
Vision and Video in Virtuality
M.Sc. Computer Science

Gerald Melles
Hochschule für Angewandte Wissenschaften Hamburg

Hamburg, Germany
contact@geraldmelles.com

ABSTRACT
In this paper, I am introducing my Omniscope Plugin for Unity
as a useful tool for video playback as well as video analysis and
processing in VR applications. It consists of two distinct modules:
A GStreamer pipeline for receiving media streams from a variety of
sources and an integration of the OpenCV computer vision library.

KEYWORDS
virtual worlds, VR, AR, Streaming, OpenCV, GStreamer, Unity

Disclaimer. This paper was created as part of a project in prepa-
ration for a master’s thesis at the Hamburg University of Applied
Sciences. Neither it nor any accompanying material are to be used
or published for any purpose other than the HAW’s regular exami-
nation and evaluation procedures.

1 (COMPUTER) VISION AND VIDEO IN THE
VIRTUALITY CONTINUUM

Today’s VR systems seek mainly to provide artificial visual and
auditory stimuli in order to create the illusion of another - virtual
- reality. All the way from Augmented Reality through Blended
Reality and Augmented Virtuality to Virtual Reality (cf. [5]), the
focus lies on vision above all other senses, with auditory senses
coming second.
The capturing, streaming, processing and presentation of video
and audio is, therefore, an important part of these technologies.
Not all applications end up streaming media feeds directly to the
user, either: Video feeds from cameras in the HMD (Head-Mounted
Display) may just as well be used to facilitate inside-out motion
tracking or feature detection based overlay of virtual entities in an
otherwise real environment.
This may perhaps be the most important in Augmented Virtuality,
where aspects of real perception are injected into an otherwise vir-
tual experience. If, for example, an HMD with stereoscopic cameras
(such as the HTC Vive Pro) was being used to immerse the user
in a virtual environment, but using the cameras people in their
surroundings were still being shown, computer vision algorithms
would be at the center of that mechanism.
According to some researchers, the use of computer vision as a
means of facilitating human-computer interaction is on the rise
and may even surpass the use of the currently ubiquitous touch-
interfaces (cf. [8]).
As such, media streaming and the processing of images and video
are important parts of VR systems and their interconnection with
other systems (such as peripheral devices and media providers). A
number of proprietary frameworks offer streaming and computer

Figure 1: Simplified illustration of Milgram and Kishino’s
Virtuality Continuum [5]

vision capabilities to developers, but typically in the form of ready-
made features. Since open source implementations for both do exist,
we have created a lean plugin efficiently interfacing a media stream-
ing framework (GStreamer), a computer vision library (OpenCV)
and a VR development environment (Unity3D). All three of these
are largely platform independent, as versions exist for Windows as
well as Unix systems.1 We will show how this was done and why it
may prove useful for scientists studying aspects of systems in the
Virtuality Continuum.
This paper is structured into three parts:
Firstly, the importance of computer vision as a part of building
VR systems is highlighted, together with an introduction into the
OpenCV computer vision library and existing integrations with the
Unity IDE. In the second part, the particular requirements of video
streaming over networks are discussed, explaining the necessity to
offer functionality beyond Unity’s and OpenCV’s built-in streaming
support, using the GStreamer media framework.
Thirdly, the Omniscope plugin is introduced as a combined media
framework and computer vision solution, efficiently integrating
both GStreamer and OpenCV into Unity.

1.1 Unity
Unity (or Unity3D)[10] by Unity Technologies is an integrated de-
velopment environment for the creation of multimedia applications,
especially computer games. It is capable of producing applications
for several platforms and currently the most often used framework
for creating virtuality applications.

2 COMPUTER VISION
2.1 OpenCV
OpenCV is a free and open source program library for computer
vision algorithms. Much of its code base and the underlying al-
gorithmic concepts stem directly from the scientific community.
Other reasons for its widespread adoption include its speed (it is
written almost exclusively in native code), its extensive features,
1Though the implementation uses native C and C++ code for reasons of performance
and interoperability, making it necessary to compile it separately for each platform.



platform independence and open (BSD) license.
OpenCV’s algorithms are widely used in the processing and analy-
sis of images and video, even in the field of AR and VR. Example
for this can be found in [1] or [7].

2.2 OpenCV and Unity
At least one integration of OpenCV in Unity exists, but it is closed
source and currently being sold via Unity’s own asset store. As
far as its limited documentation reveals, its functionality is limited
to a small subset of OpenCV’s capabilities. It is also not possible
to extend the Plugin’s functionality by using another variant of
OpenCV.
Using EmguCV[3], the C# wrapper of OpenCV, in Unity’s C# code
scripts would present another alternative. This would come with a
number of other problems, however. The largest one is that Unity’s
C# support is currently based on a legacy version of the Mono
framework, which makes it seem unlikely that EmguCV would
work as intended without further programming effort. Furthermore,
EmguCV naturally trails behind OpenCV in terms of supported
features and is not as fast as the original native code libraries.

2.3 Unity’s Native Plugin System
The Unity Editor is able to use native code libraries to extend its
own scripting capabilities. This simply requires placing the relevant
libraries (e.g. .dll files) in the Assets/Plugins folder of a Unity project.
2 Native libraries can then be accessed by calling their functions
from Unity’s own scripts (e.g. C#, JavaScript) after specifying which
DLL should be used.

3 MEDIA STREAMING
3.1 Streaming and Virtuality
Media streaming is another important part of the tool-set of any VR
system developer. Examples for this include the ubiquitous stream-
ing of ’traditional’ videos with rectangular aspect ratios, but also
360 degree videos (such as OpenCV’s algorithms could be used
to ’stitch’ together), stereoscopic 3D and surround sound. Since
VR systems are often used to play back very bandwidth-hungry
streams (such as 360 degree video), there has been a recent surge in
research activity into facilitating this in an efficient manner. In [12]
for example, Zare et al. propose to track the user’s gaze and save
bandwidth by adaptively reducing the quality of areas they are not
actively looking at. In [2], Cheung et al. propose a similar solution.

3.2 Unity’s own support for video streaming
As of its latest beta release (2017.1), the Unity3D Editor supports
two different kinds of streaming features: The WebCamTexture and
VideoPlayer components. WebCamTexture allows for local webcam
feeds to be rendered onto a texture. VideoPlayer allows for ren-
dering remote video streams onto a texture. However, both come
with serious limitations and problems: Neither of them allows for
efficient pre-processing of the received frames. WebCamTexture
2Care has to be taken, however, if these libraries dynamically link to other libraries,
such as (in this case) Visual Studio redistributables and both GStreamer and OpenCV.
If these are not found, Unity will (confusingly) claim that the native plugin itself does
not exist at all.

does not permit playing back video from remote cameras (e.g. so-
called IP-Cameras). The VideoPlayer is incapable of playing back
live streams with playback delays under a minute and in fact in-
capable of playing back most live streams at all. Even video files
being streamed over the network proved to be problematic, as the
VideoPlayer would refuse to play back some container format and
encoding combinations altogether. It should be said that the Video-
Player is currently only available as a beta feature and no claims
have been made as to its state of completion.

3.3 OpenCV stream capture
OpenCV permits processing and changing video data quickly and
efficiently, either through custom code routines or through a mul-
titude of already available algorithms. Since it was not intended
for playback, its capabilities in that regard are very limited. For
example: While it is possible to receive a video stream or file using
OpenCV, it will then normally attempt to process the video’s frames
as quickly as possible. Therefore, if OpenCV were to be used to
play back a video file, the delay between frames would have to
be implemented manually to ensure the intended playback speed.
This and other missing common features of video playback such
as accompanying media (subtitles, audio) or searching (finding a
specific position in the time-line of a played-back media file) led to
the decision of also integrating a dedicated multimedia framework.
It should be noted that OpenCV does already include the possibility
of an integration with GStreamer in its plethora of features (it needs
to be re-compiled with the relevant options enabled), so this is by
no means a novel concept. This integration is somewhat limited in
some regards, however (cf. ch. 4), and since a separate GStreamer
installation is required for it to work in any case, the decision was
made to instead create an integration of GStreamer into Unity while
keeping compatibility with OpenCV.

3.4 GStreamer media framework
GStreamer[4] is a multi-platform library for the creation of media-
handling applications. One of its core capabilities is the streaming
of multimedia content, both sending and receiving. Aside from
being accessible though its core libraries (which are written in C),
GStreamer provides access to its features through command-line
programs. GStreamer is included in all major Linux distributions
and in many ways equivalent to Microsoft’s DirectShow filters. It
can, however, be run on Windows and MacOS operating systems
as well as on Linux (and derivates, such as Android).

3.5 GStreamer pipeline
GStreamer works by creating a pipeline, which is essentially a list
of the modules which are to be used, each consuming data from
its predecessor and providing data to its successor. A definition
of a pipeline can be passed to GStreamer through the command
line (see example pipeline definition in ch. 4) or the pipeline can
be manually created in code. GStreamer categorizes the modules
along its streaming pipeline into three types: Sources, Filters (and
filter-like modules) and Sinks.
A Source is the initial element of a pipeline which provides a data
stream which is then fed into a succession of Filters. The Filters
transform and modify that stream, passing it on to other filters



and, finally, to a Sink. Sinks are the end of a streaming pipeline and
typically pass the stream along to other programs, such as OpenCV
or Unity in the case of this plugin.

3.6 GStreamer and Unity
There have been previous efforts to make GStreamer’s streaming
capabilities accessible fromwithin the Unity IDE. Two (interrelated)
Open Source native plugins for this purpose exist. One is Yamen
Saraiji’s GStreamer Unity Integration[6], which is still under active
development. Another project based on this is gst-unity-bridge
by the ImmersionTV project[11], funded by the European Union’s
horizon project. The latter seems to no longer be actively developed.

4 OMNISCOPE
The Omniscope Plugin for Unity has the following essential func-
tions:

• Receiving and processing media streams with GStreamer, e.g.
from webcams, window/screen captures, files or network
streams

• Multi-threadable C++/C# interoperability of the OpenCV
library with Unity

• Audio playback
• Video playback on surfaces managed by Unity by rendering
video frames directly to textures on the GPU, from either
GStreamer or OpenCV

4.0.1 Interoperability with Unity. The Plugin uses Unity’s pro-
vided Low Level Native Plugin Interface for interoperability with
the IDE, as well as Unity’s Rendering API for accessing the neces-
saryDirectX functionality to render OpenCV’s output onto textures.
The capture of video frames from streams is de-coupled from the
rendering cycle responsible for rendering the texture. Full control
over when capture frames and textures are updated - and on which
thread - is available through the C#-API of the plugin rather. That
way, performance can more easily be tweaked depending on each
scenario’s specific requirements.
The Plugin also offers the StreamPortal Component (see Fig. 2) as a
graphical interface to aid non-programmers in its parametrization.
For example, StreamPortal offers to dynamically rescale the object it
is attached to relative to the resolution of the received video stream.
This avoids cropping or rescaling the receiver texture, which could
otherwise result in a diminished playback experience.

4.0.2 Reading video frames. Using OpenCV, capturing video
from files and cameras is relatively easy. OpenCV provides exten-
sive support and a high-level API for this in the VideoCapture class.
Webcams are selected using their zero-based webcam device index,
which is potentially problematic as OpenCV (surprisingly) does not
have any convenience function for matching device names with
indices, limiting users’ options to iterating over the devices until
the correct one has been identified using its device name. Unfor-
tunately, this device name is also not unique, which means that if
more than one device has the same (or no) device identifier it may
be necessary to examine the actual video feed to make sure the
right device is selected - which will likely require end-user effort.
Screen capture is somewhat more complex than webcam and file

Figure 2: OpenCV applying an edge detection algorithm to a
live webcam feed

Figure 3: The Unity Component serving as front end to the
Native Plugin

capture, as OpenCV does not support it natively on Microsoft Win-
dows. Instead, another class was implemented (based on [9]) to
serve as a drop-in replacement for OpenCV’s VideoCapture class
in this eventuality.
VideoCapture does allow capturing from a file and even live streams
through a network using a number of transfer protocols, however,
its playback functions are very limited. Ultimately, OpenCV is in-
tended for analysis and processing media rather than playback.

4.0.3 Image processing. OpenCVs primary function is to serve
as a library of image processing functions. With the Omniscope
Plugin for Unity, exposing any and all of these to Unity is rela-
tively straightforward and only requires tying another API func-
tion to OpenCV’s relevant function calls. Aside from modifying
video frames, OpenCV also offers many functions which perform
analyses and extract information from pictures and videos. The
results of these functions can be any number of different data types
and structures. Using the aforementioned means of communication
between the native plugin and the superordinate Unity instance,
these could also easily be passed on to be used in a virtual reality
simulation. An example for this could be the extraction of the loca-
tion of features (such as QR-Tags or human faces) from an HMD’s
camera feed and its subsequent display through Unity.

4.0.4 Rendering frames to the graphics card. Using Unity’s Na-
tive Rendering API, an OpenCV frame (a.k.a. Material or Mat) can
be rendered to graphics memory. For this, a texture is created in the
Unity project’s C# code and a pointer to the target texture’s memory
location is passed on through the Plugin’s API to native code. The
rendering procedure is executed on Unity’s graphics thread (and
thus separately from its script execution) for performance purposes.

4.1 Omniscope’s GStreamer Integration
Omniscope takes two different approaches to integrate GStreamer:
Firstly, it uses and extends integration modules already available



Figure 4: Video being streamed from a webserver (source!)
and rendered onto cube

Figure 5: Current primary desktop being captured and ren-
dered onto cube: note the infinity-mirror effect

Figure 6: The same webcam capture being rendered onto
three cubes simultaneously

Figure 7: GStreamer pipeline example rendered onto cube

within OpenCV itself. The GStreamer integration modules required
for this are only available if OpenCV is manually built from a recent
source, in this case its git development branch.
The integration does not change the user interface within Unity
either, instead accepting a GStreamer pipeline definition string as
a valid URI. As a result, the Plugin can easily and flexibly be used
to access the majority of GStreamer’s functionality without any
additional programming effort.
The GStreamer integration adds a lot of functionality, more than
could be discussed here - interested readers should refer to GStreamer’s
own documentation instead. There are limitations, however. GStreamer
capabilities (a.k.a. ’caps’) programmed into OpenCV are, at this
point, limited to video input to either 1 or 3 channel 8 bit raw
video or bayer video format. Playback control and other features
typically associated with media playback are also missing. This
integration is therefore not intended to allow playback of media in
VR applications, but rather to be used to tie media into computer
vision algorithms and processing it. A good example for this could
be feature detection, such as facial recognition or the tracking of a
user’s hands through the cameras on their HMD.
In addition to this, we have created an appsink component for
GStreamer which allows for media to be rendered directly onto
textures in Unity, bypassing OpenCV entirely. This is intended for
media playback and is easily integrated into a custom GStreamer
pipeline. It also surpasses the OpenCV integration in terms of per-
formance by a large margin.

Example pipeline definition: ’videotestsrc ! videoconvert ! appsink’
This example pipeline uses GStreamer’s built-in video test source,
converts it into the appsink’s expected video format and pipes it
into the Omniscope plugin (the destination sink has to be ’appsink’
or ’opencvsink’).

Tests. To ensure the correct and reliable operation of the receiv-
ing and rendering systems, the plugin was tested successfully for
the following scenarios:

• Reading a video file from the local file system



Figure 8: Three separate, simultaneous streams being ren-
dered onto cubes. From left to right: a live webcam feed, a
desktop capture and a video streamed from a web server

• Reading a video file from a web server using HTTP
• live-streaming a local GStreamer video test source
• live-streaming a local webcam capture
• live-streaming a local desktop capture
• live-streaming video from a web server using HTTP and
WEBM

The plugin proved to be capable of rendering all of the above suc-
cessfully with frame rates of 60 frames per second in FHD resolu-
tion (1920 by 1080 pixels) when using the OpenCV integration. It
can handle multiple simultaneous inputs: In our tests up to three
were possible without a drop in frame rate when using the direct
GStreamer-Unity-Integration.

5 CONCLUSION
5.1 Summary
We have shown that an efficient and fast plugin integration of both
a media fgramework and a computer vision library into Unity is
possible. We have also highlighted the benefits of this integration
being open source and as such modifiable and extensible to suit ev-
ery application. In addition, we have described the most noteworthy
challenges we have faced during its first prototypic implementation.

5.2 Future Works
Future works based on this paper and the accompanying code fall
into two broad categories: improvements/extensions to the Omnis-
cope Plugin on one hand and its application in VR research on the
other.
In terms of improvements, the most obvious one would be to ex-
pose more of OpenCV and GStreamer’s own functionality through
Unity’s component system in order to require as little programming
effort on the side of the user as possible. This would make it easier
esp. for non-computer scientists to work with.
In researching VR technologies, the plugin eases the implemen-
tation of scenarios integrating multimedia streams into VR appli-
cations. It offers easy interoperability with any system streaming
multimedia data. It is also not limited to ’traditional’ video streams,
but could for example also stream two separate videos for stereo-
scopic video rendering. But its main strength lies in providing access
to OpenCVs algorithms. As such, the use of computer vision in VR
as well as the possibility of integration of the Omniscope plugin
with other networking and messaging tools (such as the CSTI’s
Middleware and the mauzr framework) will be explored. The latter
would be especially useful to systems in the virtuality continuum

which rely heavily on smart environments, needing to send and
receive both simple messages and multimedia streams.

REFERENCES
[1] Alba Amato, Salvatore Venticinque, and Beniamino Di Martino. 2013. Image

Recognition and Augmented Reality in Cultural Heritage Using OpenCV. In
Proceedings of International Conference on Advances in Mobile Computing &#38;
Multimedia (MoMM ’13). ACM, New York, NY, USA, Article 53, 10 pages. https:
//doi.org/10.1145/2536853.2536878

[2] G. Cheung, Z. Liu, Z. Ma, and J. Z. G. Tan. 2017. Multi-stream switching for
interactive virtual reality video streaming. In 2017 IEEE International Conference
on Image Processing (ICIP). 2179–2183. https://doi.org/10.1109/ICIP.2017.8296668

[3] EmguCV. 2017. EmguCV .NET Wrapper for OpenCV (official website). (2017).
http://www.emgu.com

[4] GStreamer. 2017. GStreamer media framework (official website). (2017). https:
//gstreamer.freedesktop.org

[5] Paul Milgram and Fumio Kishino. 1994. A Taxonomy of Mixed Reality Visual
Displays. vol. E77-D, no. 12 (12 1994), 1321–1329.

[6] mrayy. 2017. GStreamer Unity integration. (2017). https://github.com/mrayy/
mrayGStreamerUnity

[7] W. W. Oui, E. G. W. Ng, and R. U. Khan. 2011. An Augmented Reality’s framework
for mobile. In ICIMU 2011 : Proceedings of the 5th international Conference on
Information Technology Multimedia. 1–4. https://doi.org/10.1109/ICIMU.2011.
6122762

[8] Kari Pulli, Anatoly Baksheev, Kirill Kornyakov, and Victor Eruhimov. 2012. Real-
time Computer Vision with OpenCV. Queue 10, 4, Article 40 (April 2012), 17 pages.
https://doi.org/10.1145/2181796.2206309

[9] StackExchange. 2017. Thread on ScreenCapture in OpenCV.
(2017). https://codereview.stackexchange.com/questions/127667/
opencv-basedwrapper-for-windows-screen-capture

[10] Unity Technologies. 2017. Unity IDE (official website). (2017). https://unity3d.com
[11] ua i2cat. 2017. GStreamer - Unity3D Bridge (GUB), a.k.a. Streamer Movie Texture

(GMT). (2017). https://github.com/ua-i2cat/gst-unity-bridge,lastaccessed
[12] A. Zare, A. Aminlou, and M. M. Hannuksela. 2017. Virtual reality content

streaming: Viewport-dependent projection and tile-based techniques. In 2017
IEEE International Conference on Image Processing (ICIP). 1432–1436. https:
//doi.org/10.1109/ICIP.2017.8296518

https://doi.org/10.1145/2536853.2536878
https://doi.org/10.1145/2536853.2536878
https://doi.org/10.1109/ICIP.2017.8296668
http://www.emgu.com
https://gstreamer.freedesktop.org
https://gstreamer.freedesktop.org
https://github.com/mrayy/mrayGStreamerUnity
https://github.com/mrayy/mrayGStreamerUnity
https://doi.org/10.1109/ICIMU.2011.6122762
https://doi.org/10.1109/ICIMU.2011.6122762
https://doi.org/10.1145/2181796.2206309
https://codereview.stackexchange.com/questions/127667/opencv-basedwrapper-for-windows-screen-capture
https://codereview.stackexchange.com/questions/127667/opencv-basedwrapper-for-windows-screen-capture
https://unity3d.com
https://github.com/ua-i2cat/gst-unity-bridge,lastaccessed
https://doi.org/10.1109/ICIP.2017.8296518
https://doi.org/10.1109/ICIP.2017.8296518

	Abstract
	1 (Computer) Vision and Video in the Virtuality Continuum
	1.1 Unity

	2 Computer Vision
	2.1 OpenCV
	2.2 OpenCV and Unity
	2.3 Unity's Native Plugin System

	3 Media streaming
	3.1 Streaming and Virtuality
	3.2 Unity's own support for video streaming
	3.3 OpenCV stream capture
	3.4 GStreamer media framework
	3.5 GStreamer pipeline
	3.6 GStreamer and Unity

	4 Omniscope
	4.1 Omniscope's GStreamer Integration

	5 Conclusion
	5.1 Summary
	5.2 Future Works

	References

