Consistency and Autonomy in the Microservice
Architecture

MICHAEL MULLER
michael .mueller2@haw-hamburg.de
University of Applied Science (HAW) Hamburg
Berliner Tor 7
20095 Hamburg, Germany

31. January 2019

Abstract

This paper discusses the balance between autonomy and consis-
tency in a microservice environment. Three consistency solutions will
be selected and compared. These three are ’Shared Database’, ’'SAGA
Orchestration’ and ’SAGA Choreography’. With these solutions it
is also possible to compare Orchestration and Choreography. Each
solution has it benefits, problems and can be considered in different
situations. Even though the need for strong consistency may be better
fulfilled with a monolithic or 'Service-Oriented’ architecture.

Keywords: Microservice, Architecture, Autonomy, Consistency

1 Introduction

The Microservice Architecture is currently widely known and applied in dis-
tributed systems. In a microservice architecture each service is independent
of other services (autonomy). The important autonomy aspects for this pa-
per are that each service is the owner of its data and can have a different
techstack. (2], [11], [9])

If multiple microservices use the same data, it can get tricky to preserve
their independence while keeping the shared copies consistent across all ser-
vices. This gets even more tricky when the data representations of the same
data or the used technology varies throughout the distributed microservice
system. The heterogeneous technology stacks may be a big problem as some
technologies are not compatible with each other. (2], [11], [10])

The first question of this paper is, how the autonomy of microservices
and the consistency of their data interfere with each other. The second
question is, if its better to have a central service that checks and enforces



the global consistency (’Orchestration’) or if this is better be done by the
services themselves ("Choreography’). Performance, scaling, crash detection
and recovery of microservices architectures are not essential parts of this
paper.

In the upcoming section Fundamentals will be described. In section 3,
different consistency solutions will be introduced and three are selected for
comparison in section 4. The last two sections answer the specified questions
and give a future outlook.

2 Fundamentals

2.1 Consistency Models

A system or a state is consistent when all copies of the same data have the
same value. There are different consistency models which describe how
consistent the system actually is. ’Strict Consistency’ for example is the
strongest consistency model and defines that the system is always consis-
tent. On the other end we have 'Eventual Consistency’ which doesn’t really
give a consistency guarantee at all, the system will become consistent some-
time in the future. Between these two extremes are several models, one is
"Causal Consistency’ which guarantees that related operations are always
in the correct order, but it doesn’t ensure any guarantee for non-related
operations. [6]

2.2 Autonomy

[1] describes autonomy as one aspect of loose coupling. Autonomy means the
decomposition of a system into independent modules on a management level.
The owner of the module has complete control over the internal aspects. In
[3] this is described in other words, that a team has the responsibility and
ownership of a microservice and can independently design, implement, test
and extend the microservice.

3 Solutions

In this section, seven solutions will be described and compared. Based upon
the given descriptions and properties in the beginning, three solutions will
be picked in the end for further investigations.

3.1 Important solution properties

To gain a better overview over the solutions, important properties will be
specified. These properties can be split in two different groups. While the



first group describes the algorithm, the second group concentrates on the
solutions effect on the architecture (P2).

P1.1 How does the solution know the location of all replicas of a certain data
object?

P1.2 How does the solution know about changes of these data objects and
which process executes this algorithm (Orchestration or Choreography)?

P1.3 How does the solution apply the change to all replicas and which process
executes the update?

P1.4 Which consistency model can be granted?

P2.1 Which changes would need to be applied upon an existing system?

P2.2 How does the solution affect the microservice autonomy?

P2.3 How does the solution work with heterogeneous technologies?

3.2 Solutions

Seven unique solutions will be introduced. Including the variations, this
gives a total of eight solutions.

3.2.1 SAGA Choreography with Events

SAGA is a pattern introduced by [5] in 1987 and can be described as the
distributed and more loosen version of the Two Phase Commit. A change
message will be distributed to all applications and if a failure occurs the
already done changes will be rolled back. Depending on the implementation
the forwarding and controlling of the messages’ success is either done by an
Orchestrator or by the applications themselves (Choreography).

Events are often used in microservice architectures due to their very good
scalability. For consistency, event messages can be used to signal other ser-
vices that data has changed without even knowing the existence or location
of these services. [9]

P1.1 Every microservice listens to certain event messages distributed by a
message broker.

P1.2 The services will receive a message which is relevant for him and may
insert extra event messages again. (Choreography).

P1.3 Change Request is read by microservice which then will apply the change.

P1.4 Eventual consistency.

P2.1 In the new system, all change requests need to send and received from
the message broker, only read requests are allowed to be sent directly.
This message broker may have to be introduced. In addition, of receiving
requests from the exposed interface (e.g. REST), the services now need
to listen to event messages too.

P2.2 The autonomy does not decrease as long as the event messages are treated
like an external interface.



P2.3

3.2.2

The technology in use must understand the selected message broker.

SAGA Orchestration

Sources: [9], [5], [4]

P1.1
P1.2
P1.3
P14
P2.1
P2.2

P2.3

All Services and which data objects they have is known to a central
service, here the so called 'SAGA Orchestrator’.

When the 'SAGA Orchestrator’ receives the change request, it will for-
ward this request to the relevant services. (Orchestration)

A Service receives a change request and applies it.

Not specified in source.

In the new system, all change requests need to be sent to the 'SAGA
Orchestrator’.

The autonomy decreases since the extra service has extended knowledge
about the used data object in the services.

The technology in use must be able to talk to the services.

A more general variation of this solution is the ’Aggregator Pattern’ [9].
With the 'SAGA Orchestration’ being the more sophisticated consistency
solution the ’Aggregator Pattern’ is not mentioned in more detail.

3.2.3

Shared Database Microservice Pattern

Sources: [9] [11]

P1.1

P1.2

P1.3

P1.4

P2.1

P2.2

P2.3

There is a fixed location for each data object, in SQL this would be one
table per data object.

One data object in a table changes and the owning service recognizes
this change. (Choreography)

This solution basically just says that every service uses the same
database. How consistency is then achieved is not mentioned. This
solution could be extended so the service adjust its table according to
the recognized changes within other tables.

Consistency up to Strict Consistency is possible. This solution is prefer-
ably done with SQL databases, as NoSQL databases may weaken the
guaranteed consistency model or need more work to achieve strict con-
sistency due to the lack of ACID transactions.

In the new system, the services have to frequently check the database if
changes have happened. For this, all services need to be able to connect
to the database and know exactly where one data object is and how it is
stored (in SQL e.g. the schema)

The autonomy decreases since the services need to share where and how
a data object is stored.

The technology in use must understand the shared database



3.2.4

Listening to communication - Verification

Sources: [7]

If requests are sent that implicitly reflect the same internal state of (e.g.)
sender and receiver, the global state is consistent (e.g. SYN and SYN/ACK
in TCP). This solution could be expanded to also enforcing consistency.

P1.1

P1.2

P1.3

P14

P2.1

P2.2

P2.3

3.2.5

Services and their behaviour about data objects (’Contracts’) are prede-
fined and hardcoded into an extra service.

When a request is read by the extra service that implicitly reflects an
internal change of a service state. (Orchestration for the consistency
check)

This is an algorithm to only verify if services are in the same state. This
solution could be extended so the extra service will send change requests
to the affected microservices.

So this solution doesn’t send changes to the services to enforce consis-
tency.

This verifies strict consistency and what it enforces is up to the imple-
mentation.

In the new system, all change requests need to be observable by the extra
service, which needs to be implemented too.

The autonomy decreases since the extra service has complete knowledge
about the internal behaviour of the services.

The technology in use must send requests that can be understood by the
extra service.

Listening to communication - Templates

Sources: [§]

Developer must define valid orders of causal operations (templates). If
an order of operations matches the beginning of a template, this template is
followed.

P1.1

P1.2

P1.3

P14
P2.1

Services and their behaviour about data objects and requests are prede-
fined and hardcoded in an extra service

When a change request is read by the extra service and the request
matches a template. (Orchestration)

While following a template, the extra service keeps the state consistent
as it delays requests that are sent too early to prevent the global state
to become inconsistent.

Causally Consistency

In the new system, all change requests need to be observable by the extra
service, which needs to be implemented too. Also it must be possible for
this extra service to delay requests.



P2.2 The autonomy does not decrease as long as the messages are treated like
an external interface.

P2.3 The technology in use must send requests that can be understood by the
extra service.

3.2.6 Synapse

Sources: [10]

Synapse is a serviceﬂ on which databases can register with the info which
data objects they need. Synapse then will publish all changes to the regis-
tered databases.

P1.1 Databases subscribe to certain data objects.

P1.2 When a change operations comes, Synapse will publish the change to all
subscribed databases. (Orchestration)

P1.3 Subscribed databases apply the change.

P1.4 This leads to sequential, causal or eventual consistency.

P2.1 In the new system, all change requests need to go through the Synapse
service. The databases need to register at the extra Synapse service,
which needs to be implemented too.

P2.2 The autonomy decreases since the synapse service has extended knowl-
edge about the used data objects in the databases.

P2.3 The database technology in use must be understood by the extra synapse
service.

3.3 Selected Solutions

In the upcoming sections the solutions will be compared in more depth. To
be able to compare in a certain amount of time, the number of solutions will
be reduced to three. The selection will consider the questions from section
i}

To answer the first question, the solution which guarantees the strongest
consistency is chosen. The strongest consistency is guaranteed by the
"Shared Database’ and ’Listening to communication - Verification’ solutions.
Both solutions are not complete in terms of enforcing consistency. As the
"Shared Database’ solution allows (internal) changes without emitting mes-
sages beforehand, it is chosen.

When converting a monolith system to a microservice system, it maybe
a question how to keep the new system consistent. And since this conversion
is a lot of work, it’s helpful to save some time. So the second solution will
be the solution that, when implementing, needs the least work. Or in the
case of an already existing microservice system, the least changes. The

!See code at https://github.com /nviennot/synapse



least changes when implementing in existing environments can be
achieved when solution specific changes are not within the services or within
the databases, since these layers may already have been through a lot of time
and effort. So the solution should be external. The solutions in this area
are numerous: 'SAGA Choreography with Events’, ’'SAGA Orchestration’,
"Listening to communication - Verification” and "Listening to communication
- Templates’. The last two solutions need a lot of knowledge about the
services and would need a lot of work to implement. 'SAGA Choreography
with Events’ would need extra work within the services, so they are able to
read event messages. 'SAGA Orchestration’ is chosen as it would not need
such work since it uses the already existing external service interfaces for
interaction.

The second question how Orchestration or Choreography is better
to achieve consistency, is done with choosing one solution that exists in both
variants. As 'SAGA Orchestrator’ is an already chosen orchestration solu-
tion, the chosen choreography variant is 'SAGA Choreography with Events’.
It also promises the highest autonomy along with ’'Listening to commu-
nication - Templates’. Furthermore, the usage of events is intuitive in the
microservice environment as they scale well and provide loose coupling be-
tween sender & receivers [11].

4 Comparison

The >Shared Database’ solution can lead to a strict consistency in the
system. Furthermore, it is easy to understand, implement, test and de-
bug. The problem of this solution is, that the location and structure of
common data must be shared between the microservices, which interferes
with the microservice autonomy. Also, this solution limits the choices of
database technologies, since the database must work with all used languages
and frameworks.

The ’SAGA Orchestration’ solution doesn’t require any internal changes
of the microservices. The solution is expected to be easy to implement, test
and debug. In contrast, there are changes needed on the user side of the
system, as all change requests need to be sent to the Orchestrator instead of
sending them to the services directly. Depending on the current state of the
architecture, implementation and how the users interact with the services,
this is a big problem or a little one. Also, the 'SAGA Orchestrator’ can be
seen as a potential bottleneck for the entire system as all write requests must
go through it.

The highest autonomy is achieved with the 'SAGA Choreography
with events’ solution which scales well and provide loose coupling of the
used microservices. The main problem of this solution is, that it only guar-
antees 'Kventual Consistency’, the weakest consistency model. It can also be



hard to test and debug, referring to its asynchronous nature. There is also
the challenge to know when all services have got the change messages, to
monitor & control this, an extra service maybe necessary. Another challenge
we see is that the services have to forward the changes to other services. This
behaviour may lead to a hardcoded implementation of a network if not done
with indirect communication. This is the opposite of a flexible and failure
tolerant system.

Orchestration has the benefit of having all logic in one place, this makes
implementation, testing, debugging and changes easier. It also makes it eas-
ier to detect service failure and can start a failure specific recovery. One
Orchestrator could be a bottleneck for the system, but if implemented state-
less, it can be easily replicated. Another problem is, that this Orchestrator
service is an additional application that has to be implemented and adjusted
to changes. And in general, more orchestration and sharing of resources (e.g.
database) shifts the architecture to a more ’Service Oriented Architecture’.

The benefit of using Choreography is that it is expected to be faster
than Orchestration, since the logic and work is distributed between the ser-
vices. Also, the services are more autonomous from each other. In the
"'SAGA Choreography with Events’ events are specified globally to signal
other that certain data has changed. Changes to these messages may lead to
additional code changes in the services. Challenges are that this distribution
also makes failure detection and recovering harder. It is also more difficult
than in the Orchestration version to determine the point in time when all
services got the change request and successfully updated their data.

The pros and cons of both abstract patterns are valid vice versa.

5 Conclusion

Three solutions to guarantee consistency in a microservice environment were
presented. First ’Shared Database’ as it guarantees the strongest consistency;,
second "'SAGA Orchestrator’ as it needs the least changes when implementing
in an existing system and third 'SAGA Choreography with Events’ as Events
are a frequently used in microservice architecture and to have a comparison
between orchestration and choreography.

A higher consistency directly interferes with the microservice autonomy.
For the purpose of having a global consistent state, microservice internal
knowledge (data or data structures) needs to be shared across applications.
Changes to internal s lead to changes of other applications too, which is the
opposite of autonomy. How much knowledge needs to be shared depends on
the selected solution and implementation.

If the distributed microservice system needs a higher consistency model,
the applications become closer and share more knowledge. In the extreme
this can lead to a shared orchestrator or shared database which in combina-



tion brings it very close to a ’Service-Oriented Architecture’. This behaviour
can be explained as microservices were created for performance and specific
scaling which benefits from loose coupling and high autonomy.

It can also be observed that high autonomy leads to systems that are
harder to implement, test and debug since they may use asynchronous and
indirect communication.

6 Future Work

First the selected solutions could be implemented for further and deeper
testing. These implementations could then be used for performance testing
or how well the solutions scale vertically / horizontally, this is especially
interesting as scaling is important for microservice architectures. Another
idea is to test how resilient the solutions are to failures.

References

[1] Nils Barnickel and Matthias Fluegge. Transferring the principle of
loose coupling to the semantic level. In Proceedings of the 1st In-
ternational Conference on Intelligent Semantic Web-Services and Ap-
plications, ISWSA 10, pages 5:1-5:6, New York, NY, USA, 2010.
ACM. URL: http://doi.acm.org/10.1145/1874590.1874595, doi:
10.1145/1874590.1874595.

[2] Tomas Cerny, Michael J. Donahoo, and Michal Trnka. Contex-
tual understanding of microservice architecture: Current and fu-
ture directions. SIGAPP Appl. Comput. Rev., 17(4):29-45, January
2018. URL: http://doi.acm.org/10.1145/3183628.3183631), doi:
10.1145/3183628.3183631.

[3] Jacob Donham. A domain-specific language for microservices. In
Proceedings of the 9th ACM SIGPLAN International Symposium
on Scala, Scala 2018, pages 2-12, New York, NY, USA, 2018.
ACM. URL: http://doi.acm.org/10.1145/3241653.3241654) doi:
10.1145/3241653.3241654.

[4] Alan Fekete, Paul Greenfield, Dean Kuo, and Julian Jang. Transac-
tions in loosely coupled distributed systems. In Proceedings of the 14th
Australasian Database Conference - Volume 17, ADC *03, pages 7-12,
Darlinghurst, Australia, Australia, 2003. Australian Computer Society,
Inc. URL: http://dl.acm.org/citation.cfm?id=820085.820089.

[5] Hector Garcia-Molina and Kenneth Salem. Sagas. SIGMOD Rec.,
16(3):249-259, December 1987. URL: http://doi.acm.org/10.1145/
38714.38742, doi:10.1145/38714.38742.


http://doi.acm.org/10.1145/1874590.1874595
https://doi.org/10.1145/1874590.1874595
https://doi.org/10.1145/1874590.1874595
http://doi.acm.org/10.1145/3183628.3183631
https://doi.org/10.1145/3183628.3183631
https://doi.org/10.1145/3183628.3183631
http://doi.acm.org/10.1145/3241653.3241654
https://doi.org/10.1145/3241653.3241654
https://doi.org/10.1145/3241653.3241654
http://dl.acm.org/citation.cfm?id=820085.820089
http://doi.acm.org/10.1145/38714.38742
http://doi.acm.org/10.1145/38714.38742
https://doi.org/10.1145/38714.38742

[6]

7]

8]

19]

[10]

[11]

Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh,
and Marc Shapiro. ’cause i'm strong enough: Reasoning about con-
sistency choices in distributed systems. SIGPLAN Not., 51(1):371-384,
January 2016. URL: http://doi.acm.org/10.1145/2914770.2837625),
doi:10.1145/2914770.2837625.

Paul Greenfield, Dean Kuo, Surya Nepal, and Alan Fekete. Consistency
for web services applications. In Proceedings of the 31st International
Conference on Very Large Data Bases, VLDB ’05, pages 1199-1203.
VLDB Endowment, 2005. URL: http://dl.acm.org/citation.cfm?
1d=1083592.1083731.

Joao Loff, Daniel Porto, Carlos Baquero, Jodo Garcia, Nuno Preguiga,
and Rodrigo Rodrigues. Transparent cross-system consistency. In Pro-
ceedings of the 8rd International Workshop on Principles and Practice of
Consistency for Distributed Data, PaPoC 17, pages 8:1-8:4, New York,
NY, USA, 2017. ACM. URL: http://doi.acm.org/10.1145/3064889.
3064898, doi:10.1145/3064889.3064898.

Chris Richardson. Microservice Patterns:, volume 1. November 2018.
URL: https://microservices.io/book.

Nicolas Viennot, Mathias Lécuyer, Jonathan Bell, Roxana Geam-
basu, and Jason Nieh. Synapse: A microservices architecture for
heterogeneous-database web applications. Proceedings of the 10th Fu-
ropean Conference on Computer Systems, FuroSys 2015, 04 2015. doi:
10.1145/2741948.2741975.

Eberhard Wolff. Microservices : Grundlagen flexibler Softwarearchitek-
turen -. Dpunkt-Verlag, Koln, 1. auflage edition, 2015.

10


http://doi.acm.org/10.1145/2914770.2837625
https://doi.org/10.1145/2914770.2837625
http://dl.acm.org/citation.cfm?id=1083592.1083731
http://dl.acm.org/citation.cfm?id=1083592.1083731
http://doi.acm.org/10.1145/3064889.3064898
http://doi.acm.org/10.1145/3064889.3064898
https://doi.org/10.1145/3064889.3064898
https://microservices.io/book
https://doi.org/10.1145/2741948.2741975
https://doi.org/10.1145/2741948.2741975

	Introduction
	Fundamentals
	Consistency Models
	Autonomy

	Solutions
	Important solution properties
	Solutions
	SAGA Choreography with Events
	SAGA Orchestration
	Shared Database Microservice Pattern
	Listening to communication - Verification
	Listening to communication - Templates
	Synapse

	Selected Solutions

	Comparison
	Conclusion
	Future Work

