
A Comparison of Neural Document Classification
Models

Matthias Nitsche, Stephan Halbritter
{matthias.nitsche, stephan.halbritter}@haw-hamburg.de
Hamburg University of Applied Sciences, Department of Computer Science

Berliner Tor 7, 20099 Hamburg, Germany

Abstract

In this paper we explore a wide range of different neural network architectures for
text classification. We use a dataset from the news agency Deutsche Presse-Agentur
(dpa) in German language. The architectures range from n-grams, convolutional
neural networks (CNN) to long short-term memory networks (LSTM), including
standardized baselines like FastText by Bojanowski et al. (2016), the first CNN
for text classification by Kim (2014) up to state of the art models like ULMFiT
by Howard and Ruder (2018). Since this is a real world dataset we explore the
different problems that accompany them. Preprocessing despite using complex
universal approximators is still very relevant but not as tedious as in bag of words
methods. New generations of text models are very intensive in their computational
requirements. Training takes days, while practical approaches like FastText achieve
great performances without the need for these requirements.

Keywords – Neural Networks, NLP, Text Classification, FastText, CNN, LSTM, ULMFiT,
Hierarchical Attention Network

1 Introduction

In this work we will explore different architectures of neural networks for text classification. Com-
monly text models are based on recurrent neural networks (RNNs) as they can keep the temporal state
intact. Other approaches show that convolutions can be used to extract contextual text windows and
keep some of the spatial regions as well. State of the art models however are build on LSTMs using
either attention mechanism or finely tuned parameter tweaking. Text classification helps in making
sense about vast amounts of documents by organizing them into buckets, even when the function to
optimize is in a very high dimensional space. The need for ever more general and at the same time
detailed classification is thusly still an important question. Real world data contains a lot of noise that
many academic datasets do not inhibit, making classification a much harder task.

In our previous work (Halbritter and Nitsche, 2019), we established a baseline on the Deutsche
Presse-Agentur (dpa) dataset. Using the Multinomial Naive Bayes algorithm, we achieved accuracy
of up to 93%. The question is if an approach based on a neural network can beat this baseline score.
The short answer is: yes, but with a few constraints. The hardware requirements on memory and GPU
and CPU power rise immensely, the training time increases and there’s a high prevalence to overfitting.
In addition, by trading linear models for much more complicated non-linear approximators, neural
networks are not easy to debug. Newer models like ULMFiT (Howard and Ruder, 2018) essentially
train a generalized language model that can be trained once and fine tuned to solve different tasks
later. This additional effort can be worth it, in particular when the classification task is not the only
one to be solved.

We approach this question by comparing different classifiers. Five classifiers from the last four years
were selected by two criteria. On the one hand the models should be battle proven and should be used



or likely to be used in production. On the other hand we chose models that provided a new approach,
insight or other noteworthy improvement. The very fast and simple FastText by Bojanowski et al.
(2016) provides a solid baseline. CNN for Sentence Classification by Kim (2014) is a ground-breaking
model which introduced the concept of CNNs for text classification, on which others based their
research, for example Dynamic CNN by Kalchbrenner et al. (2014). Hierarchical Attention Networks
by Yang et al. (2016) presents a different model architecture using Gated Recurrent Units (GRU) and
an attention mechanism to learn from the hierarchy embedded in texts. Finally we chose ULMFiT
by Howard and Ruder (2018), the state of the art at the time, to pretrain a language model to finetune
it on an out of domain task.

2 Data and Preprocessing

In this section we briefly describe the data we try to classify and discuss some of the preprocessing
steps. The dpa groups articles into six resort as depicted in Table 1. Of these resorts, dpacat:rs is not
meant for publication, but plays a huge role in classification performance. For an in depth look we
refer to our previous work (Halbritter and Nitsche, 2019). We will briefly discuss the problems and
ideas around the data.

Name Field Name Abs. Count Percentage

Culture dpacat:ku 11985 5.52
Politics dpacat:pl 67410 31.05
Editorial Service dpacat:rs 29067 13.39
Sports dpacat:sp 37740 17.38
Mixed dpacat:vm 40245 18.54
Economics dpacat:wi 30648 14.12

Total 217095 100.00

Table 1: Overview of categories

The category data is heavily skewed towards politics, sports and the mixed category. The dpa corpus
has several text fields, for example the article body, headline and description. For this work we
worked entirely with the full article, that was available in plain text without html. Figure 2 shows
the basic statistics of character and word counts per category and overall of the text field. The word
count is based on a simple splitting on whitespace. Only texts with a length larger than zero are taken
into account.

Character Count Word Count

Field Name Min Max Mean Std Min Max Mean Std

dpacat:ku 54 12634 2410 1824 7 1893 303 214
dpacat:pl 17 24030 2058 2297 2 3565 254 237
dpacat:rs 47 36034 4419 3444 7 3058 436 313
dpacat:sp 56 40435 1931 1561 7 2625 276 221
dpacat:vm 53 20919 2050 1905 6 2984 256 226
dpacat:wi 53 18009 2396 1979 7 1912 289 199

All fields 17 40435 2418 2388 2 3565 291 246

Table 2: Character and word count statistics before stop word removal

The overall mean word count is around 290 per document. In the following we will discuss some of
the choices we made concerning the preprocessing. The datasets were shuffled and split into different
sets for training (63%), validation (27%) and testing (10%).

2



2.1 Category dpacat:rs

dpacat:rs (standing for Redaktioneller Service or editorial service) is a special category. It is not
intended for publication but for editorial messages as well as overviews and previews of upcoming
events and news. Therefore, it often consists in large parts of content from other categories. It
accounts for around 13% of the total data items, while having the largest mean word count (see
Table 2). Together, this make this category very prone to mis-categorization in both directions.
Depending on the use case, this can be fixed by simply removing this category and its items from
the dataset. This allowed us to train the models on a dataset with rather distinctive categories. We
will see that classification results improve drastically when doing so. On the other hand, it’s a very
interesting case to keep this category and have a look how the different models handle the situation of
a rather inconsistent dataset. In the end, we trained all models with and without dpacat:rs.

2.2 Relabeling

We coined the term Relabeling to deal with dpacat:rs. Fundamentally we found that dpacat:rs is
not only inconsistent in its content, but sometimes duplicates entries of other categories. Typically,
those are summaries that use the vocabulary and style from the respective category. The following is
an extract whose content is clearly part of the politics category and can be found in dpacat:rs and
dpacat:pl.

Auf www.dpa-news.de bieten wir Ihnen einen laufend aktualisierten Überblick über
die dpa-Topthemen des Tages. Auch Ihre Fragen und Anregungen beantworten
wir dort online. Die Planung für die nächsten 14 Tage finden Sie jederzeit auf dem
aktuellen Stand auf www.dpa-agenda.de. Hier bekommen Sie Ihren persönlichen
Zugang: service@dpa-news.de / +49 40 411332179.

Redaktion Politik
Ausland: Tel.: +49 30 2852-31302; E-Mail: politik-ausland@dpa.com
Inland: Tel.: +49 30 2852-31301; E-Mail: politik-deutschland@dpa.com

Hauptthemen Politik International:
Rom/Jerusalem/Bethlehem
- Weihnachtsfeierlichkeiten im Heiligen Land und im Vatikan + 1000 (MEZ)
Jerusalem/Bethlehem: Traditionelle Weihnachtsprozession geistlicher Würden-
träger von Jerusalem nach Bethlehem unter der Führung des lateinischen Patri-
archen von Jerusalem, Pierbattista Pizzaballa. Ankunft an der Geburtskirche in
Bethlehem erwartet für etwa 1230 (MEZ). + Vatikan: Papst Franziskus feiert
Christmette im Petersdom + 2300 (MEZ) Bethlehem: Mitternachtsmesse des
lateinischen Patriarchen von Jerusalem, Pierbattista Pizzaballa, in der St. Kathari-
nenkirche neben der Geburtskirche Jesu. Palästinenserpräsident Mahmud Abbas
wird ebenfalls dazu erwartet.
- Vorausmeldung «Papst Franziskus feiert Christmette - Weihnachtsprozession»,
am Samstag 1900
- Meldung «Tausende Christen feiern Weihnachten im Heiligen Land», aus dem
Heiligen Land
- Zusammenfassung «Christen feiern Weihnachten im Heiligen Land», Namens-
bericht aus Jerusalem
- Meldung, aus Rom, bis 2230
- Zusammenfassung, aus Rom mit Material aus dem Heiligen Land, bis 2345
+++ Vatikan/Israel/Palästinensische Autonomiegebiete/Kirche/Papst/Weihnachten/
+++

We considered two different approaches to this problem, both using relabeling the dpacat:rs entries
with duplicates to the corresponding duplicate’s category. In the first approach, only the training

3



data would be relabeled. This would mean that in production, the model would likely confuse
dpacat:rs entries with their duplicate’s category, which could be the desired behaviour. The second
approach assumes that the duplicates are the result of false data labeling and relabeling on the whole
data set would fix this error. However, both approaches are not really acceptable for typical text
classification tasks. They would introduce another level of preprocessing. We only peek into the
effects of relabeling in the context of a single model in Section 3.5.5.

2.3 Syntactical preprocessing

Neural networks and especially embedding models are known to not need a lot of preprocessing. As
a result, we kept the preprocessing to a minimum. Since we are not using any character based models
and words from the test set are not known ahead of time, out-of-vocabulary words become a problem.
The basic preprocessing consisted of the following six steps:

1. Lowercasing all words

2. Removing newlines

3. Removing special characters

4. Removing punctuation

5. Using cut off frequencies keeping only the top 30000 words

6. Stripping recurring headers and outros from the text

The idea of the preprocessing steps is to strip useless information, for example formatting like
newlines and characters likely not found in the embeddings or the recurring first string (dpa) which
does not carry significant information. We avoid resource and/or time-hungry preprocessing.

Additional preprocessing is customized to fit the requirements of the models. The baseline CNN
uses raw word sequences. The HAN model uses hierarchal features that need sentence boundaries
provided by a neural sentence tokenizer from SpaCy. ULMFiT language model is solely trained
on an AWD-LSTM which uses a bptt window over the sequences, learning contextual information.
More details about the relevant preprocessing steps that were necessary for each model are described
in the corresponding model sections.

2.4 Embeddings

Facebook provides pre-trained 300-dimensional word vectors created with FastText. The original
version is trained on Wikipedia using the same parameters as in Bojanowski et al. (2016). It is
available for 294 languages. An updated version, trained on Common Crawl in addition to Wikipedia
and with adapted parameters is available for 157 languages (Grave et al., 2018). These are the default
embeddings we used in our experiments if pre-trained embeddings were suitable. In all our tests the
accuracy dropped by roughly 1-2% when not using embeddings. This suggests that the models we
used do a decent job at predicting the correct category even without them.

3 Models and Experiments

In this section we will present multiple (deep) neural network models for text classification and
discuss their respective training results. Text classification is a good task to evaluate different models
as well as the capacity of the underlying data set to be separated into relevant categories. In our
previous work (Halbritter and Nitsche, 2019), we established a baseline using the Multinomial Naive
Bayes algorithm. It achieved 83% accuracy on all six categories and 93.2% accuracy without category
dpacat:rs. We will present five different text classification models exploring different architectures
and approaches.

3.1 FastText

FastText, developed by Facebook, is an open-source library and command-line tool. The tool provides
functionality for training word representations and training classifiers. It is based on the idea of
representing words as continuous vectors as laid out in Bag of Tricks for Efficient Text Classification

4



(Joulin et al., 2016). The underlying model is fairly simple. Its power lies in the way it creates the
word embeddings as presented by Bojanowski et al. (2017).

3.1.1 Embeddings

To calculate the word embeddings, it extends the skip-gram model known from word2vec (Mikolov
et al., 2013). The main difference is that FastText sees words as the sum of their character n-grams.
For example, the word where is represented by the character n-grams <wh, whe, her, ere, re> and the
whole word <where> for n=3. Special characters < and > are used to mark boundaries of words. In
practice, all n-grams where n is greater or equal to 3 and smaller or equal to 6 are extracted.

The final word vector consists of the sum of the vector representation of its n-grams, which means
subword information is incorporated. This is in stark contrast to the traditional skip-gram model,
where each word has its own distinctive vector. This new approach has clear advantages, as it can
calculate embeddings even for out-of-vocabulary (OOV) words. This comes from the expectation that
rare or unknown words consist of character n-grams that can be found in more common and known
words. Word2vec and GloVe are both not capable to create embeddings for OOV. Another result of
this is that rare words are much better contextualized.

The disadvantage of character n-grams lies mainly in the hardware requirements to generate them,
especially the amount of RAM. They depend on hyperparameters like the vocabulary size and
minimum and maximum length of the n-grams.

3.1.2 Model

The FastText model for text classification consists of a neural network with just a single hidden
layer. The text is represented as a Bag of Words (BoW). The embedding for each of the words is
retrieved using a lookup table. This results in an input matrix with the shape number_of_words×
embeddings_size. These embeddings are then averaged so that a single embeddings vector (e.g. of
size 300) represents the whole input. Linear transformation is then applied before a softmax function
calculates the class probabilities.

The training process tries to minimize the negative log-likelihood as presented in Equation 1. xn
represents the normalized BoW of the n-th of N words, A is the lookup matrix for the word
embedding. B is the linear output transformation and f the softmax function to compute the
probability distribution of the corresponding class, represented by its label yn.

− 1

N

N∑
n=1

yn log(f(BAxn)), (1)

3.1.3 Experiment

As this is the baseline model, we refrained from fine-tuning too much. This also concerns the
preprocessing step, which therefore differs from the preprocessing in the other experiments as laid
out in Section 3.1. The following preprocessing steps were applied to the dataset once with and once
without items of the category dpacat:rs.

1. Lowercasing
2. Removal of German stop words
3. Removal of newlines and multiple spaces
4. Adding of space around some characters1

We used the FastText Python library for both model training and prediction. In the training process,
we adopted the predefined default values for most of the arguments. Through experimentation, only
two changes had a recognizable impact on the accuracy. The learning rate was changed from 0.1 to a
rather large 1.0. Training ran for 9 epochs instead of the default number of 5. More iterations did not

1 That concerned quotation marks, dots, commas, brackets, exclamation marks, question marks, semicolons and
colons.

5



improve the outcome. No pretrained word vectors were used. Noteworthy default values are the word
vector size of 100, the context window of 5 and the use of softmax in the loss function.

3.1.4 Results

Results are presented in Table 3 and Figure 1. A hardly surprising finding is that the results on the
dataset without dpacat:rs are a lot better than with data of this category. Accuracy improved by ~11%
to 0.95 while loss improved by ~45% to 0.18. Especially the categories Culture (dpacat:ku) and
Mixed (dpacat:vm) are prone to get confused with dpacat:rs, but also to some extend with each other
as can be seen in the confusion matrix in Figure 1a.

With Editorial Service Without Editorial Service

Category Field Precision Recall F1 score Precision Recall F1 score

Culture dpacat:ku 0.79 0.80 0.79 0.92 0.90 0.91
Politics dpacat:pl 0.91 0.92 0.92 0.96 0.96 0.96
Editorial Service dpacat:rs 0.61 0.59 0.60 n/a n/a n/a
Sports dpacat:sp 0.93 0.97 0.95 0.99 0.98 0.99
Mixed dpacat:vm 0.84 0.82 0.83 0.92 0.92 0.92
Economics dpacat:wi 0.90 0.91 0.90 0.95 0.95 0.95

Micro average 0.86 0.86 0.86 0.95 0.95 0.95
Macro average 0.83 0.83 0.83 0.95 0.94 0.94

Accuracy 0.8548 0.9519
Loss 0.3302 0.1721

Table 3: FastText results

The better results also express themselves in the micro and macro averages. Micro average first
calculates the metrics for each category and then averages the result. Macro average on the other
hand first sums all the values of the categories and then calculates the metric. An outlier result for one
of the categories has a different impact on the result of the micro average than of the macro average.
This results in a noticeable difference of these averages for the dataset including dpacat:rs. As can be
expected when the results of the single categories lie closer together, the averages without dpacat:rs
are close together.

(a) Trained with category dpacat:rs (b) Trained without category dpacat:rs

Figure 1: Confusion matrices for FastText models

Overall, the results for both with and without Editorial Service are quite good and did exceed our
expectations. We will see that the results are often on par in comparison to complicated deep learning

6



models. Training and prediction on the whole dataset was a matter of minutes on a common laptop.2
In addition to providing an easy-to-use command-line program, this makes FastText a very good first
baseline model.

3.2 Convolutional Neural Networks for Sentence Classification

Convolutional Neural Networks (CNN) are well-known for image classification. In this highly
influential paper Convolutional Neural Networks for Sentence Classification, Kim (2014) laid out the
idea to apply this architecture for text classification tasks.

3.2.1 Model

If a CNN is used for computer vision purposes, the image pixel values are used directly as the input
matrix. In case of color images each color channel has its own matrix and the input is a tensor. While
the models in computer vision can get quite deep and complicated, the model used by Kim (2014) is
relatively simple. It consists of a single convolutional layer neural network. The general architecture
of the model is shown in Figure 2.

For text classification, we first tokenize the text input. In general, this is done by using pretrained word
embeddings. We used the FastText embeddings. This representation is then converted to a matrix.
Each row consists of the vector representation of a single world. For example, if the embeddings are
of dimension d = 300 and the sentence length is s = 50 words, this results in a matrix of dimensions
d × s, here 300×50. After that, we can continue in the same way we would if this matrix would
represent an image and apply filters using convolution.

Figure 2: Model architecture example with two channel inputs (Kim, 2014)

In image matrices, each entry represents the discrete value of a single pixel. For text, the discrete
value of a word is represented in a whole line. As we want to slide the filter kernel over neighboring
words, it makes sense to freeze the kernel size’s width to the size of a row d. Variations of the filter
size are now restricted to different heights or number of rows representing neighboring words. This
adds some sensitivity to the word order in the input sentences. Multiple filters of the same size are
used to try to learn different aspects of the same neighborhood. The filters run for each possible
window of words in a sentence. The results are saved in a feature map per filter.

For regularization, these feature maps are further passed through a pooling layer. Max-over-time
pooling is applied to extract the highest value from each feature map, followed by a fully-connected
layer with dropout and softmax to classify the input.

Kim (2014) presents slight variations of this model architecture in regard of the input matrices by
differentiating between the embeddings as static and non-static. Static embeddings are fixed, while
non-static embeddings are fine-tuned during training. Another variation combines those approaches
and used both matrices, which then are called channels. This name is based in the wording of color
channels used in computer vision. The same filters are applied to both channels, the static and the
non-static one. Their results are summed up before being saved in the corresponding feature map.

2 Lenovo Thinkpad X250 with i5-5300U processor and 8GB RAM

7



3.2.2 Experiment

Kim (2014) uses filter sizes of 3, 4 and 5 and 128 filters per size. As stated earlier, we used the
FastText embeddings for German to initialize the word vectors. This results in a matrix width of
300. These embeddings are non-static and are fine-tuned during training. The maximum number of
words per document was set to 1000, which in regard of Table 2 is a rather large value. We used zero
padding for documents with fewer words. Batch size was 256, dropout was set to 0.6. Our training
setup used the EarlyStopping Callback3 of Keras with a patience value of 3. This means that training
stopped after three epochs with no improvement. The model converged after surprisingly few training
epochs. For the dataset including dpacat:rs, it took 5 epochs. The dataset without dpacat:rs needed 9
epochs to converge.

3.2.3 Results

The overall accuracy results are comparable to those of FastText but with a larger loss, especially
when including dpacat:rs. 57% of dpacat:rs are not categorized correctly, with around 26% of the
entries of dpacat:rs getting confused with dpacat:vm. As can be expected, the model performs better
without dpacat:rs.

With Editorial Service Without Editorial Service

Category Field Precision Recall F1 score Precision Recall F1 score

Culture dpacat:ku 0.81 0.82 0.82 0.94 0.86 0.90
Politics dpacat:pl 0.84 0.98 0.90 0.95 0.93 0.94
Editorial Service dpacat:rs 0.76 0.43 0.55 n/a n/a n/a
Sports dpacat:sp 0.91 0.99 0.95 0.98 0.98 0.98
Mixed dpacat:vm 0.79 0.86 0.82 0.91 0.90 0.90
Economics dpacat:wi 0.97 0.81 0.88 0.87 0.96 0.92

Micro average 0.85 0.85 0.85 0.93 0.93 0.93
Macro average 0.85 0.81 0.82 0.93 0.93 0.93

Accuracy 0.8560 0.9380
Loss 0.6134 0.2526

Table 4: CNN results

There is an interesting shift in the results for dpacat:wi (Economics) and dpacat:pl (Politics) between
the datasets with and without dpacat:rs, which does not occur in the other models. For dpacat:wi,
recall improves drastically from 0.81 to 0.96, but precision falls down from 0.97 to 0.87. For dpacat:pl,
precision improves from 0.84 to 0.95, but recall declines from 0.98 to 0.93.

For dpacat:wi, as dpacat:rs was responsible for 8% of false categorization, the improvement of recall
is not surprising. And it seems that the removal of dpacat:rs also makes it more likely for dpacat:pl
and dpacat:vm to be misclassified as dpacat:wi, which causes the precision to go down.

For dpacat:pl, the improved precision is due to the large proportion of dpacat:rs which was misclas-
sified as Politics in the first dataset. Similar to the former case, it seems that without dpacat:rs, the
differentiation in regard to dpacat:vm and dpacat:pl got harder and as a result the recall results got
worse.

3.3 Dynamic Convolutional Neural Network (DCNN)

This model presented by Kalchbrenner et al. is very similar to the one from Kim (see Section 3.2)
and one of the examples how that model can be improved.

3 https://keras.io/callbacks/#earlystopping

8

https://keras.io/callbacks/#earlystopping


(a) Trained with category dpacat:rs (b) Trained without category dpacat:rs

Figure 3: Confusion matrices for CNN 2014 models

3.3.1 Model

The main significant difference to Kim (2014) lies in the pooling layers that come after the convolu-
tionals. Dynamic k-max pooling is a generalization of max-over-time pooling. Instead of a single
value, a whole subsequence of the k largest values is returned. The value k can be dynamically
calculated using different aspect of the model like sequence length and model depth. It is also possible
to use a fixed value.

A consequence of dynamic k-max pooling is that the model has the ability to weight one of the
smaller values the most, which makes it more robust for similar content in different categories. To
a certain extend, the context can be included in the weights. A good example where this approach
shows its advantage is the inclusion of the editorial service category in the dataset.

With Editorial Service Without Editorial Service

Category Field Precision Recall F1 score Precision Recall F1 score

Culture dpacat:ku 0.80 0.67 0.73 0.88 0.90 0.89
Politics dpacat:pl 0.93 0.87 0.90 0.94 0.93 0.94
Editorial Service dpacat:rs 0.56 0.75 0.64 n/a n/a n/a
Sports dpacat:sp 0.92 0.94 0.93 0.99 0.98 0.98
Mixed dpacat:vm 0.83 0.76 0.79 0.90 0.91 0.90
Economics dpacat:wi 0.91 0.87 0.89 0.93 0.94 0.93

Micro average 0.84 0.84 0.84 0.94 0.94 0.94
Macro average 0.82 0.81 0.81 0.93 0.93 0.93

Accuracy 0.8474 0.9351
Loss 0.3155 0.2082 -

Table 5: DCNN results

3.3.2 Experiment

We applied the same hyperparameters as for the CNN as described in Section 3.2.2 and used a static
value of k=5 for k-max pooling. The training process converged after five epochs including dpacat:rs
and after just three epochs without this category.

9



3.3.3 Results

The impact of dynamic k-max pooling is clearly reflected in the confusion matrix (Figure 4a),
especially in comparison with the result of Kim’s CNN (Figure 3a). The overall results of precision,
recall, F1 score and accuracy are very similar with a single significant exception of the training loss,
0.32 instead of 0.61. But the main difference lies in the precision and recall results per category.

(a) Trained with category dpacat:rs (b) Trained without category dpacat:rs

Figure 4: Confusion matrices for DCNN 2014 models

Here, the model improves drastically in regard to the categorization of dpacat:rs. While the CNN’s
recall for dpacat:rs is 0.43 and 26% were mislabeled as dpacat:ku, the DCNN increases the recall to
0.75 and only 4% were mislabeled as dpacat:ku. This comes at the cost of lower precision and recall
values for the other categories. The DCNN is the model which achieves the worst result of all models
for the precision of dpacat:rs.

3.4 Hierarchical Attentation Networks for Document Classification

Yang et al. (2016) introduce a new model architecture, called Hierarchical Attention Network (HAN).
It combines elements of a Recurrent Neural Network (RNN) with the Attention mechanism.

3.4.1 Model

There are two basic ideas behind this model:

1. Documents have a hierarchical structure and are formed by sentences, which themselves are
formed by words.

2. Different words and therefore sentences carry different amounts of information relevant for
the whole document

Even with stop words removed, not every word or sentence has the same relevance for the content
category, while this relevance is dependent on the context, e.g. the neighboring words. As shown in
Figure 5, the architecture can be separated in two parts.

The first part - depicted in the lower part of Figure 5 - works on a word level. A bidirectional GRU
is used to learn about the information of words in the context of their sentence. Then, Attention
weights these word information vectors in regard of how much they characterize the sentence. The
intermediate result is a sentence vector of contextual, weighted word embeddings.

10



Figure 5: HAN basic idea as described in Yang et al. (2016)

Since attention is a neat concept to connect encoders with each other and it is coined frequently in the
literature, let us quickly gloss over attention. The attention formula used on the words is as follows

uit = tanh(Wwhit + bw) (2)

αit =
exp(uTituw)∑
t exp(u

T
ituw)

(3)

si =
∑
t

αithit (4)

uit is a per word linear layer multiplied with the last hidden state hit of the before going word GRU.
αit is a per word similarity measure, e.g. softmax normalized by all words, which is the per word
probability given its position. uw is a high-level context vector that is jointly or implicitly learned
during back propagation. This learned magnitude α is then factored in to form the sentence vectors.

The second part works on the sentence level and is basically the same as the first part. Instead of
words, the output of the first part, the sentence vectors are used as input. The resulting vector is a
high-level representation of the document, formed from the extracted meaningful sentences. A final
softmax layer is responsible to classify these into the different categories.

3.4.2 Experiment

Yang et al. (2016) create 200-dimensional word embeddings using word2vec. They only add words
to the vocabulary which appear at least 6 times in the corpus. This is a huge difference to our
approach of using the pre-trained 300-dimensional FastText embeddings and attempt to minimize
out-of-vocabulary words.

11



With Editorial Service Without Editorial Service

Category Field Precision Recall F1 score Precision Recall F1 score

Culture dpacat:ku 0.74 0.88 0.81 0.93 0.86 0.89
Politics dpacat:pl 0.86 0.97 0.91 0.93 0.97 0.95
Editorial Service dpacat:rs 0.91 0.30 0.45 n/a n/a n/a
Sports dpacat:sp 0.92 0.98 0.95 0.98 0.98 0.98
Mixed dpacat:vm 0.78 0.88 0.83 0.92 0.90 0.91
Economics dpacat:wi 0.89 0.94 0.91 0.97 0.93 0.95

Micro average 0.85 0.85 0.85 0.94 0.94 0.94
Macro average 0.85 0.82 0.81 0.95 0.93 0.94

Accuracy 0.8562 0.9430
Loss 0.2876 0.1799

Table 6: HAN results

We used the same hyperparameter as for the other models and outlined in Section 3.2.2 with the
following exceptions. Due to memory constraints of the GPU, we had to reduce the amount of data.
As a result, we applied a reduced batch size of 32 (Yang et al. (2016) use 64), a maximum sentence
length of 100 words and maximum document length of 15 sentences. We did not fine-tune these
parameters to exactly fit the used hardware, so there is some potential of tuning left. We also had to
train this model on a single GPU, as we could not get it to work reliable on multiple GPUs. Both
models with and without dpacat:rs converged within four epochs.

3.4.3 Results

As the model implies, this should work well for a classification task. And indeed, it shows very good
results. It is interesting how its performance is in regard to dpacat:rs. Its recall result of 0.30 for
this category is the worst of all the models, while on the other hand the precision result of 0.91 is
far better than in all the other models. This means that if content is labeled as editorial service, this
categorization is mostly correct, but that 70% of the content of this category are not recognized as
such. This is a typical trade-of between precision and recall. Depending on the actual use case, this
can be an advantage.

(a) Trained with category dpacat:rs (b) Trained without category dpacat:rs

Figure 6: Confusion matrices for HAN 2016 models

12



3.5 Universal Language Model Fine-tuning for Text Classification (ULMFiT)

Since 2017 there have been several new ideas to apply language modeling as a generalized prepro-
cessing task. There has been wider work on this topic before, but none that were either trackable
or worked as well as task specific models. The basic idea is to pretrain a language model on a well
defined corpus like Wikipedia and then fine tune this model given the domain specific dataset in our
case the dpa dataset. This idea is called transfer learning and is a reasonably new trend in natural
language processing. At the heart of ULMFiT by Howard and Ruder (2018) is the AWD-LSTM
by Merity et al. (2017) which is a 3 layer long-short term memory network leveraging advanced
regularization strategies to perform state of the art language modelling on words.

Since RNNs and LSTMs are prone to overfitting, regularization techniques like dropout and L2
regularization make a huge difference in terms of validation performance. Since our main goal is to
learn generalized text features that can be reused on multiple corpora, it is unfortunate that applying
techniques like dropout are not easily incorporated in LSTMs. The authors of Merity et al. (2017)
employ different regularization techniques to deal with problems of overfitting and subsequently
underperforming on domain specific datasets. They found that DropConnect had the highest impact,
where instead of applying dropout to the activation functions it is applied on the weight matrices. In
addition they replaced gradient descent with average stochastic gradient descent ASGD, where the
learning rate and backpropagation window (BPTT) is dynamically adjusted.

3.5.1 Model and Training

We held the preprocessing simple, by only keeping 30000 tokens with the highest term frequencies in
the train and test set. Since ULMFiT learns a new language model from scratch, we did not employ
any embeddings on the words. We did not use any sentence piece tokenization which could improve
results. On the word and sentence level we additionally employed the following preprocessing steps

1. Lowercasing
2. Removal of newlines and multiple spaces
3. Adding of space around some characters4

ULMFiT has three major steps that produce subsequent data for ingestion, as depicted in Figure 7.
In the following we will do a simple walkthrough of these three steps and how we adjusted the
parameters to our model.

Figure 7: ULMFiT basic idea as described in Howard and Ruder (2018)

3.5.2 Pretraining

The first step is learning a general language model with the AWD-LSTM on the Wikipedia dataset.
Since we work with a German language corpus we could not use a pretrained language model for

4 That concerned quotation marks, brackets, exclamation marks, semicolons and colons.

13



English. Instead we trained one ourselves on the German Wikitext-103 dataset Merity et al. (2016)
that consist of 28,595 preprocessed German articles with roughly 103 million words. The pretraining
is not of much interest, since we took the standard parameters and trained the AWD-LSTM for 12
epochs, with a batch size of 192, which took 10 hours to complete on a Tesla V100. Fortunately this
step has to be done only once, since it is the general pretrained language model.

3.5.3 Fine-tuning

The second step is to fine tune the Wikipedia language model with the dpa text dataset. During
this step two novel techniques called discriminative fine-tuning and slanted triangular learning rates
(STLR) are employed to adapt the general language model to our domain. Our results looked okay,
but could be improved by finetuning the hyperparameters. We achieved a cross entropy training loss
of 3.16 and validation loss of 2.78, with a final accuracy of 0.46. This took approximately 12 hours
to train again on a Tesla V100.

Discriminative fine-tuning is a technique that adapts the learning rates for each layer, using the
following gradient update rule

θlt = θlt−1 − ηl · ∇θlJ(θ) (5)

where η is the learning rate adapted with some exponent l that is adjusted on a given per layer basis.
In practice the last layer of the language model is fine-tuned first, then moving down the learning
rate decreasing by a constant factor of ηl−1 = ηl/2.6. Intuitively, the first layer contains finegrained
features and the deeper we go, information are more general and features become more abstract.

Slanted triangular learning rates (STLR) are different learning rates that increase linearly at the
beginning and decreasing slowly after. The intuition is that the target task, meaning the Wikipedia
language model has a different distribution from the dpa dataset. Therefore we need to move the
parameters of the Wikipedia dataset adjusting to the dpa dataset. After a small bursting period
where the pretrained language model is adjusted we slowly decrease the learning rate. This shifts
the distribution of parameters to the dpa dataset while retaining useful information from Wikipedia
mitigating domain drift.

3.5.4 Classification and Experiments

The third and last step uses the fine-tuned language model training the multilabel classifier with
gradual unfreezing and again STLR. Howard and Ruder (2018) also found that a bidirectional
language model increases accuracy, instead of training one pretrained and fine-tuned AWD-LSTM, in
reading direction, we also do this in reversed direction. Unfortunately we did not try if this had any
effect on the results. Ensembling both models yields 1-2% accuracy.

Gradual unfreezing is the process of unfreezing one layer at a time beginning with the last and
therefore most abstract one. The reasoning is that aggressively classifying through 1-2 fully connected
layers essentially overwrites the learned weights of the fine-tuned language model. Each epoch
additional weights are fine-tuned until all weights are trained at the same time. In the following we
compare outcomes of different dataset splits and preprocessing strategies. As depicted in figure 7 we
will especially focus on tests with and without the editorial service. In the following figures we see
the confusion matrices where higher values of accuracy are dark-red while smaller values approach
yellow and white.

As we can see it makes a huge difference keeping or dropping the editorial service from our dataset,
yielding a 9-10% increase in accuracy. With editorial service we have a recall of 50% which means
that 50% of editorial service documents are incorrectly classified as not editorial service, while the
precision is also underwhelming with 72%, meaning that we predicted an incorrect class 30% of the
time. This drastically changes when the category is missing, e.g. all scores go above 90%, which can
be seen in the F1 score which combines precision and recall, on average going up 5%. The split in
most experiments is 80% training and 20% test set.

14



With Editorial Service Without Editorial Service

Category Field Precision Recall F1 score Precision Recall F1 score

Culture dpacat:ku 0.75 0.92 0.83 0.94 0.91 0.93
Politics dpacat:pl 0.87 0.98 0.92 0.94 0.97 0.96
Editorial Service dpacat:rs 0.72 0.49 0.58 n/a n/a n/a
Sports dpacat:sp 0.91 0.98 0.95 0.99 0.98 0.99
Mixed dpacat:vm 0.84 0.82 0.83 0.95 0.92 0.93
Economics dpacat:wi 0.97 0.85 0.91 0.97 0.94 0.95

Micro average 0.86 0.86 0.86 0.96 0.96 0.96
Macro average 0.84 0.84 0.84 0.96 0.95 0.95

Accuracy 0.8623 0.9559
Loss 0.3239 0.1101

Table 7: ULMFiT results

3.5.5 80-20 with rs and relabel

A major problem with the editorial service is that it contains articles that are duplicated in other
categories. Those are mainly summaries about a respective category, with the wording and meaning
of that category, that is not the editorial service. In this experiment we see how relabeling the editorial
service category to its respective category dramatically improves performance. The relabeling in
the following was done on the training dataset. We have to note here that relabeling is drastically
influenced by the test split and in reality is part of an inconsistency in the dataset. It makes sense to
relabel the entire dataset or at least use a unique constraint on the documents.

On the left in figure 8 we see the confusion matrix where the editorial service is left in. As we can
see on the right when relabeling the editorial service we tremendously decrease the misclassification
rates between the editorial service and all other categories. This increases the recall by almost 40%.

(a) Trained with category dpacat:rs (b) Trained with category dpacat:rs with relabeling

Figure 8: Confusion matrices for ULMFiT 2018 models

From the images it becomes clear that classifying economics and politics, mixed and editorial service
vs. everything else is much harder than say cultural and sports. Interestingly in the relabel case we
increase the rate of misclassification with sports and editorial service. Since the editorial service
contains duplicated texts from all categories (almost 13.000 documents) and are therefore impossible
to classify correctly. Howard and Ruder (2018) claim that using much less data still yields a good
accuracy. We did an additional run and trained a model on 20% training and 80% test data. Our
accuracy comparably dropped to 84.22% which we believe is good when considering that we tested
on 4 times the training data.

15



4 Conclusion

We trained and evaluated all models with and without the category dpacat:rs. The results are presented
in Table 8. Note that accuracy and loss are calculated during training on the validation set, while the
F1 score is calculated using the trained model on the test set.

With Editorial Service included, F1 score and accuracy are almost the same for all models and there
is no clear winner on the overall results. Without Editorial Service, ULMFiT performs the best on
all F1 score, accuracy and loss. But again, the results do lie close to each other for all models. The
imbalance of the Editorial service lies in duplicated texts across categories. No model is able to make
sense of a text occurring in two categories and assigning it a distinct label.

Even though all models achieve roughly the same performance levels, the models each have their own
strengths and weaknesses. As we can see in the confusion matrices in the respective sections, there
are clear differences how the models perform per category, especially when including dpacat:rs. Each
model is capable to a different degree to distinguish dpacat:rs from the other categories and categorize
either based on its actual content or its category. For example the DCNN has a comparatively high
recall of 0.75 for the editorial service, but lacks in precision. HAN on the other side has a rather low
recall of 0.30, but a rather high precision. A consequence of this different behavior is that there is not
the universal best model, but you have to look at your requirements.

With Editorial Service Without Editorial Service

Model F1 score Accuracy Loss F1 score Accuracy Loss

FastText 0.86 0.8548 0.3302 0.95 0.9519 0.1721
CNN 0.85 0.8660 0.6134 0.93 0.9380 0.2536
DCNN 0.84 0.8474 0.3155 0.94 0.9351 0.2082
HAN 0.85 0.8562 0.2876 0.94 0.9430 0.1799
ULMFiT 0.86 0.8623 0.3239 0.96 0.9559 0.1101

Table 8: Comparison of all models. F1 score based on test set, accuracy and loss on validation set.

With the exception of ULMFiT, surprisingly few training epochs were needed for convergence. The
reason likely lies in the large data set. With around 200 000 items for five to six categories, there was
no need for the model to iterate very often over it to learn about its specifics. As could be expected,
more epochs did result in overfitting.

All in all, each classifier has its up and downsides. Given a production environment where speed
and resources are important we found FastText to be the most impressive classifier. Even on weak
hardware its simple model takes just a few seconds to minutes to complete the training process. The
multinomial naive Bayes is in this regard equally impressive, being even faster than FastText, but very
prone to overfitting and not easily dealing with OVV words. In contrast, if you have the resources
and the need for very high accuracies ULMFiT might be the choice. The downside is that the training
can easily take multiple days, with the upside of training an AWD-LSTM language model that can be
reused in other NLP tasks.

Our findings suggest that modern neural network architectures outperform baseline bag-of-words
models by a small margin. For us this implies that classification might not be a suitable task that
leverages the advantages of neural networks at whole. Neural networks excel at tasks that are
inherently difficult to model such as sequence alignment, generation of unseen sequences and fluency
of text. Since accuracy and loss are quantitative measures, factors like speed, space, explainability or
simplicity of the model are often not discussed. The choice for the right classifier should be based on
the setting it is applied in.

Acknowledgment

We thank Dr. Gerd Kamp for the great dataset and Professor Kai von Luck and all people at the CSTI
for their support and especially for making the hardware available.

16



References
Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2016). Enriching Word Vectors with Subword

Information. CoRR, abs/1607.04606.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2017). Enriching Word Vectors with Subword
Information. Transactions of the Association for Computational Linguistics, 5:135–146.

Grave, E., Bojanowski, P., Gupta, P., Joulin, A., and Mikolov, T. (2018). Learning Word Vectors
for 157 Languages. In Proceedings of the International Conference on Language Resources and
Evaluation (LREC 2018).

Halbritter, S. and Nitsche, M. (2019). Development of an End-to-End Deep Learning Pipeline.

Howard, J. and Ruder, S. (2018). Fine-tuned Language Models for Text Classification. CoRR,
abs/1801.06146.

Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T. (2016). Bag of Tricks for Efficient Text
Classification. CoRR, abs/1607.01759.

Kalchbrenner, N., Grefenstette, E., and Blunsom, P. (2014). A Convolutional Neural Network for
Modelling Sentences. CoRR, abs/1404.2188.

Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification. CoRR, abs/1408.5882.

Merity, S., Keskar, N. S., and Socher, R. (2017). Regularizing and Optimizing LSTM Language
Models. CoRR, abs/1708.02182.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. (2016). Pointer sentinel mixture models. CoRR,
abs/1609.07843.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J. (2013). Distributed Representations of
Words and Phrases and their Compositionality. CoRR, abs/1310.4546.

Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., and Hovy, E. (2016). Hierarchical Attention Networks
for Document Classification. In Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pages
1480–1489. Association for Computational Linguistics.

17


	Introduction
	Data and Preprocessing
	Category dpacat:rs
	Relabeling
	Syntactical preprocessing
	Embeddings

	Models and Experiments
	FastText
	Embeddings
	Model
	Experiment
	Results

	Convolutional Neural Networks for Sentence Classification
	Model
	Experiment
	Results

	Dynamic Convolutional Neural Network (DCNN)
	Model
	Experiment
	Results

	Hierarchical Attentation Networks for Document Classification
	Model
	Experiment
	Results

	Universal Language Model Fine-tuning for Text Classification (ULMFiT)
	Model and Training
	Pretraining
	Fine-tuning
	Classification and Experiments
	80-20 with rs and relabel


	Conclusion

