
Development of an End-to-End Deep Learning
Pipeline

Matthias Nitsche, Stephan Halbritter
{matthias.nitsche, stephan.halbritter}@haw-hamburg.de
Hamburg University of Applied Sciences, Department of Computer Science

Berliner Tor 7, 20099 Hamburg, Germany

Abstract

Large scale machine learning pipelines come in a variety of flavors and practices.
Dealing with a lot of parameters, moving large data quantities, working with large
external data sources gets messy quickly. In this paper we present an infrastructure
and data pipeline comparing different text classification models on a real world
news data set. The infrastructure is provided by the CSTI Lab by ProfK̇ai von
Luck. We will explain our hardware setup and show benchmarking results on a
basic image classification tasks with two ResNet variations. Since we have the
opportunity to work with real-world German news data from the Deutsche Presse-
Agentur (dpa), we analyze the dataset and show some applications. Further we will
lay out a complete end to end dataflow solution with our data pipeline deployed
with Kubernetes, MongoDB and HDFS. We will describe the actual data pipeline
as directed acyclic graphs with computations such as transforming, preprocessing,
embedding and modelling. Finally and as an outlook what can be done with the
data, we present the results of a basic text classification task on the data set.

Keywords – Natural Language Processing, Hardware Benchmark, Knowledge Discovery Process,
Data Pipeline, Text Analysis, Topic Modelling, GPU, Language Modeling, Text Classification

1 Introduction

Real world machine learning applications are tough and pose different challenges than working on
reference datasets. The first problem is to actually identify what makes the data special and different
to other data sets. Careful and clear statistical analysis is needed to understand the implications
of the data, especially as there is no known point of reference or comparisson to other studies to
compare the results to. Lastly preprocessing pipelines need to be carefully designed to account for
the problems occuring in real world datasets such as unbalanced samples. Text elements contain
HTML and newspaper specific syntactical elements that are not part of natural language. Fortunately
the Deutsche Presse-Agentur (dpa) dataset contains a lot of metadata, such as categories, labels,
keywords, author information and plenty of different text elements like the article, headlines or
descriptions. It is vital to go through the different aspects of the data and comment on the strengths
and weak spots.

In this paper we try to explore different aspects of an end-to-end machine learning pipeline that
can solve several different tasks. Major components of such a pipeline contain the description of
data that is going through it, infrastructure, parsing and normalization of text elements, depiction of
CPU and memory bound preprocessing as well as GPU bound model training. Since the dpa data is
highly unnormalized we go with intermediate representations, making it possible to replay parsing
and normalization easily. We think of the data pipeline as Directed Acylcic Graphs (DAGs), that
share access to the data, where computations are nodes and files are shared on the edges. We do not

work directly with convential databases and decided to use simple file formats such as tsv and more
advanced ones like Apache Parquet.

DAGs are a convenient abstraction when there are a lot of different computationally expensive jobs
that co-depent on each other. Since we are not only interested in creating a pipeline without any task.
we will show a very simple text classification based on multinomial Naive Bayes. This provides us a
training ground for our follow up work where we will use state of the art deep learning models to
learn a good classifier. In theory the pipeline can then be used for any task, such as image captioning
or question answering.

The following sections are structured as follows: First we present our setup with a focus on the
hardware and show the results of benchmarks for up to 10 GPUs. In the second part, we will present
the dataset provided by dpa and make an exhaustive analysis. Section 3 lays out our ideal data
pipeline and comments on parts that need further improvement. Also, we lay out our Kubernetes
cluster setup with MongoDB and HDFS. Finally, we present a basic text classification task on a
baseline model to demonstrate that it works. The idea behind this part is to show capabilities, not as a
real benchmark. We close wiht a short presentation of our future directions and the upcoming text
classification comparisson of state-of-the-art deep learning models.

2 Hardware Benchmarks

One main concern while building the hardware setup was about the effiency of multiple GPUs per
computer. How much computational gain does an additional graphics card provide? How much is the
overhead?

Various hardware setups were benchmarked to create points of reference to answer these questions.
To allow a comparison of performance measurements beyond our own hardware, we used a set of
benchmark scripts published by TensorFlow (2018). There are published results for hardware setups
different from ours, which simplifies comparison, e.g. for further hardware purchases.

Mainly, we were interested to measure the impact of additional GPUs on the computational speed.
The performance of the underlying model was not of interest, neither the specific model’s speed or
quality.

2.1 Hardware

2.1.1 Desktop computers

For daily prototyping and code development, two identical desktop computers are available. They are
equipped each with an Intel Core i7 4.2 Ghz with 8 threads, 64 GB of RAM and 2 NVIDIA 1080ti
GPUS with 11GB RAM. Ubuntu 16.04 LTS is used as the operating system. This setup is powerful
enough to make first test runs on the experiments and run full training processes on smaller ones.

2.1.2 Renderfarm

These servers are dedicated for GPU-intense computations and are used for image processing as well
as machine- and deep learning tasks. Resource demanding computations can be outsourced from the
desktop computers to the these servers called Renderfarms. Each of the servers is configured with
two Intel Xeon E5–2697V4 2.3 Ghz with 36 threads, 396 GB RAM and 10 NVIDIA Quadro P6000
with 24GB RAM. CentOS is used as the operating system, running in a virtual machine.

2.2 Containerization

A very important aspect of our workflow is the use of containerization. Docker makes it possible
to run code in an isolated, well-defined environment. A simple way of bundling specific software
independently from the host system is very important for creating reproduceable experiments. It
also makes it very easy to run code across different machines and even operation systems. This is
especially useful in our setup of multiple smaller computers and only a few high-end servers.

So the development of the scripts, the pipeline, models and so on can occur on any computer, even
everyday laptops. Here, the goal is not to train a complete model or preprocess all data, but to

2

get the basic workflow right. This means for example using small test sets to test that the desired
functionality does work. If this hurdle is taken, docker allows to port the code without much changes
to the Renderfarm servers, where the computation-intense training on all the data can take place.

nvidia-docker is a wrapper around docker and enables the docker container to use the host system’s
NVIDIA GPUs. This is essential for our use case. It also simplifies the installation of the base system,
as only the NVIDIA GPU and CUDA drivers have to be installed. CUDA Toolkit and NVIDIA
cuDNN provide GPU-accelerated libraries in general and for deep neural networks in particular and
are already contained in nvidia-docker. Otherwise, these libraries have to be installed manually. This
would mean to register an account at the NVIDIA homepage to be able to download all libraries
and install them ignoring the operating system’s package manager. This could lead to additional
dependeny problems and from a system admin’s perspective is a nuissance in itself. Updating to
another version on one computer could break the usability of the dockerfile on another and so on. A
general overview of the nvidia-docker architecture is depicted in Figure 1.

The benchmark scripts itself are written in Python and use the TensorFlow library, more details in
the next section. Even though using containerization has some performance costs, we do run the
benchmarks with docker. As we have seen, using docker is an essential part of our workflow and
the way we run our training models. Running the benchmarks inside docker containers leads to
benchmark results that are achieved under the real usage conditions of the hardware.

Figure 1: nvidia-docker system and setup (Source: github.com/NVIDIA/nvidia-docker)

2.3 Benchmarks

The high performance benchmark scripts1 implement popular models of Convolutional Neural
Networks. These are optimized for speed and parallel use of GPUs. We were running two of the
implemented models for the benchmarks.

ResNet-50 and ResNet-152v2 are both of the ResNet family of residual networks for image classifica-
tion (He et al., 2015). They are interesting candidates for benchmarking, as there are a lot of slightly
different variations with a rather large number of layers. The ResNet-152 won the ILSVRC 2015
classification challenge, having more than 8 times than the 22 layers of the previous year’s winner,
the Inception model.

1 https://github.com/tensorflow/benchmarks/tree/master/scripts/tf_cnn_benchmarks

3

https://github.com/NVIDIA/nvidia-docker
https://github.com/tensorflow/benchmarks/tree/master/scripts/tf_cnn_benchmarks

The main difference between the two models is their depth. As already implied by their names,
ResNet-50 has 50 layers, while ResNet-152 with its 152 layers is a lot deeper. As a result it is more
computational challenging and expected to run longer on a single epoch. ResNet-50 has around
3.8× 109 FLOPs (floating point operations), ResNet-152 three times as much, 11.3× 109 FLOPs.2

Figure 2: Comparison of benchmarks and ideal linear growths

As already stated, the requirements of these models do not lie in their classification quality, but in the
possibility of parallizing the work on multiple GPUs.

Parallelization of the training process is achieved by copying the computational graph onto all GPUs.
This way, forward passes and the computation of the corresponding gradients can happen in parallel.
The results of each batch are then applied together (e.g. using gradient averaging) at a central point,
before the parameters on the GPUs are updated and the next iteration can start. This ensures that the
workload is split evenly onto all GPUs, making this method suitable to compare the influence of the
number of GPUs on the speed of the training process.

In spite of using real data, synthetic data in the same shape as it could be expected from ImageNet is
generated and used. This has the effect that there are no I/O operations from reading the data off the
hard drive that could influence the performance. If our interest had been in benchmarking the whole
pipeline including additional hardware besides the GPUs, e.g. the mainboard, memory or hard disk
or an additional preprocessing step on the data, extra benchmarks using real data would have been
required. In our test case we could do without this.

The benchmarks were executed on a virtual machine on one of the Renderfarm servers, running
CentOS 7.6.1810 as the client’s operating system. The benchmark script was executed in a Docker
container. The Docker image is based on tensorflow/tensorflow:nightly-gpu-py3, which at the time
came with TensorFlow 1.13, Python 3.5 and built-in support for NVIDIA CUDA.3 For more details
on why we use docker, see Section 2.2.

2 Interestingly, this number is way lower than for other models with fewer layers. For example, VGGNet-19 has
just 19 layers, but 19.6× 109 FLOPS.

3 https://hub.docker.com/r/tensorflow/tensorflow

4

https://hub.docker.com/r/tensorflow/tensorflow

2.4 Methodology

To provide comparable results, the batch size per GPU was set to a fixed value of 64. All other
parameters of the script were left on their default values. The computation used synthetic ImageNet
data for the reasons stated above.

For each of the possible number of GPUs, 1 up to 10, benchmarks were run with both of the ResNet
models. Each benchmark run started from scratch. After creating the synthetic data and preparing
the model, 10 warm-up batches were run, their results did not get included in the final results. For
each of the next 100 batches, the mean of the number of processed images per second was calculated.
The end result consists of the mean of these interim results and is listed in the column Images/Sec in
Table 1.

2.5 Performance Comparison

There are published benchmarks for other hardware configurations on TensorFlow (2018). This
allows a basic comparison between different GPU setups. For example, in Figure 3 the benchmark
results of two other setups, published on TensorFlow (2018), are presented. They were benchmarked
using the same parameters as described above, also using synthetic data on the ResNet-50 model.

The first setup consists of up to 8 NVIDIA Tesla K-80, which is a fairly popular graphics card used in
cloud computing setups for deep and machine learning.4 The NVIDIA DGX-1 is the first version of a
server specialized on GPU power. It is especially marketed for machine and deep learning. Here, it
contains up to 8 NVIDIA Tesla P100 graphic cards.

Figure 3: Benchmark result on ResNet-50 with different GPU models

As can be expected, it is obvious that our setup is a lot better than the Tesla K-80. While the NVIDIA
DGX-1 is on par with our setup when using 1 or 2 GPUs, it gains a head start with 4 and 8 GPUs.
This is probably due to their fine tuning of all the hardware components as well as no overhead due
to the renunciation of virtualization and containerization.

2.6 Results

The results are visualized in Figure 2. In addition to the measurement results, the ideal linear
performance growth is plotted as a dotted line for each model. It’s obvious that there is some
overhead for each additional GPU. Even though the gain is not linear, the overall impression is quite
satisfactory and more GPUs can clearly provide the means for faster training. Of course that requires
the model architecture to support parallel computation.

4 At least in 2017 when the benchmarks were published.

5

ResNet-50 ResNet-152v2

of GPUs Images/Sec Speedup Overhead Images/Sec Speedup Overhead

1 220.10 1.00 0.00 95.82 1.00 0.00
2 426.24 1.94 0.03 183.57 1.92 0.04
3 610.40 2.77 0.08 267.25 2.79 0.07
4 808.93 3.68 0.08 342.79 3.58 0.11
5 956.59 4.35 0.13 418.56 4.37 0.13
6 1133.95 5.15 0.14 493.64 5.15 0.14
7 1330.60 6.05 0.14 555.75 5.80 0.17
8 1449.08 6.58 0.18 606.17 6.33 0.21
9 1613.13 7.33 0.19 684.82 7.15 0.21
10 1754.39 7.97 0.20 705.72 7.37 0.26

Table 1: Benchmark results

Deeper insight can be gained from the actual results which are listed in Table 1. In the column
Speedup, the speedup factor in regard to a single GPU is listed. Overhead lists the factor by which
the result for this number of GPUs is slower than the ideal speed. The ideal speed is calculated
by extrapolating the result of the single GPU benchmark to the corresponding number of GPUs
of the respective benchmark without including any overhead cost. Speedup and overhead imply a
correlation between the performance gain per GPU and the underlying model. The overhead for the
model with fewer layers and less FLOPs, ResNet-50, is smaller than for the larger ResNet-152 model.
For example, with 10 GPUs and running the ResNet-50, the setup is just about 8 times as fast as a
single GPU, while on the more complex ResNet-152, the speedup factor is just around 7.4. Another
observation is that although ResNet-152 has three times the FLOPs than ResNet-50, ResNet-50 is not
three times faster. That suggests, that the GPUs where not fully occupied with calculations for the
smaller model.

From the computational point of view, the absolute gain that can be achieved with an additional GPUs
is still a relevant factor, despite the overhead that comes with it. Even though we are confident that
the overhead has its source in the additional GPUs itself, it can not be ruled out that it’s a result of
other restrictions, e.g. in the distribution of the data to the GPUs, allocated resources from the virtual
machine or the docker infrastructure. We conclude that in practice, the number of GPUs will not
be the bottleneck of a training process and to improve performance other parts of the hardware or
software are more promising starting points.

3 dpa Dataset

In the following section we discuss the dataset provided by dpa and explore some of the metadata
in depth. The goal is to provide insights into the challenges given this real world dataset as well
as the chances that might arise. The original documents are based on the NewsML-G2 format for
exchanging text, images, video, audio news and event or sports data.5 It defines certain meta attributes
for anything related to news, such as category or genre types. An example of a dpa document can be
seen in Table 2.

As of this writing the schema has changed to some extent and we received a second corpus containing
roughly 1 000 000 documents called weblines. These new documents are not part of this report.

The types are defined as string, list of string, datetime, integer and categorials. The categorials are
strings with the property of having a fixed number of symbols. Those are especially interesting for
text classification tasks as they represent groups of documents with the same label. For this work we
are especially interested in finding discrepancies in the data, e.g. null/empty/nan values. The guid
(Globally Unique Identifier) is a natural identifier for all documents. The most promising fields for a

5 https://iptc.org/standards/newsml-g2/

6

https://iptc.org/standards/newsml-g2/

No. Field Type Example

1 guid str urn:newsml:dpa.com:20090101:170406-99-973029
2 keyword list Gesellschaft, Parteien, Justiz, Wahlen
3 headline str plaintext
4 description str plaintext
5 contentplain str plaintext
6 contenthtml str html text
7 slugline str CDU/SPD/Other
8 genre str dpatextgenre:1
9 subject category dpasubject:377
10 medtop category medtop:20000018
11 category category dpacat:sp
12 geo_area_1 str DEU
13 geo_area_2 str empty
14 ednotes list html text
15 sent datetime 2017-06-22 14:08:29
16 version str 46
17 language str de
18 creator list [’dpa-ad:hellmich’]
19 contributor list [’dpa-ad:heimann_a’, ’dpa-ad:siegloff’]
20 newspublisher list [’dpasrv:bay’, ’dpasrv:bid’, ’dpasrv:bdt’]
21 urgency int 1
22 location list [’Nürnberg’]

Table 2: dpa fields with names, types and examples.

rough text classification purposes are the category and the subject field. The bar plots in Figure 4
and 5 display their respective absolute counts.

Figure 4: Absolute count of all categories Figure 5: Absolute count of the Top 8 subjects

The fields textitsubject, medtop and category are categorial values represented by qcodes. Qcodes can
be resolved with a mapping to their German translations and vice versa. Most prominent categories
are politics, sports and mixed. Politics is primarily focussed on German relations to other countries
and inner politics. As usual the mixed category ranges over all topics that could not be put into any
other class. Sports is primarily focussed on soccer. The main topic of economics is stock exchange
information, mostly related to the DAX, the main German stock index. Editorial services are dpa
internal documents and broadcasts, most of those can be probably dismissed. Finally, culture deals
with everything related to theater, music and events. Most article narratives evolve around Germany.

The subject field on the other hand is a bit more fine granular with 129 topics in total. Yet still, most
of those subjects can be easily mapped to one of the categories mentioned before. In Figure 8 we

7

can see a word cloud of the medtop category which strongly aligns with the categories. Subjects like
soccer or stock exchange are next to their respective broader categories.

Figure 6: Absolute count of the Top 8 medtops Figure 7: Absolute count of the Top 8 text genres

The text genres in Figure 7 are primarily concerned with summarizations, reports and tables. These
information can be especially useful when considering what the correct documents for a certain task
are. For summarizations we like texts in the category summarization, news on the stock exchange
come usually as table data. Breaking down the data a bit further in Table 3, we get an idea of
respective counts and fractional null percentages.

No. Field Unique Not Nulls Nulls Perc. not null

1 contributor 35721 213965 760 99.65%
2 creator 827 214391 334 99.84%
3 newspublisher 2449 214725 0 100.00%
4 category 6 214725 0 100.00%
5 genre 30 214725 0 100.00%
6 medtop 230 161721 53004 75.32%
7 subject 129 116611 98114 54.31%
8 urgency 4 214725 0 100.00%
9 version 146 214725 0 100.00%
10 location 8272 140586 74139 65.47%
11 geo_area_1 215 193126 21599 89.94%
13 contenthtml 214491 214725 0 100.00%
14 contentplain 186387 214504 221 99.90%
15 slugline 59247 214725 0 100.00%
16 headline 165107 214725 0 100.00%
17 description 35697 39635 175090 18.46%
18 keyword 15555 146864 67861 68.40%

Table 3: Identified dpa fields with their respective statistics.

The guid, ednotes, sent, language and geo_area_2 fields are dropped due to low variation, missing
values or simply because they are non-informative. Low unique values with a low null count indicate
categorial variables that can be used for classification tasks. The description has the highest null value
count, leaving only 18.46% of useful data. This is unfortunate, as this would come very handy for
typical sequence-to-sequence modelling tasks like question-answering or document summarization.
Other meta information like medtop, subject, location and keyword contain a lot of null values. This
is also unfortunate since they describe very important information that could be used in specific tasks.
If we only subsample fields with 100% of the data intact we would be working on roughly 35 697
documents or in other words, the not-null value count of the description.

8

3.1 Metadata and Content Fields

At the center of the data are content fields. Apart from information about authors, locations and
taxonomies or tags, relevant fields include: medtop, a hierarchically sorted tagging system with
a vocabular, a headline that explain briefly what the content is about, a list of keywords which
can be loosely used to describe the article, the slugline, mostly repetitions of keywords, locations
and named entities and a description that typically goes more into details than the headline. Since
large documents are hard to model with language modelling techniques, those fields will be helpful
in pointing to the relevant passages of the text. The medtop hierarchy broadly encodes tags into
taxonomies, starting from very broad categories like politics going down to the presidential elections
of 2016 or the G20 protests 2017 in Hamburg. Medtop is primarily concerned with the stock exchange,
politics and soccer, and overall seems aligned with the categories. Since politics is a very broad topic,
criminality, party politics, government and so on can be grouped to it.

Figure 8: Wordcloud of most frequent medtop categories

In our dataset we could observe 229 unique categories with 75.32% of values intact. Since it is
hard to display 229 categories for medtop in a bar chart we generated a wordcloud using Python in
Figure 8. Higher fractional counts of a category are represented by larger words. As can be expected
most economical questions are concerned with the stock exchange. We will see later that a lot of
named entities like Angela Merkel are currently surpressed here, since topical words are much higher
in frequency. The preprocessing involved removing frequent German stopwords.

As can be seen in Figure 9 the headline essentially represents the same notions as medtop. However
it contains a lot more details about politics, culture and economics and named entities and locations
are much more frequent. Sports fractionally stays the same, while shifting from the granularity of
soccer to just Sports.

The slugline and keywords are very similar to the headline and medtop categories although they have
some slight variations. To illustrate how the different fields coerce we employed topic modelling with
Latent Semantic Analysis (LSA) by Deerwester et al. (1990) and Latent Dirichlet Allocation (LDA)
by Blei et al. (2003). LSA is a dimension reduction technique separating a document term matrix
into three distinct matrices, factoring out important topics by their most important singular values.
On the other hand LDA is a topic modelling technique that maximizes a typical language model via
variational inference. For all experiments we used n-topics = 100 and concatenated different fields
into one. The result of LDA can be seen in Table 4. Please notice that we concatenated the category
to each document, so the algorithm is not fully unsupervised.

9

Figure 9: Wordcloud of most frequent words in headline

The algorithm could successfully group politics (globally in topic 1 and locally in topic 2), economics
in topic 3, sports in 4 and 5. Since LDA does not provide any ranking among the topics we display
the first 10 of 100. Each word represents a probability belonging to a certain topic and therefore
it is possible that each word is part of many different topics. LSA topic modelling on the other
hand is much more simple. Each topic is ranked by their best singular eigenvalue. In Table 5, topic
1 represents the most prominent topic. We can easily see that sports is the most prominent topic,
followed by politics and economics. Topic 6 represents culture. Since eigenvalues can be ranked,
the topic id is important, since each topic explains the total variance of original data to a higher
pecentage.

topic id word 1 word 2 word 3 word 4 word 5

1 bundesregierung politik merkel chile international
2 csu politik parteien bayern cdu
3 aktienkurse börsen börse wirtschaft mdax
4 fußball bundesliga münchen sport bayern
5 nationalmannschaft sport radsport em wm
6 slalom sport wiederwahl podest klar
7 gesellschaft politik soziales kommunen familie
8 verteidigung bundeswehr pferdesport springen politik
9 groko regierung politik innenpolitik tiere
10 fußball leipzig bundesliga sport sachsen

Table 4: LDA topics for keyword, headline, slugline, medtop and category fields.

Dealing with sports, again, means that we are heavily overfitting on soccer. A model dealing with
sports like that will have difficulty dealing with news about other sports. This may affect for example
news from counties where other sports like american football, ice hockey or gymnastics are popular.
Economics heavily overfit on stock exchange news instead of dealing with macroeconomics. Politics
overfits to partisan politics. Since we fed labels via the category and medtop fields into the algorithms,
both were able to assign proper clusters around them. The topic models would look much different if
there was no direct label associated with each text.

10

topic id word 1 word 2 word 3 word 4 word 5

1 sport fußball bundesliga münchen politik
2 politik cdu spd parteien csu
3 wirtschaft aktienkurse börse börsen investments
4 cdu csu spd politik parteien
5 sport fußball bundesliga tennis wm
6 kultur film leute literatur musik
7 wirtschaft investments investition börse börsen
8 aktienkurse investments investition kurse investmentfonds
9 btw wahlen wahl bundestag regierung
10 bundesliga fußball wm nationalmannschaft confederations cup

Table 5: LSA topics for keyword, headline, slugline and category fields.

Another way of looking at news articles is by inspecting their named entities. We tested the Named
Entity Recognizer (NER) of SpaCy (Honnibal and Montani, 2017), which is trained with an average
perceptron model on the German Wikipedia. The German NER has 4 classes: PER for persons, LOC
for location, MISC for miscellaneous and ORG for organizations. In Table 6 we can see the result on
running on the meta text fields with the highest named entity count for each class. In PER, major
political players such as Trump or Merkel are involved, in LOC mostly countries, in MISC stock
exchange news and ORG political parties.

PER LOC MISC ORG

Entity Count Entitiy Count Entity Count Entity Count

1 Trump 1122 Berlin 1466 MDAX 721 SPD 1836
2 Merkel 947 USA 1087 TecDAX 702 EU 1011
3 Schulz 798 Türkei 1076 DAX 694 POLITIK 608
4 Gabriel 583 Russland 1051 Frankfurter 521 AfD 565
5 Seehofer 358 China 828 SDAX 467 CDU 549

Table 6: Top 5 named entities for each of the 4 entity categories.

Since we can only see the Top 5 entities for each label, we analysed the Top 50 of each class to get a
feeling about the true negatives and intra classification rate. In the following are some examples from
the corresponding Top 50 lists of the different entities, which were clearly associated with the wrong
label. Their absolute count is noted in the parentheses.

PER august (338), 07 (182), eurokurs (103), dax (94)

LOC trump (513), live-sport (411), interbanken-kurse (229), märkische oderzeitung (227)

MISC karlsruhe (415), facebook (255), sport (103), google (102)

ORG nordkorea (224), halle (158), ezb-referenzkurs (231), mainz (246)

Some words are merely misclassified as named entities at such as 07 or sport which are obviously
not correct. More grave is the intra classification, where named entities are correctly identified as
entities but incorrectly labeled: Nordkorea is not an organization, Trump is not a location, Eurokurs
is not a person and Facebook should definitely be an organization. Everything put to MISC is a valid
label, however there are much more suitable labels. Since we searched for such samples in the Top
50 it would be interesting to see how the named entity recognition fares with much lower occurence
counts. Since a lot of different applications rely on named entity recognition as a preprocessing step,
it is expected to drive down accuracy in following tasks.

11

3.2 Content

The actual content is probably the most useful and yet unstructured part of the document. Headlines
and descriptions are good for quick prototyping and for pointing into the right direction if the content
is too large. However natural language processing systems should actually work on language. All
language parsing tasks are done with SpaCy. The total corpus as of this writing contains 64 472 262
million tokens. There are 451 564 unique words, which is 0.7% of all words. The average word count
per document is 300.5 with a minimum value of 7 and a maximum value of 3853.

In the following we have a selection of different topics per text field per category which can be any of
Editorial Service (see Table 7), Politics (see Table 8), Sports (see Table 9), Economics (see Table 10),
Art (see Table 11) and Mixed (see Table 12). The method used is LSA like before. None of the topics
are handpicked, these are raw results.

topic id word 1 word 2 word 3 word 4 word 5 word 6

1 meldung berlin termine berichterstattung finden themen
2 meldung berlin themen beitrag liegt termine
3 berlin meldung geplant rede spd themen
4 berichtet versendet berlin korritalk oton ansprechpartner
5 spieltag gruppe runde fußball vorrunde einzel

Table 7: LSA topics for category Editorial Service (dpacat:rs)

The Editorial Service news items are typically internal messages, updates or breaking news. This is
enforced by words like Meldung or Themen. Topics 1 to 4 seem like duplicates with slight changes
to each other. They also contain a lot of daily summarizations for the other categories. The fifth topic
however deals with news about soccer.

topic id word 1 word 2 word 3 word 4 word 5 word 6

1 berlin meldung spd cdu politik merkel
2 trump berlin usa präsident spd donald
3 meldung spd prozent union merkel cdu
4 trump berlin prozent meldung usa politik
5 berlin spd trump türkei schulz euro

Table 8: LSA topics for category Politics (dpacat:pl)

The Politics news items are messages concerning German politics (topic 1), the German-US relations
(topic 2) or the European Union, Germany and Turkey (topic 5). Some topics are simply duplicates
e.g. topic 3 and 4.

topic id word 1 word 2 word 3 word 4 word 5 word 6

1 spieltag fc meldung fußball gruppe bundesliga
2 meldung fc geplant sv fußball sc
3 meldung spieltag fc gruppe hauptrunde geplant
4 eurosport fc sport trainer sky spiel
5 gruppe eurosport fußball bundesliga sky sport

Table 9: LSA topics for category Sports (dpacat:sp)

The Sports news items all concern soccer. As soccer is the German national sport it’s leading
throughout the Top 5 topics. The different topics are pretty much duplicates of each other and not
discernable.

12

topic id word 1 word 2 word 3 word 4 word 5 word 6

1 prozent euro meldung berlin unternehmen punkte
2 meldung prozent berlin wirtschaft fotoarchiv euro
3 de veränderung stand prozent nl dividende
4 de werte nl älter dividende wert
5 euro prozent milliarden millionen kg punkte

Table 10: LSA topics for category Economics (dpacat:wi)

The Economics news items are messages concerning the Euro and high economical values. For some
reason the German stock exchange is left unnoticed. They probably occur in other topics.

topic id word 1 word 2 word 3 word 4 word 5 word 6

1 meldung kultur berlin termine geburtstag ausstellung
2 stichwörter korr jahreschronik listicle jahres film
3 film stichwörter euro leben kultur berlin
4 euro film berlin hamburg millionen platz
5 ausstellung film kunst museum künstler documenta

Table 11: LSA topics for category Art (dpacat:ku)

The Art news items are messages about culture, films, exhibitions or concerts.

topic id word 1 word 2 word 3 word 4 word 5 word 6

1 meldung berlin termine panorama prozess fotoarchiv
2 prozent millionen zuschauer rtl meldung marktanteil
3 foto archiv jährige polizei prozent termine
4 berlin foto prozess panorama archiv polizei
5 polizei foto meldung berlin archiv panorama

Table 12: LSA topics for category Mixed (dpacat:vm)

The Mixed messages have nothing special other than police reports, statistics or dates. Most of the
topics should be easily separable based on their content. However it is questionable whether we
need to actually work with the Editorial Service and Mixed categories at all. They do not distinguish
themselves enough in any kind of way. Their informative value seems rather low for natural language
tasks and the target audience. This is obviously different within a news curator, that relies on the
Editorial Services.

4 Knowledge Discovery in Databases

The knowledge discovery process in databases (KDD) is the major methodology. In machine learning
applications, especially with natural language, there is an immense need for preprocessing and
filtering. Since most of the dpa data has a variety of textual fields and metadata, it is vital to
persist them into a database for structured retrieval. As we would like to perform exploration and
classification on the data we need a pipeline that transforms the raw representations into the relevant
feature space.

Long raw texts need a lot of power and are often constrained by RAM and CPU. The KDD is a
method of efficiently parsing multiple raw inputs into clean and efficient representations that can
be easily queried and processed in experiments. As depicted in Figure 10, we decided to model the
dependencies with a preprocessing scheme derived from Extract-Transform-Load (ETL) pipelines.

13

Figure 10: Extract-Transform-Load Graph

The graph has two major parts, namely the infrastructure and the data pipeline. In the following will
give an extensive overview of our system and how the various components relate to each other.

4.1 Infrastructure

The infrastructure has three major components, as can be seen in Figure 11, dealing with scraping
and retrieving, offering services for persistence and computation via Kubernetes and hardware like
GPU clusters or servers as well as storage.

The first module is for scraping and retrieving raw XML in the NewsML-G2 format on S3 as well
as parsing JSON from S3, with different data mappings. The mappings can be seen in Section 3
before. The second component is a Kubernetes cluster with deployed services. Vital to this pipeline
are HDFS, MongoDB and Hadoop/Spark for file storage and fast RAM access to the data. We store
all the parsed data of step 1 into the MongoDB for easy data retrieval and a raw document backup.
HDFS is our distributed file server where we will store different file formats ranging from CSV, JSON,
Parquet, npy or the h5py format. The idea is to make it accessible in all steps during the pipeline,
enabling the caching of intermediate results and computing in parallel.

Figure 11: KDD infrastructure

The scheduler will be the component to schedule jobs of the pipeline that in turn store results in our
HDFS. It should ideally have the capabilities to model the data flow as a directed acyclic graph. For
this to work we will probably use Apache Airflow that makes it easy to model preprocessing as a
DAG. Airflow is a platform to programmatically author, schedule and monitor workflows. Workflows
are essentially DAGs that can be defined in Python and run via command line and web interfaces
using a variety of tools like Spark, MongoDB or HDFS.

4.1.1 Parsing and MongoDB

MongoDB is our primary document storage and easy to setup. Its flexible document data model
makes it easy to import, export and update data. It is a great for structured document querying and

14

pagination. This is ideal for our setup, since the external documents come in a variety of formats and
might come from a variety of external sources. Hence it is necessary to provide a modular way of
extending our module to each format and data source.

Parsing the NewsML-XML format is necessary to obtain a representation we can work with. Since
JSON is a widely adopted format and MongoDB uses the BSON format, we first parse the XML
documents to JSON, using a Golang module. The JSON encoded content is then mapped with a
mapping function to a flattened and sanitized document and fed into a MongoDB for easy data
retrieval. The parsing tool currently has a simple interface. For each data source there is, it creates a
data mapper of the following form

retrieve_files :: string → [file_obj]
parse_format :: file_obj → obj

map_object :: [obj]→ [mapped_obj]
store :: mongo_db_con→ mapped_obj → bool

After supplying this interface, for instance for XML, we need to implement a file retrieval method
that can read the raw data from the external source. This can be S3, a local file system or the HDFS.
Then we need to parse the format formally, e.g. XML/JSON/Parquet. When the files can be properly
parsed we need to traverse through the document with a mapping function. This sanitizes field
names and flattens the hierarchy before providing a handler for storing into the MongoDB. In this
step, everything is still considered as important, so no filtering takes place. The parse_format and
map_object methods must raise errors early and stop the entire process for review. The system can be
enhanced by putting invalid documents on a review queue.

In general we need to find a good error threshold. It has the task to detect when too many errors mean
that something is generally broken, while at the same time should not stop the entire system for small
hiccups. Currently we just stop the entire import, which can be necessary because it is not certain
that the error did not propagate into the other documents as well. It would also be nice to schedule
these methods automatically. An example for automation could be to check every n hours if there is a
change in the external source and trigger a job for scraping the documents when necessary. At the
moment we trigger the jobs ourselves.

4.1.2 Hadoop Distributed File System

Since MongoDB is not sufficient to do fast lookups over the network and scrolling over all data fields
does not scale well, we use the Hadoop Distributed File System (HDFS) for raw file storage. Since
we will at some point introduce Spark as well, HDFS fits best. According to the Apache site, HDFS
is "highly fault-tolerant and designed to be deployed on low-cost hardware while at the same time
providing high throughput access to application data especially suitable for large data sets" (Hadoop,
2018). As can be seen in Figure 12, HDFS consists of two basic components, the namenode and the
datanode.

Figure 12: Hadoop Distributed File System

15

Namenodes store meta data, e.g. where files are stored, how they are stored or their file size. It
processes metadata operations such as list or stat. The datanodes actually store data as fixed length
blocks on different datanodes with replications. Datanodes and namenodes exchange messages about
storage blocks (block ops). When retrieving a stored file, the client lookups the location of the file in
the namenode and the namenode sends back a list of datanodes that have the relevant blocks. Clients
then proceed to gather blocks from all datanodes directly and combine them to receive the original
file. This procedure is the same with read and write actions. Since the data is based on the POSIX
system, it can store any kind of file format that runs on it. Files are best for machine learning models,
as in theory the CPU processing power becomes the bottleneck. Without any network overhead with
suitable caching this will be the direct access for all intermediate preprocessing results and model
results (for example stored in Apache Parquet, CSV, NPY, HDF5).

4.1.3 Pandas, Apache Arrow and Apache Parquet

Pandas is the major tool for storing data in-memory with fast serialization capabilities via Apache
Arrow to several different file formats like TSV, Apache Parquet and JSON. Pandas provides high-
performance, easy-to-use data structures and data analysis tools for the Python programming language.
Its major data structure is the dataframe. Dataframes store data columnwise and as a result the access
to columns is extremely cheap, but more expensive for rows. We use it primarily for the metadata
fields discussed in the previous section.

Apache Arrow on the other hand is a project that tries to standardize columnar and hierarchical data
storage for in-memory data. Its major selling point is the table data structure that memory maps large
data sets to disk and is able to convert it to multiple different formats such as Pandas dataframes.

Apache Parquet is the columnar and typed equivalent to a CSV file. It supports data types such
as String, Integer, Float, Time, Boolean or List and takes away with issues like CSV escapings
and delimiters. It is also incredibly fast in conjunction with Apache Arrow and therefore Pandas.
Another promising but not yet used library is Dask, a library with parallel computing interfaces to
major libraries like Pandas or Numpy. Since multiprocessing is an issue in Python due to the Global
Interpreter Lock (GIL), Dask makes it possible to scale Pandas dataframe or Numpy array operations
to multiple cores and even clusters. Hadoop/Spark are on the table for replacement, but up until now,
Pandas was sufficient for the tasks.

4.2 Data Pipeline

The data pipeline is the logical core. As depicted in Figure 13, it is divided into three steps: prepro-
cessing, embedding and modelling. Each step is governed by different parameters and dependent
computations. The first step is to preprocess unstructured text to structured representations with
tokenization, part-of-speech tagging and named entity recognition.

Figure 13: ETL Graph pipeline

Each step maps the computations to a corresponding file to HDFS. HDFS therefore corresponds to a
typical cache, persisting computations. Before preprocessing the data, there is however a pre-step
that maps each document in the MongoDB to a flattened, easy-to-query collection for later retrieval.
It is important to keep the relations between the metadata and field names intact with the guid. Since
the dpa dataset contains a lot of bytes or words per document, we have to move the tokenization, part
of speech (POS) tagging and named entity extraction into distinct long running jobs.

16

The second major step is to embed the tokens into a latent domain with language models like GloVe
(Pennington et al., 2014), Word2Vec (Mikolov et al., 2013), FastText (Bojanowski et al., 2016; Joulin
et al., 2016), CoVe (McCann et al., 2017), ULMFiT (Howard and Ruder, 2018) or the Transformer
(Radford, 2018). Since the pipeline will at some point also support images this step is enhanced to
transform images into their spatial domain.

The third and last step is the actual model that optimizes some loss function with a chain of differ-
entiable functions, calculating the error between gradients and loss. This comes in many different
flavors like a Convolutional Neural Networks (CNN), Long-short-term memory networks (LSTM) or
attentional encoder/decoders. While providing a useful model that approximates the given task it is
important to evaluate the results against some distance function given some gold standard. We act on
the evaluation to improve the overall pipeline, since every step from preprocessing to modelling will
directly contribute to the score. On a side note: it should be possible to serve the model via a REST
API that can consume a specific query and give an output based on the learned weights.

4.3 Directed Acyclic Graphs (DAG)

A DAG is a datastructure with unidirectional edges between nodes without any cycles. This very
basic graph allows us to make use of simple and advanced parallelization schemes. A simple data
pipeline could be translated as the DAG presented in Figure 14. Nodes where incoming edges are
dashed can be safely parallelized, while straight lines symbolize synchronous operations that depend
on running all incoming edge operations.

Figure 14: Directed acyclic graph (DAG) with a sample pipeline

Each step begins and ends with loading data from HDFS and storing data to HDFS with various
file formats. Each node therefore needs to know what kind of data structures the beforegoing nodes
persisted to ingest them. This is a powerful abstraction, especially when working on multiple
experiments. Frameworks such as Airflow were made for this particular problem. Define DAGs
through various operators that represent nodes and chain them together, providing a global service
layer such that each node has access to HDFS and can listen to changes.

The idea behind DAGs is not new, but with the arising complexity of tooling around data processing
for instance through the Apache Stack, projects like Airflow represent the single point of truth and
configuration for running dependent jobs in parallel on a multitude of different services. We have
not yet decided whether to use Airflow or simpler python frameworks like Python Bonobo (an ETL
framework). The beauty of it is that everything is optimized by the respective schedulers that arange
the DAG and assigns resources such that it runs fastest in distributed environments.

4.3.1 Preprocess

Natural language is unstructured for the computer. Thusly as said before we need to tokenize and
pos tag the text. Preprocessing however is a lot more and concerns questions like do we want to
incorporate extra knowledge with external knowledge bases? If yes, to what extend? Do we need to
represent texts hierarchically e.g. in paragraphs or sentences? Do we need special pos tags like nouns
or adjectives dinstinctly? In Figure 15 we can see what different syntactical layers must be captured
as well as the governing parameters that restrict them for later use in the models. We use SpaCy for
any language parsing that goes beyond simple string spliting.

17

Figure 15: Text hierarchy and parameters

The further down we go the more expensive will the model be as we need to have mechanisms of
dealing with different kinds of hierarchies, which often means to add additional layers. The figure
only captures the basic levels of encoding but in reality we can subdivide words and characters even
more with Byte-pair encodings or based on pos tag groups. The parameters are especially important.
Since text representations suffer gravely from the curse of dimensionality, we need parameters that
govern how much and what parts of a text will be consumed. That means we have to decide early
how our model will consume the input and of what shape that input will be and if it is possible at all
to compute the model with the given parameters.

Normally we will need a well rounded dependency parser and pos tagger that chunks a document
into lists of sentences and sentences into list of words. This is vital since every additional dimension
could mean that our model is able to learn more aspects while at the same time introducing more bias.
Further, most of these representations have different morphological preprocessing steps manipulating
words and leveraging sentence structures. Some more morphological operations to consider are

• stemming
• lemmatization
• spelling correction
• stopword removal
• only keep noun phrases/verbal phrases etc.
• weight in named entities

Typically these methods generalize words (lemmatization/stemming), drop insignificant words (stop-
word removal) and parse noun phrases and named entities to attend to the relevant words of a text.
Since we also embed the texts further into embeddings, the original morphological feature space
will vanish inplace for latent vectors. While efficient, a single run on a subset of documents takes
up several hours of processing time, so we need to carefully fine tune or needs and persist results
accordingly. With the above defined DAG, this should be no problem.

4.3.2 Embed

Modern day models do not operate on a symbolic level anymore. Each of the above symbolic
representations is transformed into a multidimensional tensor space with either some initial probability
distribution which is later trained or instantiated with a language model (LM) from another domain
(e.g. trained on Wikipedia). These LM are commonly frozen and not updated during training. Thusly
we gain a third dimension of preprocessing, the embeddings. These can be categorized on what part
of language they are based on. This can start on a very small scale on single characters and can go up
to whole documents. Usually, a distinction is made in the following four variants:

• character based (Bojanowski et al., 2016; Joulin et al., 2016)
• word based (Mikolov et al., 2013; Pennington et al., 2014)

18

• phrase or document based (Le and Mikolov, 2014)

• hierarchical LMs (Radford, 2018; Howard and Ruder, 2018; McCann et al., 2017)

We currently only use character based embeddings based on n-grams and Word2Vec in our experi-
ments, but will add hierarchical LMs as well. The reason for primarily using the FastText vectors is
that they are easily accessible on their website.6 FastText is trained on CommonCrawl and Wikipedia
and the learned weights are provided in all available languages. We plan to add several language
models in German once the infrastructure is ready to compute them. Since the objective of language
models is rather expensive and our corpus is growing this step outpaces our current capacities until
the infrastructure is fully functional.

4.3.3 Model and Evaluate

The last component is running a model on GPUs. We will see later how to apply this on a real
world classification task. Tensorflow and Keras are the major libraries to create highly scalable deep
learning architectures that can make heavy use of the GPUs. Tensorflow can create a computation
graph much like the DAGs mentioned before. However since neural networks are just differentiable
functions, every step needs a forward and backward computation. The DAG is therefore two folded,
first forward propagate and calculate the respective chained functions. Second, the error of the loss
function against the labels, is propagated back through the graph updating the respective parameters
with their gradients. Tensorflow essentially let us build a DAG through differentiable programming
techniques where common functions such as ReLu or the sigmoid have forward and backward
implementations. It has three interesting properties: it scales with additional GPUs and is highly
parallelized, it automatically differentiates functions into computational graphs and it is heavily
optimized to work with efficient numerical methods.

Keras is a high-level framework and can run on top of Tensorflow (it also supports other frameworks
like Microsoft’s CNTK or Theano). It abstracts away some of the tedious steps to create the respective
DAGs. Tensorflow can be time consuming to write and has a very fickle API, while it can take several
hundred lines of code to declare your neural network, Keras can get away with much shorter abstract
blocks. It is officially vendored into the Tensorflow distribution. A common way of prototyping is
to start coding in Keras and use the lower-level Tensorflow for the details if neccessary. As both
can be interchangeably used in the same network it brings the right balance between abstraction and
configurability.

Every model comes with a scoring or loss function, for instance categorial cross entropy. The
loss function can be seen as a function to measure progress, the basic gist being that a lower loss
corresponds to a better algorithm. There are several metrics to keep in mind when training neural
networks, like the validation/training accuracy and loss. We will see later which ones are useful to
consider. The evaluation is crucial since we need to improve the models based on it. It is best practice
to test your model against a standard academic dataset to make sure no implementation detail is
missing. Every software has bugs and higher complexity likely results in more bugs. Neural networks
are increasingly difficult to write and abstract since the layers get more complex. This increasing
complexity comes with the price of uncertainty and untestable code fragments.

5 Outlook and Baseline

In the previous sections we have shown benchmark results of the used hardware, presented the dpa
dataset in detail and have shown how to create a powerful preprocessing pipeline. Instead of just
giving a peek on open questions and research ideas we would like to introduce a very simple baseline
for text classification as an example what can be done with the data. In the future we will explore
much more complex and powerful deep learning models with the downside of having very high
memory and runtime requirements. The goal of this section is not to compare different methods but
using one battle proven method.

6 https://fasttext.cc/docs/en/crawl-vectors.html

19

https://fasttext.cc/docs/en/crawl-vectors.html

5.1 Baseline Text Classification

The multinomial Naive Bayes classifier is a very simple and powerful classifier. For an extensive
overview, see Eyheramendy et al. (2003). Whenever starting with a classification task the Naive
Bayes is a strong baseline yielding surprisingly superb results for its low runtime requirements. It
boils down to the following two equations.

P (d | c) = P (c)

|d|∏
k=1

P (tk | c) (1)

argmax
c∈C

[log P̂ (c) +

|d|∑
k=1

log P̂ (tk | c)] (2)

Equation 1 can be read as the probability that a document d is in class c is equal to the product of
all conditional probabilities that each word tk of d cooccurs with class c. Since we are dealing with
Bayes, the prior probability P (c) is the probability that any document without evidence is in class c.
This objective is then estimated with maximum a posteriori (MAP), see Equation 2.

Figure 16: Multinomial Naive Bayes Confusion with dpacat:rs

Since floating point errors of the product of term probabilities of a document can skew the result
siginificantly, we instead maximize the sum of log probabilities. That is we select the highest
conditional probability of a document d being part of c. We use the sklearn implementation with a
few additional optimizations and features. The sklearn implementation uses a laplacian smoothing
of α = 1.0 that reduces the zero counts to very small values. However since we do not use simple
counts in the probability estimation but rather a term-frequency inverse-document-frequency (tf-idf)
cooccurence matrix we set the term to α = 1e−10.

In general the preprocessing we use is simple. We keep the raw text as is, lowercase it and remove
special characters with whitespace tokenization. We employ tf-idf to embed words with respect
to their relevance and contribution to the corpus and document. We cut off the most frequent and
least frequent words, as well as dropping stop words with a static list. We do not employ n-grams
since they did not boost the performance. Before presenting the results let us quickly review the dpa
categories in Figure 13. In the following we will present two experiments, one with all 6 classes and
one where dpacat:rs is removed, keeping 5 classes.

20

Name Field Name Abs. Count Percentage

Culture dpacat:ku 11985 5.52
Politics dpacat:pl 67410 31.05
Editorial Service dpacat:rs 29067 13.39
Sports dpacat:sp 37740 17.38
Mixed dpacat:vm 40245 18.54
Economics dpacat:wi 30648 14.12

Total 217095 100.00

Table 13: Overview over categories for classification

In the first experiment, we keep all 6 classes resulting in a 83.0% accuracy. In Figure 16 we can
see that dpacat:rs has a relative high account of misclassifications. This concerns all categories, but
especially dpacat:vm. This leads to the conclusion that it is hard to seperate dpacat:rs from the other
categories.

In the second experiment, we drop dpacat:rs and only keep the remaining 5 categories. This results
in a 93.2% accuracy. In Figure 17 we can see that it is now dpacat:vm that’s misclassified the most
and with almost all categories. But leaving out the error of dpacat:rs, the performance improved by
almost 10%.

Figure 17: Multinomial Naive Bayes Confusion without dpacat:rs

For a real world dataset this is actually high, given that the model runs in under 1 second with a grid
search trying several combinations of the alpha and prior probability initialization. In a follow up
paper we will look into the classification problem with much more complex and apt models as well
as preprocessing strategies. The current baseline scores are 83% accuracy with dpacat:rs and 93.2%
accuracy without.

5.2 Outlook

Several research questions open up after this basic classification experiment. What kind of prepro-
cessing steps are important to this dataset in order to achieve better performance? Recent trends
have shown that NLP with deep learning lead to superb results. Is it possible to achieve much better

21

performance on the classification task? The rise of language models within just the last year with
more complex training schemes like ULMFiT (Howard and Ruder, 2018) or ELMO (Peters et al.,
2018) and much more involved models like BERT (Devlin et al., 2018) and the Transformer-XL
(Dai et al., 2019), sky rocketed perplexity and accuracy scores. Instead of training a fully fledged
classification, question answering or summarization model, we instead train a language model that is
capable of solving different tasks at once. The general idea can be seen in Figure 18.

Figure 18: Transformer language model as in Radford (2018)

The difference to many applications before is that instead of rolling a fully fledged model for a
specific task, a much simpler model according to the data sources with a highly capable language
model is used. This is akin to ImageNet in computer vision, where it is common practice for a few
years now to first train a general feature extractor and connect it to a downstream task. In NLP
it is common practice, using fixed length context vectors like GloVe (Pennington et al., 2014) or
Word2Vec (Mikolov et al., 2013) trained on a large corpus. The models are portable, fixing the
problem of polysemy and syonymy.

One of the newest addition to the research community by OpenAI implicate that more power and
ressources may lead to much better results. Their large Transformer-based language model named
GPT-2 has 1.5billion parameters and is trained on 40GB of text from 8 million webpages (Radford
et al., 2019a,b). The results seem impressive but the costs are enorm. And although this model
achieves state of the art results in 7 out of 8, it ironically still underfits the data. This may indicate
that learning from an even larger dataset than the used 40GB dataset could still lead to much better
results.

These newer language models should in theory overcome some of the caveats of embeddings. First,
hierarchical information is learned. Second, they might be capable of overcoming the domain drift,
for example that a dataset does not fit the pretrained context vectors. Third, instead of learning a
single context vector (one size fits it all) and overfitting to a different problem space, we instead are
interested in several layers of generalized feature extraction. A question arises then: Are the new
language models much better at dealing with these issues, or do embeddings with complex neural
networks for a specific task still have their place?

Acknowledgement

We thank Dr. Gerd Kamp for the great dataset and Professor Kai von Luck and all people at the CSTI
for their support and especially for making the hardware available.

22

References
Blei, D., Ng, A., and Jordan, M. (2003). Latent Dirichlet Allocation. Journal of Machine Learning

Research, 3(4-5):993–1022.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2016). Enriching Word Vectors with Subword
Information. CoRR, abs/1607.04606.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J. G., Le, Q. V., and Salakhutdinov, R. (2019). Transformer-XL:
Attentive Language Models Beyond a Fixed-Length Context. CoRR, abs/1901.02860.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman, R. (1990). Indexing by
Latent Semantic Analysis. In Journal of the American Society for Information Science, volume 41,
pages 391–407.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2018). BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. CoRR, abs/1810.04805.

Eyheramendy, S., Lewis, D. D., and Madigan, D. (2003). On the Naive Bayes Model for Text
Categorization.

Hadoop (2018). HDFS Architecture - Assumptions and Goals. http://itm-vm.shidler.hawaii.
edu/HDFS/ArchDocAssumptions+Goals.html. Accessed: 2018-12-15.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep Residual Learning for Image Recognition.
CoRR, abs/1512.03385.

Honnibal, M. and Montani, I. (2017). spaCy 2: Natural language understanding with Bloom
embeddings, convolutional neural networks and incremental parsing. To appear.

Howard, J. and Ruder, S. (2018). Fine-tuned Language Models for Text Classification. CoRR,
abs/1801.06146.

Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T. (2016). Bag of Tricks for Efficient Text
Classification. CoRR, abs/1607.01759.

Le, Q. V. and Mikolov, T. (2014). Distributed Representations of Sentences and Documents. CoRR,
abs/1405.4053.

McCann, B., Bradbury, J., Xiong, C., and Socher, R. (2017). Learned in Translation: Contextualized
Word Vectors. CoRR, abs/1708.00107.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J. (2013). Distributed Representations of
Words and Phrases and their Compositionality. CoRR, abs/1310.4546.

Pennington, J., Socher, R., and Manning, C. D. (2014). GloVe: Global Vectors for Word Representa-
tion. In Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and Zettlemoyer, L. (2018).
Deep contextualized word representations. CoRR, abs/1802.05365.

Radford, A. (2018). Improving Language Understanding by Generative Pre-Training.

Radford, A., Wu, J., Amodei, D., Amodei, D., Clark, J., Brundage, M., and Sutskever, I.
(2019a). Better Language Models and Their Implications. https://blog.openai.com/
better-language-models/. Accessed: 2019-02-17.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019b). Language Models
are Unsupervised Multitask Learners.

TensorFlow (2018). Benchmarks. https://www.tensorflow.org/guide/performance/
benchmarks. Accessed: 2018-12-17.

23

http://itm-vm.shidler.hawaii.edu/HDFS/ArchDocAssumptions+Goals.html
http://itm-vm.shidler.hawaii.edu/HDFS/ArchDocAssumptions+Goals.html
https://blog.openai.com/better-language-models/
https://blog.openai.com/better-language-models/
https://www.tensorflow.org/guide/performance/benchmarks
https://www.tensorflow.org/guide/performance/benchmarks

	Introduction
	Hardware Benchmarks
	Hardware
	Desktop computers
	Renderfarm

	Containerization
	Benchmarks
	Methodology
	Performance Comparison
	Results

	dpa Dataset
	Metadata and Content Fields
	Content

	Knowledge Discovery in Databases
	Infrastructure
	Parsing and MongoDB
	Hadoop Distributed File System
	Pandas, Apache Arrow and Apache Parquet

	Data Pipeline
	Directed Acyclic Graphs (DAG)
	Preprocess
	Embed
	Model and Evaluate

	Outlook and Baseline
	Baseline Text Classification
	Outlook

