fast evolving land-
scape of DSPE, there are still open challenges. In particular
benchmarking and performance evaluation is a ubiquitous
problem to make the different DSPE comparably and help
in the decision making process. Existing benchmark suits
are either not directly designed towards streaming analysis,
offer limited queries and metrics or do not adequately reflect
real use cases. Moreover, we briefly discussed the area of
distributed machine learning in combination with DSPEs using
a distributed parameter server and identified some areas of
research in the field of stream graph processing.

VI. FURTHER WORK AND PERSONAL OUTLOOK

The goal of this paper was to lay out the current state of
the art for distributed stream processing engines. I got a good
overview of the underlying procedures and trade-offs that led
to the individual design decisions. Nonetheless it is inevitable
for my further journey to develop practical knowledge in
stream processing by understanding the operations done on
streams [60] and to actually use a DSPE in a production-like
scenario. In addition, the research made clear that the topic
requires deeper knowledge of the way these system are built
to give a sophisticated opinion.

During the base project I would like build a stream
processing architecture using a subset of the presented SPE
in cooperation with the HAW Big Data Lab and further
evaluate the benchmarking and streaming machine learning
applications, for which Benczúr et al. provided a good starting
point. I am also open for the streaming graph processing area,
but this field will require more knowledge in the currently
used algorithms and techniques for handling large-scale
streaming graphs.

Ideally, the basic project leads to a specialization on one of
the selected topics and results in the concrete research question
for my master thesis.

REFERENCES

[1] Apache Apex, . https://apex.apache.org/.
[2] Apache Beam, . https://beam.apache.org/.
[3] Apache Spark, . https://spark.apache.org/.
[4] Apache Flink. https://flink.apache.org/.
[5] Apache Heron. https://apache.github.io/incubator-heron/.
[6] Apache Kafka. https://kafka.apache.org/.
[7] Apache Samza. https://samza.apache.org/.
[8] Apache Storm. http://storm.apache.org/.
[9] Apache Zookeeper. https://zookeeper.apache.org/.

[10] D. J. Abadi, Y. Ahmad, M. Balazinska, U. etintemel,
M. Cherniack, J.-H. Hwang, et al. The Design of the
Borealis Stream Processing Engine. In CIDR, 2005.

[11] S. M. A. Akber, C. Lin, H. Chen, F. Zhang, and H. Jin.
Exploring the impact of processing guarantees on per-
formance of stream data processing. In 2017 IEEE 17th
International Conference on Communication Technology
(ICCT), pages 1286–1290, 2017.

[12] T. Akidau and A. o. Balikov. Millwheel: Fault-tolerant
Stream Processing at Internet Scale. Proc. VLDB Endow.,
Aug. 2013.

[13] T. Akidau, R. Bradshaw, C. Chambers, et al. The
dataflow model: A practical approach to balancing cor-
rectness, latency, and cost in massive-scale, unbounded,
out-of-order data processing. Aug. 2015.

[14] A. Anthony. Observability at Twitter: technical overview,
part I. 2016. URL https://blog.twitter.com/engineering/-
en us/a/2016/observability-at-twitter-technical-
overview-part-i.html.

[15] A. Arasu, B. Babcock, S. Babu, et al. STREAM: The
Stanford Stream Data Manager. IEEE Data Engineering
Bulletin, 2003.

[16] A. Arasu, M. Cherniack, M. Stonebraker, et al. Linear
Road: A Stream Data Management Benchmark. In
Proceedings of the Thirtieth International Conference on
Very Large Data Bases - Volume 30, VLDB ’04, pages
480–491, 2004.

[17] M. Armbrust, T. Das, M. Zaharia, et al. Structured
streaming: A Declarative API for Real-Time Applica-
tions in Apache Spark. In Proceedings of the 2018 Inter-
national Conference on Management of Data, SIGMOD
’18, pages 601–613. ACM, 2018.

[18] M. D. Assuncao, A. D. S. Veith, and R. Buyya. Dis-
tributed Data Stream Processing and Edge Computing:
A Survey on Resource Elasticity and Future Directions.
2017.

[19] H. Balakrishnan, M. Balazinska, M. Stonebraker, et al.
Retrospective on Aurora. The VLDB Journal, pages 370–
383, 2004.

[20] A. A. Benczúr, L. Kocsis, and R. Pálovics. Online
Machine Learning in Big Data Streams. CoRR, 2018.

[21] O. Boykin, S. Ritchie, I. O’Connell, and J. Lin. Sum-
mingbird: A Framework for Integrating Batch and Online
MapReduce Computations. Proc. VLDB Endow., pages
1441–1451, 2014.

[22] P. Carbone, S. Ewen, et al. State Management in Apache
Flink: Consistent Stateful Distributed Stream Processing.
Proc. VLDB Endow., pages 1718–1729, 2017.

[23] S. Chandrasekaran, O. Cooper, A. Deshpande, et al.
TelegraphCQ: Continuous Dataflow Processing. In Pro-
ceedings of the 2003 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’03, pages
668–668, New York, NY, USA, 2003. ACM.

[24] K. M. Chandy and L. Lamport. Distributed Snapshots:
Determining Global States of Distributed Systems. ACM
Trans. Comput. Syst., pages 63–75, 1985.

[25] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang,
T. Xiao, B. Xu, C. Zhang, and Z. Zhang. MXNet:
A Flexible and Efficient Machine Learning Library for
Heterogeneous Distributed Systems. CoRR, 2015.

[26] S. Chintapalli, D. Dagit, et al. Benchmarking
Streaming Computation Engines at Yahoo!, Dec 2015.
URL https://yahooeng.tumblr.com/post/135321837876/
benchmarking-streaming-computation-engines-at.

[27] M. Dayarathna and S. Perera. Recent Advancements
in Event Processing. ACM Comput. Surv., pages 33:1–
33:36, 2018.

[28] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. Commun. ACM, pages
107–113, 2008.

[29] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin,
Q. V. Le, M. Z. Mao, M. Ranzato, A. Senior, P. Tucker,
K. Yang, and A. Y. Ng. Large Scale Distributed Deep
Networks. In Proceedings of the 25th International
Conference on Neural Information Processing Systems
- Volume 1, NIPS’12, pages 1223–1231, 2012.

[30] M. N. Garofalakis, J. Gehrke, and R. Rastogi. Querying
and mining data streams: you only get one look a tutorial.
In SIGMOD Conference, 2002.

[31] F. Gessert. Scalable Stream Processing: A Survey of
Storm, Samza, Spark and Flink by Felix Gessert, 2017.
URL youtube.com/watch?v=ZWez6hOpirY.

[32] M. Grover, T. Malaska, J. Seidman, and G. Shapira.
Hadoop Application Architectures. O’Reilly Media, Inc.,
1st edition, 2015.

[33] G. Hesse, C. Matthies, B. Reissaus, and M. Uflacker. A
New Application Benchmark for Data Stream Processing
Architectures in an Enterprise Context: Doctoral Sympo-
sium. In Proceedings of the 11th ACM International
Conference on Distributed and Event-based Systems,
DEBS ’17, pages 359–362, New York, NY, USA, 2017.
ACM.

[34] M. Hirzel, R. Soulé, S. Schneider, B. Gedik, and
R. Grimm. A Catalog of Stream Processing Optimiza-
tions. ACM Comput. Surv., pages 46:1–46:34, 2014.

[35] T. Ivanov, P. Bedué, et al. Adding Velocity to BigBench.
In Proceedings of the Workshop on Testing Database
Systems, DBTest’18, pages 6:1–6:6, New York, NY,
USA, 2018. ACM.

[36] J. Jiang, B. Cui, C. Zhang, and L. Yu. Heterogeneity-
aware Distributed Parameter Servers. In Proceedings of

https://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at
https://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at
youtube.com/watch?v=ZWez6hOpirY

the 2017 ACM International Conference on Management
of Data, SIGMOD ’17, pages 463–478. ACM, 2017.

[37] J. Jiang, L. Yu, B. Cui, J. Jiang, and Y. Liu. Angel: a new
large-scale machine learning system. National Science
Review, pages 216–236, 2017.

[38] J. Karimov, T. Rabl, A. Katsifodimos, et al. Benchmark-
ing Distributed Stream Processing Engines. CoRR, 2018.

[39] J. Kreps. Questioning the lambda architecture, 2014.
URL https://streaml.io/blog/exactly-once.

[40] J. Kreps, N. Narkhede, and J. Rao. Kafka : a Distributed
Messaging System for Log Processing. 2011.

[41] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kel-
logg, S. Mittal, J. M. Patel, K. Ramasamy, and S. Taneja.
Twitter Heron: Stream Processing at Scale. In Proceed-
ings of the 2015 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD ’15, pages 239–
250, New York, NY, USA, 2015. ACM.

[42] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, et al.
Scaling Distributed Machine Learning with the Parameter
Server. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14), pages
583–598, Broomfield, CO, 2014. USENIX Association.

[43] M. Li, J. Tan, Y. Wang, L. Zhang, and V. Salapura. Spark-
Bench: A Comprehensive Benchmarking Suite for in
Memory Data Analytic Platform Spark. In Proceedings
of the 12th ACM International Conference on Computing
Frontiers, CF ’15, pages 53:1–53:8, New York, NY, USA,
2015. ACM.

[44] R. Lu, G. Wu, B. Xie, and J. Hu. Stream Bench: Towards
Benchmarking Modern Distributed Stream Computing
Frameworks. In Proceedings of the 2014 IEEE/ACM
7th International Conference on Utility and Cloud Com-
puting, UCC ’14, pages 69–78, Washington, DC, USA,
2014. IEEE Computer Society.

[45] F. Maosong, M. Sailesh, et al. Streaming@twitter. Bul-
letin of the Technical Committee on Data Engineering,
IEEE Computer Society, 2015.

[46] O. Marcu, R. Tudoran, B. Nicolae, et al. Explor-
ing Shared State in Key-Value Store for Window-
Based Multi-pattern Streaming Analytics. In 2017
17th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID), pages 1044–
1052, 2017.

[47] N. Marz. How to beat the CAP theorem, 2011.
URL http://nathanmarz.com/blog/how-to-beat-the-cap-
theorem.html.

[48] C. Mayer, R. Mayer, and M. Abdo. Streamlearner:
Distributed Incremental Machine Learning on Event
Streams: Grand Challenge. CoRR, 2017.

[49] A. McGregor. Graph Stream Algorithms: A survey.
SIGMOD Rec., pages 9–20, 2014.

[50] S. A. Noghabi, K. Paramasivam, Y. Pan, N. Ramesh,
J. Bringhurst, I. Gupta, and R. H. Campbell. Samza:
Stateful Scalable Stream Processing at LinkedIn. Proc.
VLDB Endow., pages 1634–1645, 2017.

[51] J. Peng. Exactly once is NOT exactly the same. URL

https://streaml.io/blog/exactly-once.
[52] A. Shukla, S. Chaturvedi, and Y. Simmhan. RIoTBench:

A Real-time IoT Benchmark for Distributed Stream
Processing platforms. CoRR, 2017.

[53] K. Shvachko, H. Kuang, S. Radia, and R. Chansler.
The Hadoop Distributed File System. In Proceedings
of the 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST), MSST ’10, pages
1–10, Washington, DC, USA, 2010. IEEE Computer
Society.

[54] A. Smola and S. Narayanamurthy. An Architecture for
Parallel Topic Models. Proc. VLDB Endow., pages 703–
710, 2010.

[55] Steven Wu. Steven Wu, Netflix—Flink Forward
2018, 2018. URL https://www.youtube.com/watch?-
v=dMvHQ0TPWBY.

[56] M. Stonebraker, U. Çetintemel, and S. Zdonik. The 8
Requirements of Real-time Stream Processing. SIGMOD
Rec., pages 42–47, 2005.

[57] K. Tangwongsan, M. Hirzel, and S. Schneider. Low-
Latency Sliding-Window Aggregation in Worst-Case
Constant Time. In Proceedings of the 11th ACM In-
ternational Conference on Distributed and Event-based
Systems, DEBS ’17, pages 66–77, New York, NY, USA,
2017. ACM.

[58] Q. To, J. Soto, and V. Markl. A Survey of State
Management in Big Data Processing Systems. CoRR,
2017.

[59] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy,
et al. Storm@Twitter. In Proceedings of the 2014 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’14, pages 147–156, New York, NY,
USA, 2014. ACM.

[60] A. Tyler, C. Slava, and R. Lax. Streaming Systems -
The What, Where, When, and How of Large-Scale Data
Processing. 2018.

[61] S. Venkataraman, A. Panda, K. Ousterhout, M. Armbrust,
A. Ghodsi, M. J. Franklin, B. Recht, and I. Stoica.
Drizzle: Fast and Adaptable Stream Processing at Scale.
In Proceedings of the 26th Symposium on Operating
Systems Principles, SOSP ’17, pages 374–389, New
York, NY, USA, 2017. ACM.

[62] G. Widmer and M. Kubat. Learning in the presence of
concept drift and hidden contexts. Machine Learning,
pages 69–101, 1996.

[63] W. Wolfram, G. Felix, F. Steffen, and R. Norbert. Real-
time stream processing for Big Data. it - Information
Technology, pages 186–194, 2016.

[64] A. Woodie. Kafka tops 1 trillion messages per day
at linkedin, 2015. URL https://www.datanami.com/-
2015/09/02/kafka-tops-1-trillion-messages-per-day-at-
linkedin/.

[65] M. Zaharia, M. Chowdhury, T. Das, et al. Resilient
Distributed Datasets: Aa Fault-tolerant Abstraction for
In-memory Cluster Computing. In Proceedings of the
9th USENIX Conference on Networked Systems Design

and Implementation, NSDI’12, pages 2–2, Berkeley, CA,
USA, 2012. USENIX Association.

[66] M. Zaharia, T. Das, H. Li, et al. Discretized Streams:
Fault-tolerant Streaming Computation at Scale. In Pro-
ceedings of the Twenty-Fourth ACM Symposium on Op-
erating Systems Principles, SOSP ’13, pages 423–438,
New York, NY, USA, 2013. ACM.

[67] M. Zaharia, R. S. Xin, P. Wendell, et al. Apache Spark:
A Unified Engine for Big Data Processing. Commun.
ACM, pages 56–65, 2016.

[68] H. Zhang, B. Cho, E. Seyfe, A. Ching, and M. J.
Freedman. Riffle: Optimized Shuffle Service for Large-
scale Data Analytics. In Proceedings of the Thirteenth
EuroSys Conference, EuroSys ’18, pages 43:1–43:15,
New York, NY, USA, 2018. ACM.

	Introduction
	Basics & challenges
	distributed Stream Processing systems
	Apache Storm
	Storm Trident
	Heron
	Samza
	Spark Streaming
	Spark Structured Streaming
	Flink

	Interesting Topics
	Conclusion
	Further Work and Personal Outlook

