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In this project report an end-to-end data pipeline for deep learning based news

recommendation will be described. Purpose of this document is the description of

an end-to-end pipeline to generate news recommendations for users and layout

an infrastructure for further experiments and implementations of deep learning

recommendation methods. The recommendation methods described in this report

are based on the work of Okura u. a. (2017) and adapted to a German news text

corpus. In the course of this document the dataset from the Deutsche Presse-Agentur
(dpa) will be analyzed and the implementation of the paper will be presented.

Furthermore an overview of the pipeline architecture and Tensor�ow Extended as a

future platform for the data pipeline is given and a review of tools for the pipeline

is done. Experiments are conducted, which shows that the pipeline is suitable to

process the data and do deep learning based recommendations but shows also that

further pro�ling of the recommendation system is needed to optimize resource

utilization.
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1. Introduction

Recommender systems (RS) are software tools which provide recommendations for users, and

thus support the user in their (online) decision making. The goal of RS is to provide easy

accessible and high quality recommendations for a community of users. In times of Big Data
and an ever growing �ood of data a user has to deal with, RS helps the users to cope with

an information overload. On the business side, RS can help to gain user satisfaction with the

provided services and increase revenue of content providers.

One aspect of RS are news recommendations, which will be the focus of this work with a

special focal point on Deep Learning (DL) RS. Since the author of this paper has the opportunity

to work with a real-world news dataset from the Deutsche Presse-Agentur (dpa), a German press

agency, the sections of this document revolves around this dataset. With over 200 000 articles of

high linguistic quality and rich metadata, to the best of the authors knowledge, this is a unique

kind of dataset which can’t be found in similar quality publicly.

Goal of this work is to evaluate how to construct an end-to-end data pipeline to work with

this dataset and doing DL based recommendations. To this end, an implementation of the Okura

u. a. (2017) paper will be done and a corresponding data pipeline will be introduced to make

recommendations for news articles. The methods used in Okura u. a. (2017) will be adapted to

the news dataset from the dpa. As the news articles contain a substantial amount of metadata

and the quantity of articles in the dataset, with more data to come in mind, is quite large, a

thoughtful architected data processing pipeline is needed. To implement the mentioned paper

and to develop such a data pipeline, beside the analysis of the dataset, possible tools have to

be examined. Finally experiments have to be conducted to verify the proposed architecture

and implementation is suitable for the dataset and recommendation methods in the Okura u. a.

(2017) paper.

The structure of this document is as follows: In the course of this text, �rst the news dataset

with rich metadata from the dpa will be presented and analyzed. Hereafter the Okura u. a.

(2017) paper will be reviewed including the adaption to the dpa dataset, needed preprocessing,

implementation and discussion of limits of the methods in the paper and proposed improvements.

This is followed by the pipeline architecture with current and proposed architecture, introduction

to the Tensor�ow Extended (TFX) platform and a tool review. Subsequent to this the conducted

experiments are presented. Finally this document is closed with a summary and an outlook.

2. Dataset Analysis

The methods described in the following sections are applied and adapted to the dataset from

the dpa described below. The dataset consists of over 200 000 German news articles, which are

available in the structured NewsML-G2 IPTC (2018b) data format and contain a lot of metadata.

The texts are written from journalists and of high linguistic quality. The content is available
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as plain text and structured in HTML format. There is also a short summary for some of the

articles. The metadata consists of �elds like author, date, location, keywords and events. Also

the articles are annotated with IPTC media topics IPTC (2018a). This is a taxonomy with about

1100 topics which is structured as a tree with 17 top-levels and a depth of 5 levels. The exact

structure of the data is discussed in the next section.

2.1. Data Structure & Applicability

The explanation of the structure is partly based on the work of Nitsche und Halbritter (2019),

which do a deep analysis of the dataset. So the description here focuses on the key aspects of

the structure.

Table 1 shows the data �elds of the article documents. The Unique and % Not Null are mainly

taken from Nitsche und Halbritter (2019) and completed where necessary. Beside the completion

of data, the table show additional values for minimum, average, maximum occurrences and

standard deviation. When the type of the �eld is a list, the data relates to frequencies of list

entries. If the �eld type is str the additional metrics relates to number of words. For some �elds

there are no additional metrics as this don’t make sense for types like datetime, int or str with

single unique identi�ers. The categorials are a �xed number of symbols represented as string

identi�ers. These string identi�ers have an association to German translations, which can be

mapped via a table.

The most important �eld is contentplain, which contains the article plain text and is most

important for recommending articles. The contenthtml �eld contains, structured as HTML, the

text and additional, redundant to other �elds, headline, slugline, keywords, genre and publication
date among others. This explains the much higher word count in contrast to the plain text.

Very useful to �ne grain associate articles to di�erent topics are the keywords, slugline and

medtop. As they have relative high non null values, these �elds can be used for a big part of the

dataset. As already mentioned the medtop �eld contain a list of IPTC media topics taxonomy

identi�er IPTC (2018a) The �elds keywords and slugline are lists of strings which can be customly

de�ned by the editor. The keywords �eld are, as expected, keywords and the slugline describes

the basic content of the article in a few words.

Also the subject, genre and category are very useful to categorize the articles on a more

coarse-grained level (due to their relative few unique values). Especially as genre and category
are present for every article, so these �elds can be used for the whole dataset.

Useful for summarisation and to grasp the essence of the article are the headline and description
�elds. A drawback of the headline is the very short text but on the plus side is its availability

for all articles. The description has much more words and is much more useful for this task

but unfortunately the overall occurrence is relatively low and would shrink the application to

roughly a �fth of the whole dataset, which makes it hard for a model to learn.

The country, area, location and poi (point of interest) also seem to be a applicable information

to improve recommendations. The creator and contributor information could be consulted, to

some extend, to distinguish di�erent writing styles or topic preferences.
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No. Field name Type Unique % Not Null Entries/Words

min avg max Std.

1 guid str 214725 100.00%

2 keyword list[str] 15555 68.40% 1 2.01 11 0.88

3 headline str 165107 100.00% 1.0 8.77 64.0 3.35

4 description str 35697 18.46% 0 31.43 138 6.24

5 contentplain str 186387 99.90% 3 294.60 3849 244.08

6 contenthtml str 214491 100.00% 76 440.53 9853 280.82

7 slugline list[str] 59247 100.00% 1 4.18 10 1.30

8 genre list[category] 30 100.00% 2 2.00 2 0.00

9 subject list[category] 129 54.31% 1 1.14 6 0.39

10 medtop list[category] 230 75.32% 1 1.31 7 0.61

11 category list[category] 6 100.00% 2 2.00 2 0.00

12 area str 21 22.09%

13 country str 202 80.77%

14 poi list[str] 39624 39.54% 2 4.05 49 0.86

15 ednotes list[str] 316937 100.00% 1 4.79 72 2.66

16 sent datetime 200240 100.00%

17 version str 146 100.00%

18 language str 1 100.00%

19 creator list[str] 827 99.84% 1 1.00 1 0.00

20 contributor list[str] 35721 99.65% 1 1.69 17 0.80

21 newspublisher list[category] 32 100.00% 1 3.64 20 1.64

22 urgency int 4 100.00%

23 location list[str] 4993 65.47% 1 1.16 4 0.38

Table 1: Metadata �elds of the news articles with di�erent metrics

3. Okura u. a. (2017) Recommendation Methods Review

This section will lead through the recommendation methods that are presented in the paper

and to be tested with the described dataset. On a rough overview the recommendation system

consists of three main parts beside data preprocessing:

1. Denoising Autoencoder
The autoencoder is used to encode the articles in the form of embeddings.

2. Deep User Representation Model
This Model is used to generate a embedding for the users from the history of viewed

articles.
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3. Article Matching
The actual article recommendation, which is a simple dot product between the user

embedding and article embedding vector, which results in a score for each article for the

speci�c user.

3.1. Methods

Autoencoder To generate the article embeddings, the authors of the paper used a variant

of denoising autoencoder from the paper Okura u. a. (2016). The input of the autoencoder

are binary hot encoded vectors of size 10 000. Each position of the vector corresponds to a

word in a vocabulary. As noise the input vector is stochastically masked with zeros, with a 0.3
corruption rate. The actual input to the autoencoder are triplets (x0, x1, x2) of articles which

consists of x1 the article to encode, x2 a article of the same category as x1 and x3 a article of a

di�erent category as x1. The data generation is explained in section 3.3.2 in detail. To train the

autoencoder the following objective function is used:

LT (h0, h1, h2) = log(1 + exp(h0Th2− h0Th1))
Loss = LR(yn, xN ) + αLT (h0, h1, h2)

(1)

Where LT is the penalty function for article similarity, α a hyperparameter for balancing

and LR is the element-wise cross entropy function. Figure 1 illustrates this method.

Figure 1: Encoder for triplets of articles Okura u. a. (2017)

Deep User Representation Model For the user representation Okura u. a. (2017) compared

a simple Recurrent Neural Network (RNN), a Long-short Term Memory (LSTM) and a Gated
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Recurrent Unit (GRU). The input for the model is the users viewed article history as a sequence

of article embeddings. The objective function for all models is the same and as follows:

∑
sut

∑
p+∈P+
p−∈P−

log(σ(R(ut, s
u
t,p+)−R(ut, s

u
t,p−) +B(p+, p−)))

|P+||P−|
(2)

Where sut are the sessions of user u at time t and p+ ∈ P+ and p− ∈ P− are the viewed and

not viewed articles at this session that are displayed to the user. R(., .) denotes the relevance

function of an article andB(., .) is a bias term and a parameter to be learned by the model which

is not described in detail by the authors. This B(., .) term describes the bias, which results from

the position of an article when the articles are displayed in a vertically arranged list to the users.

The relevance term R(., .) is de�ned as a simple inner product between the user and article

embedding R(ut, a) = uTt a.

While doing experiments they �nd that the simple RNN is not suitable when the input

sequence is to long due to vanishing and exploding gradients. The LSTM model occasionally

failed when not using gradient clipping. Just the GRU model did not cause problems with

vanishing and exploding gradients and yielded the best recommendation performance.

Article Matching The actual article recommendation is done via simple dot product between

the user embedding and all article embeddings. This yields a relevance score for every article for

the current user which can be used for relevance ranking. Also a article-article dot product is

used for de-duplication, so the user don’t get recommendations for di�erent but similar articles.

3.2. Adaption to the dpa Dataset

As the dpa dataset and user data is di�erent to the data the methods where originally constructed

for, some adaptions has to be made. The original paper constructed the system to make

recommendations for end users. The articles in the dpa dataset are not meant to be displayed

directly to end users. The articles are o�ered to editorial o�ces of newspapers and other

companies, which choose to publish the article as it is or rewrite it.

3.2.1. Session

One obvious di�erence are the sessions of end users and editorial o�ces. In the original paper

the authors de�ned a session to be the articles that are shown in the yahoo news app to the users,

which are the �rst 20 displayed articles arranged in a vertically list. P are all displayed articles,

respective their position in the list. P+ are all viewed articles, in this case there is just one

article viewed per session, namely the article clicked by the user. P− are all not viewed/clicked

article in the session.

There are three main di�erences in sessions de�ed for the dpa data to the Okura u. a. (2017)

paper:
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1. Session Size
As the articles are not shown to a single user but instead to a whole editorial o�ce, in

this case one session is de�ned to be all articles published on one day. As the dataset

spans a period of approximately one year with about 214 000 articles, there are around

586 articles on average per day. So the session size is much larger then for end users.

2. Viewed Articles
Since there are several editors which choose various articles to be published, the count of

viewed articles is more then one and can possibly range from zero to all articles on that

day.

3. User History Length
The history length of the users can grow into many thousands, since one editorial o�ce

may pick tens or hundreds of articles per day. This is also the biggest obstacle or challenge,

because the chosen neural nets struggle more the longer the sequences get. As previously

described the simple RNN and even the LSTM have di�culties to deal with histories even

by individual users.

3.2.2. Article Categories

In the original paper an article seems to be assigned to a single category. The dpa dataset

provides detailed metadata with possible several categories, keywords and mediatopics per

article. So the choice which articles are similar and which are not is not just to look which

articles are in the same or di�erent category. With the dpa dataset the mentioned metadata

�elds must be put into account with possibly a range of choices.

3.3. Data Preprocessing

In the following section the data preprocessing steps are described which consists mainly of the

three phases of parsing, training data generation and the generation of arti�cial user data as of

the time of writing real user data is not jet available. The expected user data will be gathered

thru crawling news sites for published articles and compare these articles to the articles in the

dataset. As the published articles may be rewritten versions of the original article the text can

not be compared one by one. So there will be a similarity measurement with a threshold to

decide whether the published article corresponds to an article of the dataset. With this method

it can be measured which articles where relevant to the corresponding news publisher.

3.3.1. Parsing

The dataset consits of single XML �les per article in the NewsML-G2 IPTC (2018b) data format.

This format is not suitable as input to the ML framework used to implement the RS. In a previous

work Nitsche und Halbritter (2019) developed a parser, which generates JSON documents for
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the articles. These JSON documents are stored in a MongoDB, which is the basis for analyzing

and exporting the data to other formats. For performance reasons in the model training phase

and e�cient storage, the data is exported to parquet �les. The parquet �les are read with apache

arrow and converted to pandas Dataframes for further processing.

3.3.2. Train Data Generation

There are two phases of training data generation. The �rst is to generate the input for the

autoencoder, whose output is also a part of the input in the next phase. The second phase is the

input for the User Representation Model.

Autoencoder Training Data In the �rst step of training data generation it is necessary to

get triplets of articles as input for the autoencoder. As described in 3.1 it is necessary to compute

a similar and a dissimilar article for a given article to encode. Before the triplets are generated,

the articles must be converted to a format which is easier to process then text strings. For

this purpose, the Keras build-in preprocessing module for text is used. At �rst the texts gets

tokenized, where the words will be converted to lower case and splitted by space. The output of

this tokinization is a binary word vector, where each position corresponds to a word index. The

vector size is cut to 10 000 words like described in the paper. The top most 10 000 words in the

whole corpus are used and the rest are discarded. To generate the triplets, �rst the metadata

�elds are chosen which shall serve as labels and a dictionary with a mapping from the article

guid to a set with all values form the chosen metadata �elds is generated. Next the article

with the highest and lowest similarity is chosen. When there are several articles with the same

similarity the �rst match is taken. As metric to measure the similarity of articles the Jaccard
Index, also known as Intersection over Union, of the sets of labels is used. The Jaccard Index is

computed by dividing the intersection of two label sets by the union of the label sets. Equation

3 shows how the index is build, with set A of labels from article a and set B of labels from

article b. In the �nal step zero masking noise is applied to the word vector as described in 3.1.

J(A,B) =
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A ∩B|
0 ≤ J(A,B) ≤ 1

(3)

An enhancement to be more general would be to, instead of �rst matching min and max

similar articles, return a list of all max and all min similar articles, if several present. Then shu�e

the min and max similarity articles corresponding to the trained article each training epoch.

This would also avoid, that just a little bunch of articles are the min similarity articles for every

other article (e.g. a single article is labeled with categories distinct to all other articles categories).

Currently this enhancement is not implemented and the article triplets are computed beforehand

training and written to a �le. Another possible improvement would be to remove stop words,
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punctuation marks and use stemming, which can be easy accomplished with �ltering by a word

list. These techniques are not part of the implementation of the Okura u. a. (2017) paper and

will be tested in further work, where di�erent RS methods will be tested against each other.

User Representation Model Training Data To feed the input into the model a generator
that yields batches of training data, which runs in parallel on the CPU, is used. In this case

a implementation of the keras.utils.Sequence class was used to guarantee that the ordering of

batches will be kept and every input per epoch is used just once. The generator made it possible

to augment the data while training. This was necessary because a batch (x, y) with input x
and label y has samples with a single size of ∼1.3GB, which would result in to much data

to compute beforehand and store it. This comes due to the fact that numpy arrays are multi

dimensional arrays that have a �xed size for every dimension. So each dimension must have

the size of the maximum possible entries for this dimension. Where are less entries then the

dimensions size, the non-existent entries have to be zero padded. x and y are numpy arrays with

dimensions [bs, hl, es] and [bs, sn, vn, sl, es]. Where bs is the batch size, hl is the maximum

user history length of a user in this batch, es is the embedding size, sn is the maximum number

of sessions a user has in this batch, vn are the two bags of viewed and not viewed articles and

sl is the maximum length of a session a user has.

To generate the batches the generator is initialized with a dictionary which maps the user id

to a list of article guids that represent the view history and a list of sessions with the viewed and

not viewed article guids of this session. Another input for the generator is a dictionary which

maps the article guids to the corresponding article embedding, which is produced beforehand

with the trained autoencoder. At each batch generation �rst the maximum sizes of the user

sessions and session lengths are computed. After the numpy array dimensions are known

the article guids of the user history and sessions are mapped to the corresponding embedding

vectors and the numpy array is �lled with the values.

It’s also important to check how big the actual batch size will get, since if the chosen batch

size is not a multiple of the dataset size the last batch on an epoch will be smaller then the

chosen batch size. Since Keras allows di�erent batch sizes during training the whole dataset

can be used, regardless if its not exactly divisible by the batch size. Another subtle point is to

pay attention to the datatype a numpy array is initialized with. E.g. the standard numpy �oat
type is 64 bit and Tensor�ow as Keras backend uses 32 bit �oat as standard. If the precision of

the types don’t match, the batch may unnecessarily take up a huge amount of RAM and the

types have to be converted internally which uses additional CPU resources.

3.3.3. Artificial User Data

Since there is no real user data available for this news dataset by now, arti�cial user data

have to be created to start implementing the Okura u. a. (2017) paper with the adaptions, the

corresponding data pipeline and do testing. As the generated user data will be replaced by real

human user data by the time they are available, the arti�cial data have to be as similar to real
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world data as possible. This includes the amount of users, the length of article view history, the

size of session data and to some extend plausible viewed articles history to learn a distribution

of user interest.

To model the interest of the arti�cial users, metadata �elds are chosen which are used to

model interest of the users, in this case keywords, subjects and mediatopics. Additionally for each

�eld a fraction has to be provided which states how much values from this �eld are used per

user. For each user a random selection from the metadata �elds values are picked while taking

the corresponding fraction into account. The fractions chosen are: {keywords: 0.01, subjects: 0.1,
mediatopics: 0.1}. These values are discovered empirically to generate a history of su�cient

length to be plausible but don’t grow to a abnormal size. Now the view history of each user is

make up of all articles tagged with these labels, sorted by publication date. As mentioned before

in section 3.2.1, a session consists of all articles published on one day. The viewed articles are

those ones which are contained in the users history and the not viewed those ones that are

published and not present in the users history.

3.4. Recommendation System Implementation

In the following, implementation details for implementing the described paper will be shown.

As mentioned before the models were implemented with Keras and Tensor�ow as backend.

3.4.1. Models

Autoencoder The denoising autoencoder implementation consists of the input and output

layer and one hidden layer. The hidden layer serves as encoder and the output layer as decoder.

Input and output layer have a size of 10 000 units, which logically have to correspond to the size

of the input token vector. The encoder layer have a size of 500 units as stated in the original

paper. Both, the encoder and decoder layer are densely connected and use the sigmoid activation

function also as stated in the paper. The training is done via Keras ‘multi_ gpu_ model‘, which

allows to train the model on multiple GPUs. The model parameters are kept in main memory

to relive the GPU RAM from additional stress. The optimizer used for training is standard

stochastic gradient descent. There may be optimizer which converge faster like Adam or Adadelta
but this is subject to hyperparameter tuning in further work.

User Representation RNN The user representation model is implemented as a simple RNN

as the simplest version and simultaneously as more sophisticated LSTM and GRU networks.

To be clear, these models don’t work in conjunction but are for comparison with each other.

Beside the input layer, the model consists of a masking layer and one recurrent layer.
The masking layer is necessary because each input batch consists of several users histories

as samples with di�erent lengths as input sequence for the recurrent layer. As the input are

numpy arrays, which require that all sequences in one batch must have the same length, the

sequences are zero padded to match in length. The zero padded entries should not be feed into
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the recurrent layer, as they are not informative data and would harm the performance of the

model. For this reason the masking layer masks this values, so they get skipped by the model.

The recurrent layer size match that of the encoder with 500 units. For the activation function

tanh is used and a bias vector is utilized. The optimization is done via stochastic gradient descent.

3.4.2. Loss Function

Two loss functions have to be implemented since the autoencoder and the User Representation
RNN both use non-standard loss resp. objective functions.

Autoencoder Loss Function Like described before, the autoencoder is trained with the loss

function in equation 1. To compute the loss as seen in the equation, the embeddings h0, h1 and

h2 for the articles a0, a1 and a2 have to be computed inside the loss function with the current

model parameters of the current training step. Two things must be done that are not mentioned

in the Keras documentation and hard to �nd out, since they seem to be rarely used and barely

discussed in communities like Stack Over�ow.

The �rst is to make a python closure function with the encoder model as parameter which

return the actual loss function. Next, in the actual loss function, the layers of the encoder model

have to be extracted to build up a graph of the layers (excluding the input layer) and evaluate it

with the a0, a1 and a2 token vectors to get the embeddings h0, h1 and h2. Now the embeddings,

generated with the current model parameters in this training step, can be used to calculate the

similarity penalty which get added to the binary cross entropy loss for measuring the actual

reconstruction error.

Second, Keras loss functions expects two parameters, where y_ true is the label for this data

sample and y_ pred is the prediction generated by the model. The typical case and expected by

Keras is, that there is one label per sample. If there are several labels per sample it gets more

complicated, since one can pass just one numpy array as y_ true value to Keras. The solution to

this problem is, that the y_ true numpy array can be of arbitrary dimension and size. So you

can encode your labels in one numyp array and extract these labels inside the loss function as

shown in listing 1.

1 import keras.backend as K
2 ...
3 def loss(y_true, y_pred):
4 h0 = K.reshape(y_true[:,0], (-1, K.int_shape(y_pred)[1]))
5 h1 = K.reshape(y_true[:,1], (-1, K.int_shape(y_pred)[1]))
6 h2 = K.reshape(y_true[:,2], (-1, K.int_shape(y_pred)[1]))
7 ...

Listing 1: Extract multiple labels from y_ true in Keras loss function

User Representation RNN Loss Function The RNN model is trained with the loss function

described in equation 2. To implement the equation in pure python would be straightforward

11



but with Keras and Tensor�ow you must stick to the API of the framework which describe a

data�ow DAG (Directed Acyclic Graph) of operations. An advantage of this is, that Keras resp.

Tensor�ow as backend take care of the parallel execution of the loss function computation,

which would also be executed on a GPU if available. A new feature in Tensor�ow 2.0 is tf.function
with Autograph which converts a subset of Python code into a e�cient Tensor�ow Graph.

1

This would ease the implementation of the loss function but for this work the use of the new

feature is out of scope since the code was written for Tensor�ow 1.x and will not be ported to

the newest version for now. A simpli�ed DAG of the RNN loss function is shown in �gure 2. A

complete DAG of the loss function and detailed description can be found in appendix A.

Loss per Sample

Loss per Session

y_pred (batch of user embeddings)

map_fn (iterate user & session batch)

y_true (batch of user sessions)

user_sessions

user_embedding

article_relevance_comparison

map_fn (iterate user sessions)

article_relevanceuser_session remove_padding align_dimensions all_compared_article_losses mean check_for_not_viewed_articles sessions_losses

sum (sum sessions losses)

single_sample_loss

batch_loss

Figure 2: Computation graph of the adapted RNN loss function

The red rectangles indicate Keras operations and orange rectangles represent aggregated

subgraphs. The rounded box batch_loss is the end node of the graph and the parallelograms

mark inputs. Edges are tensors and represent the inputs and outputs of the operations and

subgraphs. Round nodes are just named tensors, for a more descriptive graph. The blue and

green rectangles mark the function which is applied by the map function to its input.

3.5. Limits of the Methods

3.5.1. Limits

There are some limits of the methods in Okura u. a. (2017). Two obvious are the static input

size of the autoencoder, which may lead to a loss of information and makes padding necessary,

and to not be able to use pretrained sentence or language models. Another dataset speci�c

1https://www.tensorflow.org/guide/function
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limitation is the limited maximal sequence length of the RNN and even LSTM and GRU models

with regard to the extraordinary user history length compared to usual end users.

3.5.2. Proposed Improvements

A small selection of improvements may be:

1. RNN Autoencoder
Use an autoencoder which has no direct restriction in input length, e.g. an RNN autoen-

coder.

2. Word embeddings
Use (pretrained) word embeddings instead of word tokens for the autoencoder.

3. Deep User Representation Model "without" restricted sequence length
Use of an model which can handle big sequence length like Hierarchic Attention Networks

(HAN) Yang u. a. (2016) etc.

4. Use Metadata
Incorporate the rich metadata of the dpa dataset into the model.

5. Collaborative Filtering
Combine the User Representation Model with an Neural Collaborative Filtering (NCF)

He u. a. (2017).

4. Pipeline Architecture

In this section a data processing architecture will be proposed, adapted to speci�c requirements

that the dataset and recommendation algorithms introduce.

4.1. Current and Proposed Architecture

The aim of this pipeline architecture is to provide a way to de�ne di�erent ML pipelines with

the �exibility to maintain di�erent work�ows to satisfy the needs of multiple ML methods.

Primarily the architecture should provide a �exible and as simple way to experiment with

di�erent recommendation methods and paper implementations. Some requirements are to

keep track of the data version, preprocessing code, hyperparameters, model version and logs

which are used in an experiment, to analyze and compare the outcomes easily. Figure 3 shows

the current data processing. At the current state each step in the data processing is triggered

manually and the components are con�gured separately with no automated orchestration of

the di�erent tasks. For initial prototyping, to create a single Proof of Concept (POC), where

the main goal is to try out di�erent things and be �exible this is su�cient. For the next phase
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Data
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s3_scraper

xml_parser

mongo_db
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generate_user_data

generate_article_triplets

build_vocabulary

tokenize_text tf_rnntf_autoencoder article_embeddings

Figure 3: Current data processing state

(implement di�erent papers, compare the methods performance and hyperparameter tuning) a

more sophisticated architecture is needed.

To ease the deployment and tool selection it comes handy that with Tensor�ow Extended (TFX)
a platform was open sourced by google which perfectly match the mentioned requirements of

task- and data-aware pipelines. There are some limits in the use of TFX which includes:

1. Datasource Format
Supported data formats are just CSV �les, TFRecord �les with TFExample data format,

and results of BigQuery queries.

2. ML Framework
Limited to the tensor�ow framework for models.

3. tf.estimators instead of keras models
TFX just fully support models written using the tf.estimators API.

This de�ciencies are acceptable at this time, since to rewrite the keras data generators to be

compatible with TFX should be easy and as tensor�ow is anyway the main ML framework used,

the restriction to tensor�ow as ML framework is tolerable. A workaround to use keras models

with TFX instead of tensor�ow estimators is by using the tf.keras.estimator.model_to_estimator
function to convert keras models to estimators.

If some papers provide a implementation, for example in PyTorch, it is to consider to move

to a more �exible pipeline architecture or evaluate if an re-implementation in tensor�ow is a

worthy strategy. In the case of shifting to another platform/architecture it is convenient that

some parts of TFX can be used independently form TFX and some parts of TFX are anyway
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from other open source projects like Apache Beam, Apache Air�ow and Kubernetes Pipelines and

of course can still be used within another platform/architecture.

4.2. Tensorflow Extended

In the following the architecture of TFX is brie�y presented, with an eye on integration of the

previously manually orchestrated tasks/data�ow. Essentially TFX is made up of three mayor

building blocks, the Components of which data pipelines are build of, a metadata store which

stores information about the data which every component in the pipeline generates (the actual

data is stored elsewhere) and an orchestration tool to plug all tasks resp. components together

into a pipeline. The technologies underlying TFX are Apache Beam for data processing with

interchangeable backends like Apache Flink or Apache Spark, Tensor�ow for model training and

Apache Air�ow or Kube�ow for orchestration. The Metadata Store has a pluggable backend like

SQLite, MySQL or other databases with SQL capabilities. The store enables one to trace back the

execution of the pipeline with the version of data and code speci�c to this run and establishes a

linage of the di�erent artifacts produced from the components, cache intermediate steps and

compare results (based on Tensorboard). TFX support di�erent deployment environments like

bare-metal, Kubernetes and cloud platforms but for this installation Kubernetes will be used. As

fast and reliable data store HDFS, as well deployed on Kubernetes, will be used.

Figure 4 shows the di�erent components of which TFX is composed. With the top bar indicate

which components are powered by Apache Beam as distributed data processing framework

and the row below to which category each component belongs to. Below that, the di�erent

components are shown.

Figure 4: TFX components Crowe (2019)
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The Components have the following purpose:
2

1. ExampleGen
is the initial input component of a pipeline that ingests and optionally splits the input

dataset.

2. StatisticsGen
calculates statistics for the dataset.

3. SchemaGen
examines the statistics and creates a data schema.

4. ExampleValidator
looks for anomalies and missing values in the dataset.

5. Transform
performs feature engineering on the dataset.

6. Trainer
trains the model.

7. Evaluator
performs deep analysis of the training results and helps to validate the exported models,

ensuring that they are "good enough" to be pushed to production.

8. ModelValidator
checks the model is actually servable from the infrastructure, and prevents bad model

from being pushed.

9. Pusher
deploys the model on a serving infrastructure.

The components of Data, Preprocessing and Model from �gure 3 can be mapped to the TFX

components ExampleGen, Transform and Trainer. Where the format for saving the parsed data

have to be changed from Parquet to TFRecords to be compatible with the TFX components. This

has the bene�t of having the same on disk and in memory format which can be directly feed

into Tensor�ow without conversion and thus save main memory and CPU cycles.

4.3. Tool Review

In this section the chosen tools from the current data processing and the proposed architecture

are reviewed in short and possible alternative tools are outlined.

2https://www.tensorflow.org/tfx/guide
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4.3.1. Data Storage

HDFS As data storage technology the Hadoop Distributed File System (HDFS) is chosen.

HDFS provides a highly fault tolerant data storage distributed over a cluster of nodes with

data replication. It provides high availability, high throughput and makes very large datasets

possible. Notable limitations are a write-once-read-many access model where written �les can

not be modi�ed but just appended and a high latency in data access. Both limitations do not

concern the data access pattern of the pipeline and therefore do not constitute restrictions for

the data pipeline.

Data Format

Parquet Parquet is a widely used and e�cient column based data format with fast �le access.

The columnar nature makes data analytics over a subset of the dataset e�cient and fast. The �le

output can be compressed with a granularity on column level which provides economical use

of storage and can also speed up I/O further, depending on the chosen compression algorithm.

TFRecords & tf.Example TFRecord is a simple format for storing a sequence of binary

records and can only be read sequentially. For each record the �le contains a CRC32C hash

for integrity checking. tf.Example is a Protocol Bu�ers message and is essentially a {"string":
tf.train.Feature} mapping where the tf.train.Feature is one of the three types tf.train.BytesList,
tf.train.FloatList and tf.train.Int64List. So tf.Examples are to serialize structured data. Although

there is no requirement to use tf.Example in TFRecord �les it is bene�cial as the ExampleGen
emits tf.Examples and the other TFX pipeline components expect this format.

Apache Arrow Apache Arrow is a cross-language platform for in-memory data with a

columnar memory format. It provides zero-copy reads with a shared memory on the system

between di�erent processes and thus without serialization overhead. Furthermore it is integrated

into projects like Parquet and Pandas which allows to read Parquet �les directly into Pandas
Dataframes, which is used by the current data processing.

4.3.2. Preprocessing

Tools from Nitsche und Halbri�er (2019) As mentioned in section 3.3.1 the articles are

available in NewsML-G2 IPTC (2018b) format which is not suitable for preprocessing and model

training. Thus Nitsche und Halbritter (2019) have developed a parser, which converts the

NewsML-G2 articles into structured JSON. The Go implementation is fast and suitable as a

component for a data processing pipeline. The JSON format is chosen for its widespread use

with very good support in many tools and libraries. Initially the parsed articles are stored in a

MongoDB from where it can be analyzed and further converted to other formats for which they

have also developed a convenient CLI application.
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Numpy Numpy provides the ndarray data structure which is a multidimensional array with

homogeneous types and �xed allocated memory with e�cient memory usage. The same

underlying memory representation is used by Tensor�ow, so numpy arrays can easily used as

Tensor�ow input and conversion between numpy arrays and Tensor�ow tensors are cheap and

easy. Furthermore numpy provides fast algorithms on ndarrays and several libraries, e.g. Pandas,
use this arrays as data structure or provide compatibility to it. This brings the bene�t of using a

broad tower of tools for preprocessing without complicated and costly conversion between the

data structure used for preprocessing and input for Tensor�ow. So at the current data processing

numpy arrays are used as data structure wherever possible and as input for Tensor�ow.

Pandas Pandas is a library for manipulation and analysis of tabular data and allows SQL like

queries. Its main data structure is the dataframe which is based on numpy arrays Pandas was

mainly used to analyze the dataset and for preprocessing tasks like �lter missing values or

group articles into time ranges.

Keras Data Preprocessing Keras provides some data preprocessing utilities. In the current

data processing the tokenizer from Keras is used to create a word index and transform the whole

vocabulary of the text corpus into integer tokens. So each article is represented as a vector of

integers. The tokenizer can also be used to �lter the words by frequency and by a list of characters.

Additionally it provides to convert the text to lowercase and replace out-of-vocabulary words

during tokenization.

4.3.3. ML Framework

Keras Essentially Keras is an API for ML frameworks. It provides high level abstractions to

create ML models on top of ML frameworks like Tensor�ow, Microsoft Cognitive Toolkit, Theano
or PlaidML without using low level operations. Thus it makes ML model creation faster and

enables to switch the backend for the actual computations. On top of this, Tensor�ow has chosen

to o�cially use Keras as high level API and therefore provides an excellent integration. The

high level API and the possibility to seamlessly interweave Keras and Tensor�ow operations

was the reason to decide for Keras.

TensorFlow Tensor�ow (TF) is the ML framework in the pipeline doing the actual training

of the models. In TF models are expressed as a directed acyclic graph (DAG) of di�erentiable

operations. Each operation provides information for di�erentiation to enable automatic back-

propagation in neural networks. So the user de�nes the DAG and the actual computation is

done internally by TF. The advantage of this is, that TF can optimize and rearrange the graph for

optimization and each operation in the DAG can be individually executed on di�erent available

devices like CPUs, GPUs or TPUs. Additionally to parallelisation through multi GPUs, TF

supports distributed computing in clusters. TF was chosen for its high performance, scalability,

broad community support and wide adoption.
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4.3.4. TFX ML Platform

As mention before TFX is a platform for end-to-end data pipelines and is build atop of other

frameworks and tools beside Tensor�ow. These are brie�y introduced in the next paragraphs.

For a introduction to TFX see section 4.2.

Data Processing For data processing TFX relies on Apache Beam which is, like Keras for ML

frameworks, a abstraction and API for Big Data frameworks. Beam support several runners,

respectively distributed processing backends, with Apache Spark and Apache Flink among the

most recognized.

Apache Beam Beam provide a programming model and abstractions that simplify the

mechanics of large-scale distributed data processing. Beam by itself doesn’t do any computations

but delegate these to runners and thus introduces a uni�ed programming model for several

distributed processing frameworks. Main abstractions include:
3

1. Pipeline
A pipeline warps up the whole data processing into a pipeline from reading input data

over data transformations to write output data. A pipeline shapes an arbitrarily complex

processing graph.

2. PCollection
Represents a distributed data set that the Beam pipeline operates on. Each step in the

pipeline have a PCollection as input and output. The data in a PCollection can be bounded

and unbounded respectively batches or streams.

3. PTransform
Represents a data processing operation, or a step, in the pipeline with one to many

PCollections as input and zero to many PCollections as output.

4. I/O transforms
Prede�ned PTransforms that ships with Beam for data ingestion or output to various

external storage systems.

Beam Runners Beam supports multiple runners which do the actual distributed computa-

tions. At the time of writing, supported runners are Apache Apex, Apache Flink, Apache Spark,

Google Cloud Data�ow, Apache Gearpump, Apache Samza, Apache Nemo, Hazelcast Jet and a

DirectRunner which runs on the local machine and is meant for development. Typically the

runners by itself use a DAG to represent the data�ow, where each of the runners provide their

own fault tolerance and distribution strategies, failure semantics and other properties. For a

Beam Capability Matrix see The Apache Software Foundation (2020).

3https://beam.apache.org/documentation/programming-guide/
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Workflow For work�ow management TFX provides out of the box two possible frameworks,

with the option to implement an integration for another framework by oneself.

Apache Airflow Air�ow is a tool for describing, executing, and monitoring work�ows

and relies on con�guration as code, where work�ows are created with python code. To mange

the work�ow orchestration Air�ow uses, as well, DAGs. The DAGs represent the collection

of all tasks to be run and re�ects their relationships and dependencies. Air�ow may execute

a arbitrary number of DAGs, with each DAG consists of an arbitrary number of tasks. The

description whats actually done by a task is de�ned by Operators. Examples are the BashOperator
which executes a bash command or the PythonOperator which calls an arbitrary Python function.

The execution of tasks are done by Executors where the Air�ow scheduler determines when to

execute which task. Available Executors are Celery Executor, Dask Executor, Debug Executor,
Kubernetes Executor and Scaling Out with Mesos.

Kubeflow (pipelines) Kube�ow is the ML toolkit for Kubernetes and was build for making

deployments of ML work�ows on Kubernetes simple, portable and scalable. TFX can leverage

the Kube�ow Pipelines component of Kubernetes for work�ow de�nitions, which enables com-

position and execution of reproducible work�ows on Kube�ow. A pipeline is the description

of an ML work�ow and includes all components of a pipeline and a graph (not acyclic) which

de�nes how the components relates to each other. The components makes up the steps in the

work�ow and are self-contained sets of code, which gets packaged as Docker containers. The

pipeline with its components and graph are de�ned through a DSL with a python SDK. To run

the pipeline a Pipeline Service is called which again calls the Kubernetes API server to create the

necessary Kubernetes resources to run the pipeline. A set of Orchestration controllers execute

containers according to the pipeline de�nition to complete the pipeline run.

5. Experiments

The following segment discusses the conducted experiments and present the results. As the

experiments are just a veri�cation of the POC they don’t measure the recommendation perfor-

mance but analyze the training behavior of the models regarding resource consumption.

5.1. Hardware

The hardware on which the test are conducted are summarized in table 2. The used hardware is

not a bare-metal installation but a virtual machine with CentOS as guest system.
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CPU 9 cores, 18 Threads

RAM 164GB

GPU 5 x Nvidia Quadro P6000

VRAM 24GB per GPU

Table 2: Hardware for the conducted experiments

5.2. Training Data

The training is done with ∼45 000 articles after removing all articles which have missing text,
keywords, subjects or mediatopics �elds. The article triplets generated for each article, which are

input for the autoencoder, takes up 6.4GB as serialized numpy array.

5.3. Artificial User Data Generation

The generation of the user data for 1500 users took approximately 30min and consumed about

10GB of memory. The method is not implemented to leverage parallel computation and would

approximately scale linearly with used CPU cores/threads when adapted to take advantage of

multiple cores. Since 10GB of memory consumption is relatively low and the generation have

to be done just once for a particular user amount, no optimization es needed.

5.4. Autoencoder

The autoencoder is trained with all 45 000 articles each epoch, over 50 epochs with a batch size

of 256, like in the original paper. The training took about 4 hours and consumed approximately

50GB of memory. No sings of remarkable memory consumption or unexpected behavior

regarding CPU and GPU usage has been noticed. As the training is done in a reasonable time

and the system resource usage is within scope of available hardware no further optimization

is needed at the moment. With more training data it may be worth to analyze the runtime

behavior of the model more deeply to improve the training time.

5.5. User Representation RNN

The user representation RNN is trained with the history of 1500 arti�cial users and their cor-

responding session data. The model shows a high memory usage of about 160GB. Also the

VRAM consumption is high, that only a batch size of �ve, one batch per GPU, is possible. Higher

batch sizes result in out-of-memory failures of the GPU. The CPU usage is periodically high at

the beginning of a new step and low afterwards, so this indicates the CPU is mainly used while

batch data generation and should not be a bottleneck in the training process. A strange behavior

can be observed at GPU utilization. One GPU have a utilization between 20 and 70 percent

while the remaining four GPUs shown a utilization of about 15 percent. At the moment the

usage of Tensorboard to further investigate this pattern is not possible since, despite correctly
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initializing the Tensorboard callback for training, no pro�ling data is recorded and the Trace
Viewer can not be used. A guess would be that, mistakenly, the model parameters reside and

get merged in the memory of the GPU with higher utilization instead of main memory. This

may explain the unevenly distributed workload among the GPUs. This would also put high

load on the VRAM of one GPU and prevent higher batch sizes since the batch is distributed

evenly over the GPUs and a full VRAM of one GPU restrict the overall batchsize regardless

if the others have free memory. The overall low GPU utilization may be explained doe to a

di�culty to parallelize the RNN with a huge input sequence. Also the time per step with about

45 s is exceptionally high and have to be pro�led.

6. Summary & Outlook

6.1. Summary

In section 2 we did a quick dataset analysis of the approximately 200 000 German news articles

in the NewsML-G2 IPTC (2018b) data format with a lot of metadata as seen in table 1.

This was followed up by section 3 where a review of the methods (3.1), mainly the DAE

(Denoising Autoencoder) for the Article Representation and the RNN for the Deep User Repre-
sentation Model, are presented. Also the adaptions to the dpa dataset are explained (3.2) with

the de�nition of a user session and similarity with multi category articles opposed to single

categories in Okura u. a. (2017). This is succeeded by the necessary data preprocessing (3.3)

consisting of parsing based on Nitsche und Halbritter (2019) and generation of Autoencoder
Training Data with word token extraction and article similarity tripplets based on the Jaccard
Index. Also the User Representation Model Training Data generation, with sequences of article

embeddings as input and multi dimensional labels consisting of article embedding sessions,

with live data augmentation while training, is explained. Additionally the Arti�cial User Data
generation is explained, necessary for a lack of real user data at the moment. This is followed

by implementation insights of the models and especially the loss functions which were a main

problem during the implementation of the paper. The paper review section is closed by 3.5,

explaining the limits of the paper methods, especially when applied to the dpa dataset, like

information loss due to �xed length token vectors to generate article embeddings and models

not e�cient for very long sequences.

The next section is about the pipeline architecture (4). The current and proposed architecture

are put down in 4.1 with the current manual orchestrated pipeline depicted in �gure 3 and the

proposal to use TFX ( Tensor�ow Extended) as a platform for the pipeline. After that, TFX with

its components is brie�y described (4.2) and a tool review with all current used and to be used

tools with TFX are explained with their association to the data pipeline (4.3).

The last section (5) explains the conducted experiments with the developed POC (Proof of

Concept). The experiments focus on the executability of the data pipeline and its adapted

RS model with runtime and resource usage in the foreground. The actual recommendation

performance will be tested and compared in the follow up project.
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6.2. Outlook

As this document reviews the tools and data processing architecture needed to process the

presented dataset and calculate recommendations with the methods of Okura u. a. (2017), the

model implementation is a POC to evaluate the data processing pipeline. So the next step would

be to do pro�ling of the model implementation and improve the runtime behavior.

The cumming up project constitutes of the implementation of several other deep RS methods

for comparison, with a good recommendation performance in mind, while deploying and

leveraging the presented TFX pipeline. To this end, a literature review of current deep RS will be

inevitably. Furthermore it may be necessary to test the data processing pipeline with additional

media such as pictures and evaluate possible changes to be made.
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A. User Representation RNN Loss Function Details

Figure 5 shows the complete DAG of the RNN loss function. The rectangles are the operations

in the graph, where red rectangles indicate Keras operations and orange rectangles represent

Tensor�ow operations. One requirement was to use as most as possible Keras operations to be

�exible to possible exchange the backend but some operations where not present in the Keras
API, have not the needed parameters (concrete values instead of Tensors) or the Tensor�ow
operation is much more e�cient (e.g. log_sigmoid operation instead of two separate log and

sigmoid operations). The rounded boxes Compute Loss and batch_loss nodes are the start and

end nodes of the graph and parallelograms mark inputs. The edges represent the inputs and

outputs of the operations which are tensors and the round nodes are just named tensors for a

more descriptive and clear structured graph. The rectangles around nodes merely structure the

graph into logical units and are not part of the actual graph. The blue and green rectangles are

special in that they mark the function which is applied by the map function to its input.

The input to the loss function y_true is a batch of user sessions where each session contains

the viewed and not viewed article embeddings. The input y_pred is the batch of predicted

outputs of the model and consists the user embeddings. The batches are packed into a list to get

iterated by a map function map_fn in parallel where the blue Lost per Sample rectangle marks

4https://csti.haw-hamburg.de/
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Figure 5: Computation graph of the adapted RNN loss function
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the subgraph which is applied by the map_fn to every sample in the input batch. In the function

of this subgraph, �rst the user_embedding and user_session gets extracted from the input tensor.

The user_session tensor is the input to be iterated by the next map_fn where the green Loss per
Session rectangle indicates the subgraph which is applied by the map_fn to every session. In

every subgraph of this sample the same user_embedding is used for the sessions. In the green

subgraph the user session is split into two tensors, where one represents the embeddings of the

viewed and the other the embeddings of the not viewed articles. The Get Mask subgraph extracts

the indices of the zero padded values which is used by the Tensor�ow boolean_mask operator to

generate a new tensor with the padding values removed. This is done to the viewed and not

viewed articles in the remove padding subgraph. Now the article relevance is computed by doing

a batch_dot operation for all viewed and not viewed articles with the user_embedding, whose

dimension is expanded to be broadcasted by the batch_dot operator. Broadcasting is the process

of making arrays with di�erent shapes have compatible shapes for arithmetic operations.
5

6
The resulting tensor contains the relevance score for the articles. Instead of doing a nested

iteration of the viewed and not viewed articles like in equation 2, the tensors get aligned in that

way, that a element wise minus operation can be performed to compare the viewed articles with

all not viewed articles. The transformation is done in subgrap Align Dimensions with resulting

tensors as shown as an example in table 3. Now the aligned viewed and not viewed articles

Viewed & not viewed tensor

Index 0 1 2

Viewed 1 1.5

Not viewed 0.5 1 3

Aligned viewed & not viewed tensor

Index 0 1 2 3 4 5

Viewed 1 1 1 1.5 1.5 1.5

Not viewed 0.5 1 3 0.5 1 3

Table 3: Example of aligned viewed and not viewed tensors with the original tensor to the left

and the aligned tensor to the right. The colors indicate which values are copied

tensors get compared, which forms a new tensor with the losses for all comparisons of articles.

A mean operation computes the session loss of all comparisons, which is a substitution for

dividing all comparison values by the sum of all articles in this session and summing them up

like in equation 2. This not only makes the de�nition of the graph easier and more clear but

also reduces the number of executed operations. The last step to compute the loss of the session

is to check that the tensor of not viewed articles has values. This is realized with the control

�ow operation switch of Keras which chooses a zero loss tensor if there are no values in the not

viewed article tensor or the computed session_loss tensor otherwise. Unlike one would do it

in plain Python the decision which tensor is chosen is done after the de�nition of the before

described session_loss but the switch operator need both input tensors which it can select and

the tensor�ow backend cares about e�cient execution of the computation graph. This step

has to be done only for the not viewed articles since in the preprocessing phase a session is

5https://www.tensorflow.org/api_docs/python/tf/broadcast_to
6https://www.tensorflow.org/xla/broadcasting
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only constructed if there are viewed articles in the time span de�ned to form a session. The

computation in the green rectangle is done and the computed session_losses get summed up in

the blue rectangle subgraph, which represents the loss of the current sample. The output of the

loss function is the batch_loss which is the tensor of all sample losses.
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