End-to-end Deep Learning pipeline for Facial
Expression Recognition

Thi Huyen Cao

University of Applied Science Hamburg
Berliner Tor 5, 20099 Hamburg, Germany
thihuyen.cao@haw-hamburg.de

Abstract. Deep Learning has recently achieved the state of the art of
many challenging tasks including Facial Expression Recognition. This
paper describes an end-to-end Deep Learning pipeline for classifying
6 basic emotions (anger, disgust, fear, happiness, sadness, surprise) on
short videos. The pipeline contains concrete steps from preparing data,
performing training to evaluating model with detailed description and
suggestion for the implementation. Result from this experiment will be
reported in the follow-up project.

Keywords: Facial Expression Recognition (FER) - Deep Learning -
Face Detection - Face Tracking - Neural Networks

1 Introduction

Facial Expression Recognition (FER) is one of the most interesting and challeng-
ing researches in Computer Vision field. It refers to the task of understanding
the facial expression and furthermore the emotion underneath. Facial expression
contains most information about the expressed emotional state besides speech,
context and body language. While it is quite natural for human being to perform
and interact with facial expression, it is obviously difficult for machine. Identi-
fying the emotion requires machine to find the necessary features, patterns and
evidence from the data. [I] summarizes the historical development as well as the
state of the art of FER with static image and dynamic image sequence, which is
Deep Learning. The art of DL is to use deep neural networks, which are inspired
from the human brain to learn the important information from raw data to
solve particular task. As that, DL offers the opportunity to build an end-to-end
training process.

This paper proposes an end-to-end pipeline for FER using Deep Learning.
The implementation and evaluation of this pipeline will be done in the follow-
ing project. The rest of the paper is organized as follows. Some main concepts
involved in FER are introduced in section 2. Section 3 describes the experiment
setup in detail including the decision of emotion approach, dataset, tools, in-
frastructure set up and the construction of the pipeline. Some conclusions are
drawn in the last section. Furthermore, this section will give some overview of
the future work in the follow-up project.

2 Thi Huyen Cao

2 Concepts

2.1 Face Detection and Tracking

FER begins with identifying and localizing faces in order to reduce the redun-
dant information in the surrounding area. According to Dr. Robert Frischholz
[2], there are many approaches which have been used for Face Detection such
as using typical skin color to find face segments, finding faces by motion, us-
ing Edge-Orientation Matching, Hausdorff Distance, using Cascade of classifier,
using Histogram of Oriented Gradients (HOG) or Deep Learning.

One of the classical and well-known face detector is Haar Feature-based
Cascade Classifiers or Haar Cascade, which was introduced by Paul Viola and
Michael Jones in 2001 [3]. It is a a Machine Learning object detection algorithm
in images and videos, which is mainly used for detecting face and body parts.
The algorithm is trained with a lot of positive and negative images, for example
images with and without a face. It uses a boosted algorithm called Adaboost to
learn a range of simple or weak features and combine them weightedly to provide
a strong classifier. Especially, it proposes the concept of Cascade of Classifier [3]
to increase the detection performance as well as reduce rapidly the computa-
tion by identifying and skipping negative areas as soon as possible. Cascade of
Classifier contains multiple stages, which use classifiers in a hierachy of increas-
ing complexity. It means that early stages use a simple classifier which is built
from less features. These stages cost very less computational power and could
effectively remove a lot of negative sub-windows. Sub-windows which pass early
stages will be processed in later stages with more complex classifiers. To sum-
mary, Haar Cascade is robust, computationally efficient and can be used easily
with some lines of code from OpenCV B There are a lot of good pre-trained
networks documented in [4]. Besides, [5] [6] show how to train such detector
with own data to meet the requirement of particular application.

In recent years, many detectors trained with Deep Learning have been ex-
ploited and showed remarkable results such as Multi-task Convolutional Neural
Network (MTCNN), Tasks-Constrained Deep Convolutional Network (TCDCN),
RetinaFace, along with others. Deep Learning has become the state of the art
of Face Detection in term of high speed and accuracy. The MTCNN is the most
popular one since it performs very well on a range of benchmark datasets and is
capable of detecting facial landmarks in addition. It is first introduced in 2016
[7]. The network uses a cascade structure with three sub-networks: P-Net, R-Net
and O-Net. Firstly, the image is re-scaled to a range of different sizes (also called
the image pyramid). Then the first model (P-Net) does the coarse face detection
producing proposal regions, which are fed to the second model (R-Net) for re-
finement. The last model (O-Net) does the facial landmarking. Non-Maximum
Suppression (NMS) algorithm is used in between to reduce the number of over-
lapping boxes in certain regions. The network architecture is well described in
the original paper and there are a lot of pre-trained networks as well as im-
plementation available as open source [8]. Face detector could also work with a

1 A popular open source library for Computer Vision

End-to-end Deep Learning pipeline for Facial Expression Recognition 3

frame sequence, in which faces are detected in each frame separately. However,
face shape (mouth, eye, cheek etc.) and orientation tends to change over time,
which causes a lot of difficulties for face detector. The temporal factor plays a
very important role in such frame sequences since the location of face in last
frame is essential for finding face in the current frame. Tracker takes exactly ad-
vantage of this information and performs in general better than frame-to-frame
detecting. [9] pointed out some clearly good reasons why tracker works more
efficient than detector on videos:

1. Tracker is faster than detector: while detector always starts finding faces
from scratch, tracker can search for face in the surrounding of last position
and therefore reduce a lot of computational power.

. Tracker is preciser than detector: detector fails quite often if the appearance

of faces is not typical e.g. in cases of occlusion, too small eye, too big mouth,

a good tracker on the other hand can handle those problems quite smoothly.

Tracker preserves identity: beside outputting the location of faces, tracker

can also report their identities which are held consistently through the video.

The table below summarizes a list of common trackers with their pros and cons.
A more detail on each tracker can be further found here [9].

Tracker Pros Cons
BOOSTING |None (a decade old) unreliable failure report
MIL E| better than BOOSTING unreliable failure report,
handle occlusion poorly
KCF El better, faster, and reports failure better/handle occlusion poorly
than BOOSTING and MIL
TLDEl works well under occlusion, over scalelhigh rate of false positive
changes
MedianFlow |excellent failure report, works well|fails under large of jump
when motion is predictable and no oc-|in motion
clusion
MOSSEﬂ robust to variations in lighting, scale,|-
pose and non-rigid deformations, occlu-
sion and works at higher frame rate 669
fps
CSRT high accuracy operates at lower frame
rate 25 fps

2 Multiple Instance Learning

3 Kernelized Correlation Filters

4 Tracking, learning and detection

5 a negative sample is mistakenly classified as positive
5 Minimum Ouput Sum of Squared Error

4 Thi Huyen Cao

2.2 Artificial Neural Networks

The word ”"Deep” in Deep Learning refers to the depth of the used Neural Net-
works. Deep Neural Networks or in other word Deep Learning has been proven
to be able to solve a lot of challenging problems with high complexity such as
image recognition, voice recognition, video classification, anomalies prediction
and so on. It is believed that Neural Networks are inspired by biological neu-
ral system which controls the functionality of the brain. In core, it contains a
specific set of algorithms for function approximation in order to map a number
of input examples to a number of output classes. It is done by constructing a
network containing layers and neurons which hold the useful information for
the task. These layers are called data representation and information is passed
through layers depending on whether the neurons are activated or not. This
whole process is controlled by a system of parameters (weights and bias for each
layers, configuration for cost function, optimizer function etc.) which need to
be found so that the complex mapping between input and output works best. It
is an iterative process and is shortly described in 3 steps: forwardpropagation,
cost, calculation and backpropagation. The parameters are chosen randomly or
due to developer’s experience at the beginning. Input value is calculated through
layers and a prediction is made at output layer, which is then compared with the
ground truth using a specific cost function. Depending on the calculated cost,
the parameters will be adapted in the correct direction. It is repeatedly until a
suitable set of parameters is found which meets the requirement of the task (ac-
curacy, network size, precision or recall performance and so on). For the purpose
of FER, only some topologies of Neural Networks with good performance and
high probability of usage for this task are introduced in the following.

— CNN, Residual Network and C3D: Convolutional Neural Network (CNN)
has gained a lot of success in the field of Computer Vision beginning with
LeNet, which was proposed in 1998 to read zip-code, digit along with others,
following by AlexNet, ZF-Net, GoogLeNet, VGG, ResNet, ResNeXt, SENet
which won the ImageNet Image Large Scale Visual Recognition Challenge
ILSVRC on millions of images over thousands of categories in the period
of 2012-2017. CNN makes use of the mathematical operation convolution,
which expresses the overlap of a function shifting over another. It uses in
other word called filter kernel or convolutional kernel to extract feature from
data by sliding the kernel through all possible locations in an image. Typ-
ical kernels by observing successful architecture are 3x3 and 5x5. On one
hand, it captures very well the relationship among pixels in a neighborhood
which is especially useful for image recognition. On the other hand, it re-
duces significantly number of parameters thank to the share weights among
regions and as a result computational power. The typical layers of CNN
are convolutional layer (CONV), pooling layer (POOL) and fully connected
layer (FC). CONV is the core block of CNN and also called feature map
since it serves as feature extraction of input. It is built by scanning the filter
kernel through the image, shifting by s pixels. As a consequence, it continu-
ously shrinks the width and height dimension of feature map in deeper layer,

End-to-end Deep Learning pipeline for Facial Expression Recognition 5

which can be easily solved by padding. POOL is also called downsampling
layer. It helps reduce the spatial size while keeping the depth. Is is believed
that POOL helps compress the important information in a less volume and
as that avoids overfitting and reduces computing cost. FC serves mostly as
classification layer. It has been showed in a lot of works that the first lay-
ers of CNN extract general information such as edge, curve and the deep
layers more complex feature such as eye, mouth. While 2-dimension CNN
or C2D works well with image (grayscale or color), it does not perform well
on video since it is not able to capture temporal feature. C3D was proposed
in 2010 as a solution, also known as 3D ConvNets [10]. It uses a 3D kernel
to extract not only feature in space but also motion information encoded in
multiple adjacent frames, produces a 3D feature map instead of 2D as in orig-
inal CNN. [IT] investigated further the problems of training and optimizing
deeper CNN and proposed a new CNN architecture called Residual Network.
Residual Network contains basically CNN or feed forward layers with short-
cut connections or also called residual connection. Shortcut connections are
those skipping one or more layers. A firm argument why Residual Network
can train way more layers than other network architecture is that layer with
shortcuts can realize identity mapping and can not theoretically cause the
training worse. Another explanation for the quality of Residual Network is
that it behaves as an ensemble of multiple sub-networks [12]. DenseNet is
similar to Residual Network with more connections and is proven to be capa-
ble of training even more layers. In each dense-block, there are connections
among all input and output from each layer. To do FER, understanding what
appear in the image is essential. It is exactly where CNN can contribute to
this task.

RNN and LSTM: While CNN performs well on visual data, Recurrent
Neural Network (RNN) is known as a good architecture for processing time
series (data with variable length) such as stock prices, weather data, logs,
feedbacks and so on. RNN processes data timestep by timestep e.g. word by
word in a sentence. It has an internal memory, which allows it to hold the
information of the sequence it has seen so far. A RNN layer of n neurons
can be unrolled in time as n feed forward layers with shared weights. The
concept of backward training for RNN is called backpropagation through
time (BPTT). The loss is calculated across all timesteps and summed up.
Weights are then updated in a backward direction. This way of training can
be very slow if the input is a very long sequence. In addition, too big or too
small gradient can lead to vanishing or exploding gradients problem. Trun-
cated BPTT came as a solution, which limits the number of timesteps used
on forward- and backpropagation. Long Short Term Memory (LSTM) is a
special type of RNN, which is designed to remember long-term dependencies
as its default behavior. It was first proposed in 1997 by Sepp Hochreiter and
Jirgen Schmidhuber [I3]. It introduces the concept of gate control which
manages the information flow. A LSTM block contains an input unit, 3 gate
control (input, output and forget) and a memory cell state. Information can
be added, updated and removed from cell state carefully by 3 gate control.

6 Thi Huyen Cao

Gate control is built from a sigmoid layer with value in range from 0 to 1,
which represents how much information should be passed through the gate.
The art of LSTM is to learn how to learn, to learn how to pass, keep and
forget the given information so that the useful information can be found at
the end in order to solve the task. FER for video requires knowledge about
the relationship among frames, about how the facial expression is changed
over time. RNN can help at this point.

— Hybrid: Each network architecture has its own advantage and disadvan-
tage. CNN extracts well visual features while RNN understands feature in
time. Hybrid is an ensemble of multiple networks, which combines different
architecture and as a result accumulate all their advantages. A well-known
hydrid network is called Long-term Recurrent Convolutional Network (LR~
CNN), which stacks CNN layers as frontend and LSTM layers as backend.
According to [I4], LRCNN is ”doubly deep”: deep in space thank to CNN
to extract spatial feature in each frame and deep in time due to LSTM to
extract temporal feature among frames. Such network is a very potential
candidate for task like FER.

3 Experiment Setup

3.1 Emotion Approach

There are 2 common emotion approaches: categorical and dimensional. Dimen-
sional approach, also known as continuous emotion consider emotions as points
in a continuous space and emphasizes that there are certain factors which exist
in every single emotion. Therefore, each emotion can be represented by a point
in n-factor coordinate system e.g. 2D of arousal and valence, 3D of pleasantness,
attention and level of activation. It covers a huge range of emotion and as a result
illustrates the complexity of human emotion. Categorical approach, also called
discrete emotion on the other hand relies on the theory of universal facial behav-
ior. One of the original source can be recalled to the book ”The Expression of
the Emotions in Man and Animals” by C. Darwin in 1872. A further experiment
by Ekman and Friesen [I5] determines that there are indeed 6 basic emotion
which are anger, disgust, fear, happiness, sadness, surprise. Many other models
of more or less emotions were created in the later years. There are continuous
discussions around these 2 approaches. However, categorical approach is often
chosen over dimensional with firm arguments of complexity, application context
and goal. The complexity of dimensional approach makes it very hard to create
qualitative ground truth. Annotators from crowd-sourcing services like Amazon
Mechanical Turk are indeed unreliable for this task because of the lack of knowl-
edge on the general concept. The landscape of application for this approach is
also too less discussed so far. Therefore, the author believes that categorical ap-
proach is the right choice for the current state of FER. A classification task of
6 basic emotions mentioned by Ekman and Friesen will be implemented in this
project.

End-to-end Deep Learning pipeline for Facial Expression Recognition 7

3.2 Dataset

There are a lot of datasets in laboratory and in the wild available for public
and research, both static image and video. Emotion is expressed naturally by
the change of facial expression in time. For this reason, even though image of
emotion with high intensity can be a good resource, the author decided to go
with a video dataset. University Binghamton constructs a range of datasets for
analyzing facial expressions and emotions, especially in three dimensional space
or with multimodal sensing and releases them for public [16]. For this experiment,
BU-4DFE is used. It is a high-resolution 3D dynamic facial expression database,
recording on 101 objects with a variety of ethnic/racial ancestries, including
Asian, Black, Hispanic/Latino and White. Each object performs 6 basic emotions
(anger, disgust, happiness, fear, sadness, and surprise) with the instruction from
professional psychologist. A detail on the process of creating the dataset can be
read further in [I7].

3.3 Pipeline

The standard algorithmic pipeline for FER consists of 4 major steps as showed
in Figure[I] The trained and validated model is the result of this pipeline. This
pipeline focuses strongly on building a model and will ignore detail on how the
model is optimized and deployed in real application or re-trained at run time.
Since Neural Network is capable of learning feature from raw data, the step of
extracting feature can be skipped.

Data —* Feature extraction —» Training — Evaluation

Fig. 1. Standard pipeline for FER

Step 1 is called Data or "procure” data. This step is about preparing data
for step Training which includes choosing available datasets or creating a new
one by collecting data from different resources or augmenting data to multiple
the available data, annotation, clean-up mismatched data, preprocessing, storing
data in disk or cloud. Since no feature engineering is neccessary, the next step
called Training or in other word feature learning is about building the model
which meets the requirement of particular task using the available resources
(computing, human resources, budget). It contains decision about network ar-
chitecture, platform for training (local or cloud), libraries (TF-Keras, Pytorch,
etc.) and the process of hyperparameter optimization. This step is empirical and
requires a good understanding of training techniques such as regularization, nor-
malization, transfer learning, cost function, optimizer and so on in order to tune
the parameters against overfitting and underfitting. In addition, a good evalua-
tion matrix during training will help visualize the current situation clearly and

8 Thi Huyen Cao

helps developer make good decision at modifying hyperparameters correspond-
ing. Last step is about evaluating the trained model on a test set and detailed
analysis about model performance and error. Figure [2] shows the pipeline for
FER derived from the one mention above with an overview of subtasks and used
tools. In the following, each step will be reviewed in detail.

Data Training Evaluation

Create dataset Choose Data augmentation
directory Architecture online

Model performance

Face detection comparisen

Accuracy/Loss

Create dataset

Face tracking [l Training techiquea Metwork stafistic Confusion Matrix Visualization Tool
Crop and resize - Trained model N Metwork
tace Data statistics slorage Error Analysis visualization

opency, h5py. keras, tensorflow, scikit-leam, tensorboard, bokek

Fig. 2. Implemented pipeline for FER

1. Data: This part is mostly about preprocessing because an available dataset
is used. First step is to detect face in the video. As the dataset is recorded in a
setup environment, it is easy to localize face. For this reason, Haar Cascade is
used as face detector because of its good performance at frontal face detection
and efficient computation. Face is then tracked through the video by a tracker,
which will be chosen after the method ”trial and error”. Different trackers should
be tested on a number of examples and evaluated on accuracy and processing
time. Detected face is then resized to a reasonable shape. The output will be
stored in a directory after this structure /person/[videos]. Data will then be di-
vided into train, validation and test set. The split into 3 datasets ensures that
model can be evaluated on an unseen dataset during training (validation set)
and the final model on a complete new set (test set). Preprocessed data can be
written to hdf5 file |Z| and is ready for training. Moreover, some statistics can be
run through the whole dataset to gain some insights e.g. average video length

2. Training: the very first step at training is choosing network architecture.
One thing to keep in mind is the characteristic of FER which requires under-
standing of both visual appearance (feature in space) and temporal dependency
among frames (feature in time). [I] summarizes a range of proposals from differ-
ent papers, which results in 3 main approaches: frame aggregation, expression
intensity and spatio-temporal network. Among those 3, deep spatio-temporal
networks are widely deployed on evaluated benchmarks and have proven to im-

" HDF5 (Hierarchical Data Format v5) is an open-source technology to store and
manage extremely large and complex data collections

End-to-end Deep Learning pipeline for Facial Expression Recognition 9

prove the performance further in comparison to the others. Table [3] shows again
all discussed method for FER on dynamic data in regards to the capability of
representing spatial and temporal information, the requirement on training data
size and frame length (variable or fixed), the computational efficiency and the
performance [I]. It is clearly to see that Cascaded Network (CN) can extract both

Network type data spatial temporal frame length aCCUracy efficiency
Frame aggregation low good no depends fair high
Expression intensity fair good low fixed fair varies

RNN low low zood variable low fair

Spatio- C3D high good fair fixed low fair

temporal FLT fair fair fair fixed low high
network CN high good zood variable good fair
NE low good zood fixed eood low

Fig. 3. Comparison of different types of methods for dynamic image sequences in terms
of data size requirement, representability of spatial and temporal information, require-
ment on frame length, performance, and computational efficiency. FL'T = Facial Land-
mark Trajectory; CN = Cascaded Network; NE = Network Ensemble. [I]

spatial and temporal features and can work on sequence with variable length.
Despite the requirement of large datasets and fair computational efficiency, it is
a good starting point for this experiment though. Cascaded Networks combines
multiple networks, for FER mostly CNN with RNN. A good candidate is the
well-known hybrid network LRCN mentioned in Section 2.2, which accumulates
the powerful capability of extracting visual data from CNN and the strength of
RNN e.g. LSTM for variable-length inputs and outputs (see Figure). It will
be used as base model to start training. The concrete architecture will be re-
viewed in the follow-up project. The training process is mainly to find the set
of parameter which generalizes the mapping between input and output best.
It is complex in term of huge parameters to tune including number of layers,
number of neurons in each layer, type of layer, learning rate, optimizer, weight
initialization, activation function for each layer, amount of regularization and
so on. Unfortunately, there is no guideline which guarantees 100% good result.
Gridsearch is a method to test all combinations from a set of parameters. It
can help as an orientation for picking up parameters. Ultimately, developer has
to understand the current model performance. 2 useful concepts are Overfitting
and Underfitting [21]. Underfitting is the case that model does not learn well so
far or misses some important features, which leads to poor performance in both
training and validation set. It implies that the model does not have the capacity
or time to capture enough features. Treatment for this situation is training longer
or using bigger and more complex network. A more common situation is Over-
fitting where the training seems to be fine, but the validation on the contrary. It
is a symbol that the model tends to learn by heart the mapping and not really

10 Thi Huyen Cao

Input Visual Sequence Output
Features Learning

Fig. 4. LRCN Model [14]

learn to generalize, which leads to very poor result when validating on unseen
data. This unwanted circumstance can be solved by more data (data augmenta-
tion), regularization (L1, L2, Dropout), new architecture or early stopping. The
evaluation of which training techniques are working will also be covered in the
next project. As the dataset is quite small, the danger of Overfitting is quite big.

i — - Training error
Underfitting zone| Overfitting zone . s
— Generalization error

Error

0 Optimal Capacity
Capacity

Fig. 5. Overfitting and Underfitting under the error view [21]

Collecting more similar data might be difficult. Data Augmentation will be very
helpful here. The art of Data Augmentation is to invent more data by transform
the current data using a variety of methods. Thus, the process needs to be done
carefully so that no important part of face is cut, cropped or moved to a weird
angle. Whether augmenting data should be done offline or online depends on
the capacity of the training infrastructure. Finally, the parameters from trained
model will be stored respectfully in hdf5 format. Some network statistic will
be done as well such as visualization the architecture, summary of number of
parameter in each layer to have a detailed view on the chosen network.

End-to-end Deep Learning pipeline for Facial Expression Recognition 11

3. Evaluation: accuracy is the most important evaluation matrix.

Number of correct predictions

(1)

A high accuracy represents in general a good classifier. Nevertheless, there are
still use cases where it is not for the reason of unbalanced performance (only
good in some particular classes). It’s necessary to do further analysis. Confu-
sion matrix (see Figure @ is a common tool to illustrate all classes and their
predictions. The diagonal elements represent the number of correctly predicted
examples while others are those mislabeled. In case of class imbalance, normal-
ization the Confusion Matrix with respect to the number of data in each class
will provide a better view of model performance. Confusion Matrix is a great
tool to gain more insight from the result. Class ”surprise” and ”fear” have a very
high potential of being mislabeled because of their similar facial expression. And
if it’s really the case, it’s easy to find out in the Confusion Matrix.

A =
ceuracy Total number of data

Confusion matrix, without normalization Normalized confusion matrix
10

581053 581053

versicoler wersicelor

True label
True label

virginica 2 wirginica

oo
& & & & & &
& & Y £ & p

Predicted label Predicted label

Fig. 6. Confusion Matrix [I§]

Another tool is Error Analysis, which is a manual job to take a closer look
at each wrongly predicted example and find out the reason why it is mislabeled.
Error Analysis is time-consuming but returns in general very precious informa-
tion. Furthermore, a comparison among different network architecture will be
done. Optional is the visualization of how the network learn and where the net-
work focus on by heat map, saliency map and so on. Also optional will be the
development of a sub-application to view the result in a 6-dimension coordinate
based on the probability predicted at output layer.

3.4 Tools

— OpenCYV is an open source library written in C/C++ for Computer Vision.
Its main goal is computationally efficient image/video processing. It contains
interfaces in C++4, Python, Java and supports multiple OS. OpenCV is
mostly used for the preprocessing step.

12 Thi Huyen Cao

— Keras and Tensorflow: Tensorflow is an open source library for Machine
Learning application. Basically it provides efficient numerical computation
through a flow of operations with tensors (data unit of n-dimensions). Ten-
sorflow can be deployed in multiple platforms including CPU, GPU or TPU
because of its flexible architecture. Keras is a high level API on top of Ten-
sorflow with a focus on enabling fast experimentation. It contains imple-
mentation of many up-to-date Neural Network layers, optimizers, activation
functions, pre-trained models, datasets, data preprocessing util functions etc.
Keras and Tensorflow is used for training. Tensorboard is used for model
evaluation during training.

— Scikit-learn is a well-known and well documented machine learning library.
It contains a variety of supervised and unsupervised learning algorithms,
as well as data statistic tool and evaluation. Scikit-learn is used for model
evaluation.

3.5 Infrastructure Setup

Figure [7] visualizes the infrastructure setup for training. The training is done
in the renderfarm provided by CSTI [19]. Each renderfarm is configured with 2
Intel Xeon E52697V4 2.3 Ghz with 36 threads, 396 GB RAM and 10 NVIDIA
Quadro P6000 with 24GB RAM [20], which is dedicated for machine learning
computation intensive task like FER. A detailed analysis on hardware of the
renderfarms and their performance can be further read in [20]. The training
process is containerized in 2 docker containers: one for training (Model trainer)
and one for tracking result (Model tracker). Both containers have access to a
pre-defined volume containing the dataset, source code, a pre-defined folder for
writing logs and another for storing model parameters. The result from Model
tracker will be mapped to local machine through ssh.

Renderfarm

Containers @ Q

Model trainer Model tracker

l ssh Local machine

Volumes

[() (o)]

Fig. 7. Infrastructure pipeline

End-to-end Deep Learning pipeline for Facial Expression Recognition 13

4 Conclusion & Future Work

This paper describes an experiment for the task classification of 6 basic emo-
tion on videos. The chosen dataset is BU-4DFE from university Binghamton,
which contains 101 objects x 6 videos (one for each emotion) = 606 videos. It
is recorded in laboratory with professional set up. An detailed pipeline from
preparing data to training to evaluation is described as a guideline for further
work. The network architecture LRCN will be used at starting point with firm
argument of its capability to extract spatio-temporal features. Training will be
executed in renderfarm provided by CSTI with huge computational power which
is especially designed for such computing-intensive tasks like FER. The follow-up
project will implement and evaluate this pipeline including the following points

— Report on the implementation of each steps described in the pipeline

— Report on the hyperparameter tuning during training: which techniques
works well and which not?

Report on the chosen network architecture and alternatives if using

— Report on the performance of final trained models

Detailed analysis on the classification result

An open point is the danger of small dataset chosen for this task. Data Aug-
mentation and a variety of training techniques clearly can help at some level.
Thus, ultimately Deep Learning requires enough data to learn. At some point,
collecting more data might be a compulsory choice. If so, it’s important to pay
attention when accumulating data from different sources.

References

1. Authors, Shan Li and Weihong Deng : Article title. Deep Facial Expression Recog-
nition: A Survey (2018) http://arxiv.org/abs/1804.08348

2. Face Detection and Recognition Homepage by Dr. Robert Frischholz, https://fa
cedetection.com/algorithms/. Last accessed 28 Nov 2020

3. Authors, Paul Viola and Michael Jones: Article title. Rapid Object Detection using
a Boosted Cascade of Simple Features (2001)

4. OpenCV Github Page, https://github.com/opencv/opencv/tree/master/data/
haarcascades. Last accessed 28 Nov 2020

5. OpenCV Cascade Classifier Training, https://docs.opencv.org/3.4/dc/d88/tut
orial traincascade.html. Last accessed 28 Nov 2020

6. MathWorks Cascade Classifier Training, https://de.mathworks.com/help/vision
/ug/train-a-cascade-object-detector.htmll Last accessed 28 Nov 2020

7. Authors, Kaipeng Zhang and Zhanpeng Zhang and Zhifeng Li and Yu Qiao: Article
title. Joint Face Detection and Alignment using Multi-task Cascaded Convolutional
Networks (2016) https://arxiv.org/pdf/1604.02878.pdf

8. Github Page MTCNN, https://github.com/kpzhang93/MTCNN_face_detection.a
lignment. Last accessed 28 Nov 2020

9. Authors, Satya Mallick, Object Tracking using OpenCV (C++/Python) https:
//github.com/kpzhang93/MTCNN_face_detection_alignment| Last accessed 28 Nov
2020

http://arxiv.org/abs/1804.08348
https://facedetection.com/algorithms/
https://facedetection.com/algorithms/
https://github.com/opencv/opencv/tree/master/data/haarcascades
https://github.com/opencv/opencv/tree/master/data/haarcascades
https://docs.opencv.org/3.4/dc/d88/tutorial_traincascade.html
https://docs.opencv.org/3.4/dc/d88/tutorial_traincascade.html
https://de.mathworks.com/help/vision/ug/train-a-cascade-object-detector.html
https://de.mathworks.com/help/vision/ug/train-a-cascade-object-detector.html
https://arxiv.org/pdf/1604.02878.pdf
https://github.com/kpzhang93/MTCNN_face_detection_alignment
https://github.com/kpzhang93/MTCNN_face_detection_alignment
https://github.com/kpzhang93/MTCNN_face_detection_alignment
https://github.com/kpzhang93/MTCNN_face_detection_alignment

14 Thi Huyen Cao

10. Authors, S. Ji and W. Xu and M. Yang and K. Yu: Article title. 3D Convolu-
tional Neural Networks for Human Action Recognition In: IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 35, no. 1, pp. 221-231, Jan. 2013,
doi: 10.1109/TPAMI.2012.59.

11. Authors, Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun: Article
title. Deep Residual Learning for Image Recognition https://arxiv.org/abs/1512
.03385

12. Authors, Prof. Dr.-Ing. Andreas Meisel. HAW Deep Learning Project.

13. Authors, Sepp Hochreiter and Jrger Schmidhuber: Article title. Long Short-Term
Memory (1997)

14. Authors Jeff Donahue: Article title. Long-term Recurrent Convolutional Networks
for Visual Recognition and Description (Nov. 17, 2014). http://arxiv.org/abs/14
11.4389v4

15. Authors, P. Ekman and W. V. Friesen: Article title. Constants across cultures in
the face and emotion, Journal of personality and social psychology , vol. 17, no. 2,
pp. 124129 (1971)

16. University Binghamton: Analyzing Facial Expressions and Emotions in Three Di-
mensional Space with Multimodal Sensing, http://www.cs.binghamton.edu/~11j
un/Research/3DFE/3DFE_Analysis.htmll Last accessed 28 Nov 2020

17. Authors, L. Yin and X. Chen and Y. Sun and T. Worm and and M. Reale: Artitcle
title. A High-Resolution 3D Dynamic Facial Expression Database, In: The 8th In-
ternational Conference on Automatic Face and Gesture Recognition (2008), 17-19
September 2008 (Tracking Number: 66). IEEE Computer Society TC PAMI. Am-
sterdam, The Netherlands. http://www.cs.binghamton.edu/~1ijun/Research/3D
FE/Yin FGRO8_Paper66.pdf

18. Skicit Learn https://scikit-learn.org/stable/auto_examples/model_selecti
on/plot_confusionmatrix.html#sphx-glr-auto-examples-model-selection-
plot-confusion-matrix-py| Last accessed 28 Nov 2020.

19. Homepage Creative Space for Technical Innovation (CSTI), https://csti.haw-h
amburg.de/. Last accessed 28 Nov 2020

20. Authors, Matthias Nitsche and Stephan Halbritter: Artitle title. Development of
an End-to-End Deep Learning Pipeline (2019) https://users.informatik.haw-h
amburg.de/~ubicomp/projekte/master2019-proj/nitsche-halbritter.pdf

21. Authors, Dr. Hanhe Lin https://www.mmsp.uni-konstanz.de/typo3temp/secur
e_downloads/97871/0/36£431c3dcb9d494a8cd5dd4c483d81883c3d2dc/dlp-1lech
-upload.pdf| (2018) Last accessed 28 Nov 2020

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1411.4389v4
http://arxiv.org/abs/1411.4389v4
http://www.cs.binghamton.edu/~lijun/Research/3DFE/3DFE_Analysis.html
http://www.cs.binghamton.edu/~lijun/Research/3DFE/3DFE_Analysis.html
http://www.cs.binghamton.edu/~lijun/Research/3DFE/Yin_FGR08_Paper66.pdf
http://www.cs.binghamton.edu/~lijun/Research/3DFE/Yin_FGR08_Paper66.pdf
https://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html#sphx- glr- auto- examples- model- selection-plot-confusion-matrix-py
https://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html#sphx- glr- auto- examples- model- selection-plot-confusion-matrix-py
https://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html#sphx- glr- auto- examples- model- selection-plot-confusion-matrix-py
https://csti.haw-hamburg.de/
https://csti.haw-hamburg.de/
https://users.informatik.haw-hamburg.de/~ubicomp/projekte/master2019-proj/nitsche-halbritter.pdf
https://users.informatik.haw-hamburg.de/~ubicomp/projekte/master2019-proj/nitsche-halbritter.pdf
https://www.mmsp.uni-konstanz.de/typo3temp/secure_downloads/97871/0/36f431c3dcb9d494a8cd5dd4c483d81883c3d2dc/dlp-lec6-upload.pdf
https://www.mmsp.uni-konstanz.de/typo3temp/secure_downloads/97871/0/36f431c3dcb9d494a8cd5dd4c483d81883c3d2dc/dlp-lec6-upload.pdf
https://www.mmsp.uni-konstanz.de/typo3temp/secure_downloads/97871/0/36f431c3dcb9d494a8cd5dd4c483d81883c3d2dc/dlp-lec6-upload.pdf

	End-to-end Deep Learning pipeline for Facial Expression Recognition

