
Building LARO: Language Agnostic Sentence
Embeddings from finetuned RoBERTa ?

Andre Soblechero Salvado

1 Hamburg University of Applied Science
2 Faculty of Computer Science and Engineering

3 Department of Computer Science
4 Berliner Tor 7, 20099 Hamburg

5 andre.soblecherosalvado@haw-hamburg.de

Abstract. In this paper an architecture will be introduced which con-
sists of a new kind of autoencoder Transformer architecture which is
capable of generating language agnostic sentence embeddings such as
recurrent neuronal networks can. A proof of concept will show the prac-
ticality.

Keywords: Transformer · Auto-Encoder · LASER · Language Agnostic
· Sentence embeddings · Context embeddings · Attention is all you need
· OPUS-100 · Cross-Lingual · RoBERTa · Distilled · Cross-Lingual

1 Introduction

Natural language processing (NLP) is a branch of artificial intelligence that deals
with the processing of natural language. There exist a lot of different subbranches
like, eg. understanding the intent behind a statement or question by processing
the question or statement by a machine or generating good translations from
one language to another automatically. This paper is about building and train-
ing a machine translation based autoencoder, a machine learning model, which is
capable of generating language agnostic sentence embeddings. LARO is a combi-
nation of the Transformer architecture, the in LASER use method and transfer
learning.[3][7][16] These kind of embeddings, also known as context embeddings,
are vectors which express the meaning of a sentence. In addition the model
which will be build should be capable of extracting the meaning of a sentence
completely independent of the language used. This means that for example the
sentence ”How are you?” in English and the sentence ”Wie geht es dir?” in Ger-
man should be encoded by the model to a very similar vector. Language agnostic
models are important because they make it possible to train a model in one lan-
guage and use it after training with a lot of other languages without having to
train the model on them. This is more time-effective, helps with low-resource
languages and costs less hence less data needs to be gathered/generated.

? Supported by Creative Space for Technical Innovations at the Hamburg University
of Applied Sciences

2 Andre Soblechero Salvado

The following architecture which will be introduced consists of a new kind of
autoencoder Transformer architecture which is capable of generating sentence
embeddings, like recurrent neuronal networks can.

2 Cross-language information retrieval

In this section a basic usage for multilingual models will be represented in order
to underline their importance. Cross-language information retrieval is the name
for a problem where a query of an user to for example a search engine can be
in an arbitrary language and a collection of documents, which may answer the
query independent from the query language, is returned.

Fig. 1. Information Retrieval Procedure [1]

For this purpose documents and queries are often represented as a vector which
eg. represents the meaning/content of the document. The query and document
need to be mapped into the same vector space. A similarity algorithm then
decides whether the representations are similar or not and thus if the respective
document is returned. Later in this paper it will be explained on how to compute
similarity of vectors and how to generate representations of sentences.[1]

3 Neural Machine Translation

A basic task today in machine learning is to translate from one language to
another using neuronal networks. Because of the complexity of the problem
and usefulness it is heavily used as benchmark and commercial products arised
as well. ”From a probabilistic perspective, translation is equivalent to finding
a target sentence y that maximizes the conditional probability of y given a
source sentence x, i.e., arg maxy p(y|x).”[2] The following sections will will be
introducing a method which purpose is to obtain language agnostic sentence
embeddings.

Building LARO 3

4 LASER Language-Agnostic Sentence Representations

LASER is an encoder which main characteristic is the ability to map sentences in
93 languages to one vector space. This can be done completely language agnos-
tic, what describes the capability of the encoder to encode similar sentences in
different languages to similar vectors. One obvious advantage is that task specific
models which are trained on the output vectors of LASER are language agnostic
as well. Thus in theory it is possible to train a classifier on the embeddings in
one language and use this classifier in production with other languages. Consid-
ering the shortage of task specific data in deep learning, models like LASER can
improve the efficiency of companies because data in less languages is required
for training.[3]

4.1 Model

To train a decent language agnostic representation for sentences in form of a
vector an autoencoder can be used. Furthermore it is important to take into con-
sideration that the encoder may not have information about the input language
to ensure that every input sentence is treated the same way, As a consequence
only the meaning of a sentence gets encoded. The decoder on the other hand
needs some information about the target language because it decodes to more
than one pivot language. A pivot language is a target language in this kind of
task. The architecture of LASER consists of two recurrent networks.[3]

Fig. 2. LASER Architecture [3]

Encoder Each token gets a standard token embedding vector. Those token
embeddings are then fed into a stacked Bidirectional LSTM with a max pool-
ing on top of the last hidden layers to get a single vector output of dimension
d = 1024. After training the output vector the meaning and language agnos-
tic representation of a sentence and is often called context vector or sentence
embedding.[3][28]

4 Andre Soblechero Salvado

Decoder The decoder consists of a simple LSTM. The final token embeddings
are the sum of three vectors. One vector is each time the same context vector
from the encoder. The second vector is the token embedding for the current to-
ken. The first token is a start of sequence token thus the beginning of a sentence
is predefined. The third embedding is a language embedding which gives the de-
coder information about the target language. This is of high importance because
the target language should not depend on the encoded sentence and therefore
on the training’s-data distribution of languages. The final token embeddings are
then fed into the LSTM to decode the translation. The first hidden vector of the
LSTM is the context vector. Underlining that the decoder exactly uses one vec-
tor from the encoder to generate the translation. This is by design because the
authors wanted that this context vector holds all information about the encoded
sentence.

4.2 Data

A combination of several corpora where used to train LASER with 93 input lan-
guages. The corpora combination consists of Europarl, United Nations, Open-
Subtitles2018, Global Voices, Tanzil and Tatoeba which are publicly available
on the OPUS website.[5] Considering that the amount of data to train increases
quadratic with the amount of target languages the authors decided to only use
2 target/pivot languages which are common, Spanish and English. Also some
low-resource languages like Swahili where used as input-data.[4][5]

Building LARO 5

5 Attention is all you need

Attention is all you need marks the starting point of most today’s state of the
art language models. In this section some fundamental ideas of this paper will be
covered intuitively. Attention is all you need introduced the Transformer model
which has the ability of learning sequences without being recurrent thus it made
it possible to make more efficient use of GPUs. Deep learning models in com-
puter vision where already able to do so. Nowadays deep learning models in
natural language processing can be trained on 10,000 GPUs with an batch-size
of several million only thanks to the introduction of Transformers. [6][7]

5.1 Byte Pair Encoding

Today in practice there exist dictionaries which translate a from the training
known token to a mathematical representation like a One-Hot-Vector or Em-
bedding.[9] Some problems remain with all those translating systems. The model
only knows the mathematical representation of tokens which are in the training
dataset and there exist too many words as well as conjugations of words as that
it is possible to cover all up in one dictionary.
Byte Pair Encoding was introduced as a simple data compression algorithm
and is being used to create a dictionary capable of almost solving this problem.

Fig. 3. Byte Pair Encoding example.[8]

Instead of lemmatizing or stem-
ming tokens during preprocessing,
the Byte Pair encoding Algorithm
tries to find common character se-
quences. Afterwards it adds them
into the dictionary until a prede-
fined maximum amount of tokens
(sequences of bytes) in the dic-
tionary is reached. To convert a
sentence into a sequence of dictio-
nary entries a greedy algorithm is
used.[10]

5.2 Model

The basic form of a Transformer model consists of a encoder and a decoder. While
the encoder takes a sequence and encodes it into a mathematically representation
the decoder decodes to an other sequence. Recent papers proposed to only use
the encoder (BERT) or decoder (GPT2) alone to train language models. [11][12]

6 Andre Soblechero Salvado

Positional Encoding The position of a token in a sequence may be important
for the meaning/sense of a sequence thus it should be included. In recurrent
networks the position-information of a token is given implicit, Transformers in
contrast need this information explicit because of the lack of recurrence. This
objective is reached by generating a unique vector per position in sequence eg.
the first token-embedding of a sequence gets always a unique vector added to it.

Fig. 4. Orginal Transformer visualised [7]

Encoder The encoder of a Trans-
former tries to encode the informa-
tion of a sequence to provide a rep-
resentation to the decoder. This goal
is attained by feeding the sequences
of vectors to several Layers where the
input dimension equals output dimen-
sion. The encoder can be mathemati-
cally represented as follows:

E : Rnxd 7→ Rnxd, (1)

where n is the number of elements in
the sequence and d a fixed dimension.
Each encoder layer consists of three
blocks.

1. Multi-Head Attention This
block is the part where informa-
tion from all input tokens can be
combined or routed from one to-
ken to another.

2. Add Norm This block is against
overtraining and completes the
residual block [13]

3. Feed Forward This block con-
sists of feed forward layers

4. Add Norm This block is against
overtraining and completes the sec-
ond residual block

Building LARO 7

Decoder The Transformer decoder differs from the Transformer encoder mainly
in three ways. The decoder can be mathematically represented as follows:

D : Rnxd 7→ Rnxd, (2)

Fig. 5. This picture vi-
sualizes the mechanism
of left attending Trans-
former decoders

1. Shifted Input The input sequence is shifted to
the right. Example: the input sentence ”I am danc-
ing” would be changed to ”[CLS] I am dancing”
where [CLS] is the start of sequence token. A
[EOS] token will be added to the target sequence
which the decoder should learn to generate eg. ”I
am dancing [EOS]” in this case the target token
of ”[CLS]” would be ”I”.

2. Masked Multi-Head Attention This Attention-
Block forces the decoder to learn the next token
by only using the left attending tokens.

3. Second Multi-Head Attention This Attention-
Block adds information from the encoder output.

5.3 Training

The original Transformer was trained on a translation task. The encoder encodes
a sentence in one language and the decoder translates the encoded sentence to
another language.

8 Andre Soblechero Salvado

6 XLM-RoBERTa

XLM-RoBERTa is the successor of RoBERTa and a large multi-lingual lan-
guage model. It is a Transformer-based model, technically a Transformer en-
coder, and was trained on 2.5TB of filtered CommonCrawl data in 100 different
languages.[15]

6.1 Masked Language Model

The pretraining task was the masked language model. Its task is to predict
words in a sentence which are masked or changed to a random other token. The
Transformer encoder generates exactly one output-vector for each input token.
The objective is to train those output-vectors to represent each input-token in
context of the whole sentence. This objective is accomplished by predicting the
masked/changed token with a special mapping in form of a Linear Layer from
the corresponding output-vector of the encoder to a vector with the length n,
where n is the size of the dictionary (250K Tokens). Finally a Softmax is applied
to the vector.[14] The sentences are all treated the same way thus there are no
language specific differences in the task. As an example the input ”I am dancing”
would be randomly masked to be ”I am [MASK]”, where the [MASK]-Token is
a new special token. The model now should predict ”dancing” by classifying the
output-vector which corresponds to the [MASK]-Token.

This training results in the model approximating the meaning and syntax of
all languages in the training data.

6.2 Pretraning models

There exist two pretrained models which can be used for finetuning. The first one
is XLM−RoBERTaBase with 125M parameters, 12 layers, a hidden dimension
d=768 and 8 heads for each multi-head attention layer. The second one is XLM−
RoBERTaLarge with 355M parameters, 24 layers, a hidden dimension d=1027
and 16 heads for each multi-head attention layer.

7 Introducing LARO

Most Transformer models and their variations are not providing any point in
their architecture where the model learns a representation of the whole sentence
but rather representations of tokens/words in context of a sentence. The original
Transformer encoder outputs a matrix with variable number of columns which
represent the encoded sentence. Therefore they are not feasible as a representa-
tion in eg. a vector space. What if it would be possible to use the Transformers
as an autoencoder which encodes a sequence to a vector with fixed dimension

Building LARO 9

and then decodes from the vector to an other sequence? With such an archi-
tecture a model could be trained with the same objective as LASER, but with
the state of the art power of Transformers. Further a pretrained encoder like
XLM-RoBERTa could be used to profit from transfer learning too.[16]

7.1 Model

A basic transformer model capable of being trained the same way as LASER can
be easily created. To do so first each encoder input gets a [CLS] Token added to
it like in BERT.[11] The german sentence ”Ich tanze” would result to ”[CLS] ich
tanze”. This special token, like other special tokens eg. [EOS], [PAD], [MASK]
or [UNK], is in the dictionary thus will not be splitted by the byte pair encoding.

Since each input-token has exactly one corresponding encoder output-vector
the to the [CLS] token corresponding encoder output-vector will be trained to
be the encoding of the meaning. This objective is reached by overwriting each
column of the encoder output matrix with the first column of it which is the to
the [CLS]-Token corresponding output-vector.

Enew = (AT
1 |...|AT

1)T (3)

where A1 denotes the first output column of the standard encoder E. This matrix
is then fed the same way as before to the decoder. The training task would remain
the same as for LASER, translate from many languages to some pivot languages.

The model can be extended by several new techniques, too, such as using lower
dimensional token embeddings with transformations via Lineare Layers to higher
ones or only use the parameters of one Layer and repeat this Layer several times
to reduce the size of the model like in ALBERT.[17] Furthermore a pretrained
encoder like XLM-RoBERTa as encoder and/or decoder could be used to reduce
the number of epochs needed. This maybe improve the general capability of the
model because of transfer learning. Otherwise a pretrained model could restrict
the Transformer model to the same languages, or similar ones, as used in the pre-
training process of them because the dictionary built with Byte Pair Encoding
is language specific. Furthermore the decoder could receive information about
the target language like in LASER.

10 Andre Soblechero Salvado

8 Experimental Setup

In this section all practical aspects will be covered. Starting with data selection
to the used platform, training and used frameworks.

8.1 Frameworks

As underlying script language Python 3.8 will be used. Above of Python the Py-
torch framework will be utilized to take heavy advantage of the power of the four
NVIDIA Quadro P6000 while performing math. Furthermore the Huggingface
Transformers framework will be used to be flexible with precomputed tokenizers
and pretrained models eg. RoBERTa-XLM. The LARO model will derive from
the EncoderDecoder class in the Framework and the trainer will also be from
Huggingface Transformers. In addition NVIDIA APEX will be utilized to speed
up the training by using mixed precision operations. Tensorboard is utilized to
monitor the training and GPU-VRAM usage. [18][19]

8.2 Data

As training-data the OPUS-100 Corpus will be used.[20] The OPUS-100 is a mul-
tilingual parallel corpus which is randomly generated from all available dataset
in the OPUS collection. The corpus is English-centric in other words in every
translation either the source or target sentence is in English. ”OPUS-100 con-
tains approximately 55 million sentence pairs. Of the 99 language pairs, 44 have
1M sentence pairs of training data, 73 have at least 100k, and 95 have at least
10k.” [5]
Although only 79 languages of the dataset where used during the XLM-RoBERTa
training 100 languages will be used during training. The hundredth language is
going to be English considering that English should also be used as input lan-
guage. Because LASER has shown that two pivot languages are sufficient we will
only utilize English as pivot language.(See the two tables on page 18) Because
only one pivot language is used the language embeddings for the decoder like in
LASER are unnecessary. The dataset is already split into train/dev/eval sets.
Additionally the Corpus needs to be extended by English to English sentence
pairs because without them the encoder may not be capable of encoding English
sentences effectively. The English sentences of the English to Spanish sentence
pairs will be used for this purpose. [5]

8.3 Pipeline

A training is technically defined as a job. A job is a running docker container. The
platform will have four NVIDIA Quadro P6000. Each of the GPUs have 24GB
of GDDR5 VRAM, which is important to notice because batch size matters and
thus VRAM size. The platform is providing 36 Threads and has 252 GB of RAM.

Building LARO 11

Pretraining This model will first be trained on translating from many lan-
guages to a pivot language like LASER. In contrast to LASER, LARO will be
trained on a different dataset.

Training on specific tasks After training the model, the language agnostic
encoder can be used for three different tasks:

1. Finetuning The resulting encoder could be finetuned for tasks like Sentiment-
Analysis. This usage is similar to transfer-learning and requires most of the
time a Linear Layer on top of the context-vector.

2. Freezed training The encoder parameters do not change while training
a classifier on the context-vectors. This way of using the encoder makes it
possible to maintain language agnostic context-vectors while training on eg.
unilingual data. This implies that the classifier can be used independent from
the input language.

3. Mathematical comparability of sentences using cosine distance The
encoder makes it possible to project data into a vector space. Equal data
may have similar vectors thus the encoder makes it possible to determine
whether two encoded sentences are similar or not. This implies the effective
usage of nearest neighbour search algorithms on texts which are eg. heavily
used in recommendation systems.

9 Evaluation

Metrices are needed for two purposes. The first one is comparison to other mul-
tilanguage models. The second one is to find a sufficient convergence criterion to
stop training the model before overtraining. For the reason that the model can
be used in multiple ways there are multiple metrics.

As convergence criteria metrics for generative tasks like BLEU can be used to
check whether the model is still converging or if progress stopped.
After training similarity metrics on a test-dataset can be used to evaluate if the
encoder is generating sufficient sentence representations.
Furthermore standard metrics for benchmarks need to be used to compare the
model with other models, but since the training is not about getting new state of
the art scores and more about using data language agnostic as well as optimizing
for low-resource languages, most benchmarks are negligible.

12 Andre Soblechero Salvado

9.1 BLEU: a Method for Automatic Evaluation of Machine
Translation

BLEU is a modified precision used to measure the quality of translations. The
measurement was introduced because most scores until BLEU where not tak-
ing into account that translations could be syntactical variational. Furthermore
BLEU respects not only the words which appear in the generated translation but
also n-grams, which are fragments of the sentence where each fragment consists
of n Tokens.[21]

Modified Precision Lets take the bad machine translation output ”the the the
the the the the” and the reference ”The cat is on the mat”. The normal preci-
sion would be 7

7 because seven tokens of the machine translation output appear
in the reference. This problem shows that a modified precision is required to
evaluate machine translations. The modified precision score would be 2

7 because
”the” appears 2 times in the reference sentence and the length of the machine
translations output sentence is 7.

N-Gram BLEU The machine translation output sentence ”The cat the cat on
the mat” would have a modified score of 7/7 because all tokens of the sentence
appear in reference. This shows us another problem with the modified precision
when only using tokens/unigrams. To solve this problem the N-Gram BLEU was
introduced. The N-Gram BLEU takes N-Grams instead of unigrams/tokens.
”The cat The cat on the mat” in 2-Grams {The cat, cat The, The cat, cat on,
on the, the mat}
”The cat is on the mat” in 2-Grams {The cat, cat is, is on, on the, the mat}
The modified precision would be 3

6 = 0.5 because 3 2-Grams of the reference
sentence appear in the 6 2-Grams of the machine translation output. Formally
this can be described as follows:

pn =

∑
C∈{Candidates}

∑
n−gram∈C Countclip(n− gram)∑

C′∈{Candidates}
∑

n−gram′∈C′ Count(n− gram′)
(4)

Details If the machine translation output is much shorter that the reference
than another problem appears. Taking last reference and the new machine trans-
lation output ”The cat”. The modified precision for 2-Grams would be 1

1 because
one 2-Gram out of one appears in the reference. This problem is solved by a
brevity penalty:

BP =

{
1, if c > r

e1−r/c, if c ≤ r

BLEU is then defined as follows:

BLEU = BP ∗ exp(

N∑
n=1

wnlogpn) (5)

Usually N=4 is being used.

Building LARO 13

9.2 Cosine Similarity

The cosine similarity has the purpose to measure the similarity of two vectors.
Unlike the measurement is the distance of two vectors the cosine similarity score
measures the angle between two vectors. This is quite useful because distances
in vector spaces of very high dimensions can vary quite heavy thus these scores
can be useless. [22] When two vectors are more equal than other two than the
resulting number is higher. Because the objective of this paper is to build a model
which encodes sentences into vectors which somehow represent the meaning of
a sentence this measurement can be quiet useful. For example it is possible to
check if similar sentences in different languages are similar or unequal sentences
less similar. This would give us the possibility to measure the effectiveness of a
model. The cosine similarity is for two vectors A and B defined as follows:∑n

i=1 AiBi√∑n
i=1 A

2
i

√∑n
i=1 B

2
i

(6)

10 Benchmarks

NLP benchmarks are crucial for measuring general progress in the areas. There
exists a variety of benchmarks which all try to measure different aspects of NLP.
Because LAROs focus will be to generate language agnostic sentence embeddings
only some benchmarks are qualified. Some of those benchmarks will be described
in this section.

10.1 Cross-lingual Natural Language Inference (XNLI)

The XNLI corpus can be used to evaluate Cross-lingual encoders. The corpus
builds around the question on how to ”make predictions in any language at
test time, when we only have English training data for that task?”[23][24] The
XNLI Corpus is a crowd sourced collection of 5,000 test and 2,500 dev pair for
the MultiNLI corpus. Those pairs are then translated into 14 languages thus it
contains 112.5k annotated sentences pairs. Low resource languages like Swahili
are included too. This benchmark can evaluate the effectiveness of LARO in
cross lingual tasks as well as on how well it handles input sentences in languages
which he was not trained on.

The evaluation procedure would be as follows:

1. Each sentence of each pair will be encoded by LARO.
2. The cosine similarity will be used to compute the similarity of each pair
3. When the similarity is below 0.5 then the pair count as false negative (FN)

else true positive (TP).
4. The final score would be S = TP

TP+FN

By following this procedure it is possible to analyze up to what point the
sentences are encoded language agnostic.

14 Andre Soblechero Salvado

10.2 Tatoeba: similarity search

The Tatoeba benchmark evaluates in contrast to XNLI 112 languages. The cor-
pus contains about 1,000 English-aligned sentence pairs for each language. For
each language the 1,000 English-aligned sentence pairs do not necessary inter-
sect. The task is to find the nearest neighbour for each sentence in the respective
other language by using cosine similarity. Micro average is used as score. [3]

11 Proof of concept

Fig. 6. DEV loss after each epoch

Fig. 7. Loss every 500 steps

As proof of concept the model has
been implemented and trained on
a machine translation task from
Spanish to English for five epochs
on four P6000 GPUs, this proce-
dure took about 37 hours. Instead
of working with the original XLM-
RoBERTa model, two pretrained dis-
tilled RoBERTa models where used to
decrease training time and VRAM us-
age because the basic XLM-RoBERTa
is quite huge and the standard atten-
tion mechanism very expensive. The
distilled RoBERTa model is a Trans-
former model with less Layers and
Attention Heads and was trained to
reproduce the outputs of the origi-
nal RoBERTa model. [19][25] The en-
coder as well as the decoder where
pretrained to reduce training dura-
tion. Furthermore every data-point
which has more than 300 Tokens was
ignored. Instead of the BLEU score af-
ter each epoch the dev loss was calcu-
lated to ensure that the model learns
something. The training is followed by
a evaluation of the evaluation data us-
ing the BLEU score. The BLEU score
was not used between every epoch be-
cause decoding every translation au-
toregressivly is very time consuming. Additionally the cosine distance of several
example sentences where calculated to ensure that the sentence embedding is
capable of expressing the meaning of a sentence. The example sentences are sev-
eral versions of ”how are you” in Spanish and several sentences which are not
equal to ”how are you” in Spanish. The several versions of ”how are you” in
Spanish had all a very similar cosine similarity to each other. (> 0.8) The other

Building LARO 15

sentences did not have a high similarity distance to any other sentence above
(< 0.8). The BLEU Score was between 19 and 20, what indicates that the model
produces sentences which can be described like following: ”The gist is clear, but
has significant grammatical errors”.[27] This is not surprising considering that
the model was only trained for 5 Epochs. This tests and evaluations lead me
to the conclusion that it would be possible to train language agnostic sentence
embeddings with LARO.[26]

12 Outlook and limitations

Finally the training of LARO is limited by time considering that 5 epochs of
training on the Spanish-English dataset took about 37 hours and that the next
objective is to train LARO on the whole dataset. A naive prognosis of the time
which the final training would take considering that eight GPUs instead of four
will be used, what halves the training duration, and that the Spanish-English
dataset consists of 2 million data-points and the whole dataset of 50 million data-
points would be about 37h/(2+2)∗50 = 462.5h or about 19 days. Because of this
number the distilled RoBERTa model or a more efficient model will be used in
future experiments instead of the XLM-RoBERTa model. Furthermore Google
AI has recently released LABSE, a BERT model which is capable of generating
language agnostic sentence embeddings. It was trained on more data than the
OPUS-100 dataset consists of and it is currently state of the art in some cross
lingual benchmarks. For future experiments it may be helpful to train LARO at
first on a small cross-lingual sub dataset of OPUS-100. Summarizing the final
LARO model or LABSE will be a good basic instrument to perform Cross-
language information retrieval tasks, benchmarks and recommendation systems
in general.

16 Andre Soblechero Salvado

References

1. Jian-Yun Nie: Cross-Language Information Retrieval.
Morgan & Claypool, University of Montreal (2010)
http://www.iro.umontreal.ca/ nie/IFT6255/Books/CLIR.pdf

2. Dzmitry Bahdanau and Kyunghyun Cho and Yoshua Bengio: Neural Machine Trans-
lation by Jointly Learning to Align and Translate. arXiv:1409.0473. 2016

3. Mikel Artetxe and Holger Schwenk: Massively Multilingual Sentence Embeddings
for Zero-Shot Cross-Lingual Transfer and Beyond. arXiv:1812.10464. 2019

4. Vishrav Chaudhary and Yuqing Tang and Francisco Guzmán and Holger Schwenk
and Philipp Koehn: Low-Resource Corpus Filtering using Multilingual Sentence
Embeddings. arXiv:1906.08885. 2019

5. Jörg Tiedemann: Parallel Data, Tools and Interfaces in OPUS. In: Nicoletta Cal-
zolari (Conference Chair) and Khalid Choukri and Thierry Declerck and Mehmet
Ugur Dogan and Bente Maegaard and Joseph Mariani and Jan Odijk and Stelios
Piperidis, Proceedings of the Eight International Conference on Language Resources
and Evaluation (LREC’12). European Language Resources Association (ELRA), Is-
tanbul, Turkey (2012). https://doi.org/978-2-9517408-7-7 http://opus.nlpl.eu/

6. Tom B. Brown and Benjamin Mann and Nick Ryder and Melanie Subbiah and Jared
Kaplan and Prafulla Dhariwal and Arvind Neelakantan and Pranav Shyam and
Girish Sastry and Amanda Askell and Sandhini Agarwal and Ariel HerBERT-Voss
and Gretchen Krueger and Tom Henighan and Rewon Child and Aditya Ramesh
and Daniel M. Ziegler and Jeffrey Wu and Clemens Winter and Christopher Hesse
and Mark Chen and Eric Sigler and Mateusz Litwin and Scott Gray and Benjamin
Chess and Jack Clark and Christopher Berner and Sam McCandlish and Alec Rad-
ford and Ilya Sutskever and Dario Amodei: Language Models are Few-Shot Learn-
ers.arXiv:2005.14165. 2020

7. Ashish Vaswani and Noam Shazeer and Niki Parmar and Jakob Uszkoreit and Llion
Jones and Aidan N. Gomez and Lukasz Kaiser and Illia Polosukhin: Ashish Vaswani
and Noam Shazeer and Niki Parmar and Jakob Uszkoreit and Llion Jones and Aidan
N. Gomez and Lukasz Kaiser and Illia Polosukhin. arXiv:1706.03762. 2017

8. Zhan, Junlang: “An effective feature representation of web log data by leverag-
ing byte pair encoding and TF-IDF.” Proceedings of the ACM Turing Celebration
Conference - China (2019): n. pag.

9. Mikolov, Tomas and Sutskever, Ilya and Chen, Kai and Corrado, Greg S and Dean,
Jeff: Distributed Representations of Words and Phrases and their Compositionality.
Distributed Representations of Words and Phrases and their Compositionality. C. J.
C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K. Q. Weinberger.
Curran Associates, Inc. 2013: 3111–3119

10. Zhan, Junlang, X. Liao, Y. Bao, L. Gan, Zhiwen Tan, Mengxue Zhang, Ruan He
and J. Lu: An effective feature representation of web log data by leveraging byte
pair encoding and TF-IDF. Proceedings of the ACM Turing Celebration Conference
- China (2019)

11. Jacob Devlin and Ming-Wei Chang and Kenton Lee and Kristina Toutanova:
BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-
ing. arXiv:1810.04805. 2019

12. Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario
and Sutskever, Ilya: Language Models are Unsupervised Multitask Learners. 2019

13. Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun: Deep Residual
Learning for Image Recognition. arXiv:1512.03385. 2015

Building LARO 17

14. Chigozie Enyinna Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen
Marshall: Activation Functions: Comparison of Trends in Practice and Research for
Deep Learning. arXiv:1811.03378v1. 2018

15. Unsupervised Cross-lingual Representation Learning at Scale: Alexis Conneau and
Kartikay Khandelwal and Naman Goyal and Vishrav Chaudhary and Guillaume
Wenzek and Francisco Guzmán and Edouard Grave and Myle Ott and Luke Zettle-
moyer and Veselin Stoyanov. arXiv:1911.02116. 2020

16. Fuzhen Zhuang and Zhiyuan Qi and Keyu Duan and Dongbo Xi and Yongchun
Zhu and Hengshu Zhu and Hui Xiong and Qing He: A Comprehensive Survey on
Transfer Learning. arXiv:1911.02685. 2020

17. Zhenzhong Lan and Mingda Chen and Sebastian Goodman and Kevin Gimpel
and Piyush Sharma and Radu Soricut: ALBERT: A Lite BERT for Self-supervised
Learning of Language Representations. arXiv:1909.11942. 2020

18. Paszke, Adam and Gross, Sam and Massa, Francisco and Lerer, Adam and Brad-
bury, James and Chanan, Gregory and Killeen, Trevor and Lin, Zeming and
Gimelshein, Natalia and Antiga, Luca and Desmaison, Alban and Kopf, Andreas
and Yang, Edward and DeVito, Zachary and Raison, Martin and Tejani, Alykhan
and Chilamkurthy, Sasank and Steiner, Benoit and Fang, Lu and Bai, Junjie and
Chintala, Soumith: PyTorch: An Imperative Style, High-Performance Deep Learning
Library. Advances in Neural Information Processing Systems 32. Curran Associates,
Inc.. 2019 :8024–8035 http://papers.neurips.cc/paper/9015-pytorch-an-imperative-
style-high-performance-deep-learning-library.pdf

19. Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and
Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi
Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von
Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven
Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexan-
der M. Rush: HuggingFace’s Transformers: State-of-the-art Natural Language Pro-
cessing. arXiv:1910.03771. 2020

20. Biao Zhang and Philip Williams and Ivan Titov and Rico Sennrich: Improv-
ing Massively Multilingual Neural Machine Translation and Zero-Shot Translation.
arXiv:2004.11867. 2020 http://opus.nlpl.eu/opus-100.php

21. Papineni, Kishore Roukos, Salim Ward, Todd Zhu, Wei Jing. (2002).
BLEU: a Method for Automatic Evaluation of Machine Translation.
10.3115/1073083.1073135.

22. Rahutomo, Faisal Kitasuka, Teruaki Aritsugi, Masayoshi. (2012). Semantic Cosine
Similarity.

23. https://github.com/facebookresearch/XNLI
24. Alexis Conneau and Guillaume Lample and Ruty Rinott and Adina Williams and

Samuel R. Bowman and Holger Schwenk and Veselin Stoyanov: XNLI: Evaluating
Cross-lingual Sentence Representations. arXiv:1809.05053. 2018

25. Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf:
DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter.
arXiv:1910.01108. 2020

26. LARO. 18.10.2020 https://github.com/AndreSoble/TransformerAutoencoder
27. Google Evaluation. 18.10.2020 https://cloud.google.com/translate/automl/docs/evaluate

: :text=BLEU%20(BiLingual%20Evaluation%20Understudy)%20is,of%20high%
20quality%20reference%20translations.

28. Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term
Memory. Neural Comput. 9, 8 (November 15, 1997), 1735–1780.
DOI:https://doi.org/10.1162/neco.1997.9.8.1735

18 Andre Soblechero Salvado

13 Attachement

ISO code en
af 279512
am 93027
an 6961
ar 1004000
as 142479
az 266089
be 71312
bg 1004000
bn 1004000
br 157447
bs 1004000
ca 1004000
cs 1004000
cy 293521
da 1004000
de 1004000
dz 624
el 1004000
eo 682212
es 2008000
et 2008000
eu 2008000
fa 2008000
fi 2008000
fr 2008000
fy 116684
ga 587048
gd 39054
gl 1038688
gu 644612
ha 203966
he 2008000
hi 1076638
hr 2008000
hu 2008000
hy 14118
id 2008000
ig 44202
is 2008000
it 2008000
ja 2008000
ka 762612
kk 167854
km 230966
kn 32744
ko 2008000
ku 297688
ky 62430
li 59070
lt 2008000

ISO code en
lv 2008000
mg 1189542
mk 2008000
ml 1653492
mn 8588
mr 62014
ms 2008000
mt 2008000
my 57188
nb 293812
ne 820762
nl 2008000
nn 980110
no 2008000
oc 79582
or 33816
pa 222592
pl 2008000
ps 166254
pt 2008000
ro 2008000
ru 2008000
rw 355646
se 79814
sh 542422
si 1966218
sk 2008000
sl 2008000
sq 2008000
sr 2008000
sv 2008000
ta 462028
te 136704
tg 395764
th 2008000
tk 33628
tr 2008000
tt 209686
ug 152340
uk 2008000
ur 1515826
uz 354314
vi 2008000
wa 216992
xh 887342
yi 38020
yo 20750
zh 2008000
zu 85232
en 2008000

