Implementation of an end-to-end Deep Learning
pipeline for Facial Expression Recognition

Thi Huyen Cao

University of Applied Science Hamburg
Berliner Tor 5, 20099 Hamburg, Germany
thihuyen.cao@haw-hamburg.de

Abstract. This paper presents the follow-up project mentioned in [I].
It contains the implementation of the end-to-end Deep Learning pipeline
for classifying 6 basic emotions on short videos. Concretely, it summarizes
the implementation of each steps, the choices of technology, the training
process as well as a report on the result and further problems.

Keywords: Facial Expression Recognition (FER) - Deep Learning (DL)
- Face Detection - Face Tracking - Neural Network - LRCN

1 Introduction

This work delivers the step-by-step implementation of the pipeline described
in [I]. It was designed to classify 6 basic emotions (anger, disgust, fear, happi-
ness, sadness, surprise) on short videos that were recorded in laboratory under
professional instructions. A detail about the potential architecture, technology,
algorithm, libraries, methodology etc. were already discussed and explained in
the previous work [I] and will be avoided here to prevent unnecessary duplicate.
This work focuses mainly on the implementation itself and the author’s decision
on certain concepts, solutions along with the arguments. The rest of the paper
is structured as follows. Next section, also the main section, contains the im-
plementation of the pipeline including 1. an analysis on the dataset 2. detailed
preprocessing steps and their results 3. the hardware setup 4. training process
and 5. evaluation. A short conclusion is drawn in the last section.

2 Implementation

2.1 Dataset

The original dataset BU-4DFE from university Binghamton contains in labora-
tory recorded videos from 101 objects with a variety of background. To gain an
overview about the dataset, some statistics are created in advance.

— Out of 101 objects, there are 43 males and 57 females. For object F16, there
is unfortunately a missing video of emotion happiness. For this experiment,
a request of missing data is not done. Instead, object F16 is simply removed
from the dataset in further steps.



2 Thi Huyen Cao

— There are in total 100 objects x 6 emotions = 600 short videos.

— The video resolution (height x width) is 480x640, frame per second is 25.

— The shortest video is 69 frames = 2.76 seconds long and the longest video
142 frames ~ 5.68 seconds. The average length of all videos is 3.98 seconds.
Below are 2 diagrams which visualize the statistic of frame length

326
140

w
8
S

130 265

N
o
3

120

H

=4

o
N
S
3

Frame length
"
]
3

,4
5
8

frame length

9
=}
=
1
S

©
3

o

3

-
3

a 5

[ 100 200 300 400 500 600 <100 110-115 115-120 >=120
Video aroup

o

(a) Frame length of each video (b) Frame length in 4 groups

Fig. 1: Frame length statistic

Figure shows the length of each video. The list of video is sorted by
length in ascending order in advance. Figure visualizes 4 categories: num-
ber of videos with less than 100 frames, between 110-115, 115-120 and more
than 120 frames. It is clear to see that most videos are less than 115 frames
long. This information plays a very important role at the decision of input di-
mension at training. Because certain type of networks e.g. convolutional neural
network might need the same dimension for all input which requires a padding
or truncation of the original data. A padding of too many zero frames or a trun-
cation of too many informative frames might hurt the performance of the model
ultimately.

2.2 Preprocessiong

This step prepares data for training. From the original data, face will be detected
and tracked. It is then re-sized reasonably and saved for further steps.

Face detection An example of the original data is shown in figure[2} It is quite
easy to detect face in such setup since the background is monochrome. A naive
way of detecting face is based on the different colors among background and
content, which might be sufficient for this dataset although hair and neck might
be redundantly captured. However, the author decided to go with a classical



Implementation of a DL pipeline for FER 3

machine learning face detector so that the model can be directly tested with
data from other contributions later on if desired. Haar Cascade face detector by
Paul Viola and Michael Jones [2] was chosen under careful consideration. The
first and main argument is that Haar Cascade detector operates in general faster
than modern Deep Learning detectors such as Multi-task Convolutional Neural
Network (MTCNN). It has also a good accuracy, especially at detecting frontal
faces. Deep Learning face detectors on the other hand have very good perfor-
mance even in case of occlusion and non-frontal. Since this is a preprocessing
step of a lot of data, inference speed is a decisive factor as long as performance is
kept at an accepted level. Also detected faces in certain angle or with occlusion
might not be interesting for [FER] since it is very difficult for model to determine
the emotion after all.

There are available pre-trained Haar Cascade face detectors with parameters
stored in xml files, which can be downloaded from [3] and imported easily in
opencv. haarcascade_frontalface_default.xml was used for this step.

# load pre-trained detector
detector = cv2.CascadeClassifier (’Path to pre-trained face
detector’)
# detecting face
faces = detector.detectMultiScale (frame,
scaleFactor=1.1,
minNeighbors=10,
minSize=(30, 30),
flags=cv2.CASCADE_SCALE_IMAGE)
if len(faces) != 1:

# log error and exit

A tolerance of detect_frame_allowed = 10 frames was given, means trying to
detect face in the first 10 frames. However, thank to the center and frontal
position of face, the detecting process was quite fast, stable and accurate. Figure
is an example. While expressing the emotion ”surprise”, an open mouth is

size scale 10 =157x167
-

Fig. 2: Detected face with dimension of width x height = 157x167,
extended pixel = 10



4 Thi Huyen Cao

commonly seen. Unfortunately, the detector sometimes failed to detect it or
determined the bounding box inaccurately (cut through half of the mouth) which
caused the tracking process later on a lot of difficulties. As that, 10 pixel is
extended in the height dimension.

Face tracking Opencv has a lot of implemented trackers, each with its own
advantages and disadvantages. A detailed comparison among them was done
in the previous project [I]. For this particular dataset, most trackers should
meet the requirements and should perform well enough. Despite that, the author
decided to run a test on 4 objects, corresponding to 24 videos and chose the
tracker based on the method ”trial and error”. The result was summarized in
table I

Tracker Failed samples Time
CSRT 0 214s
KCF 0 167s
MedianFlow |0 66s

Table 1: Result of MedianFlow, KCF and CSRT tracker

All tracker performed as expected very well. For all tested trackers, no failed
example was recorded. As a consequence, MedianFlow was chosen because of its
fastest inference time. Average size of detected and tracked face is from 150x150
— 190x190, mostly in the range from 155 — 165. Therefore, faces were resized
to 160x160 and written to video temporally with lossless compression for further
process. Lossless compression ensures the quality of the original video to be kept
as much as possible.

# defined codec

fourcc = cv2.VideoWriter_fourcc (x’HFYU’)

# init output writer

out = cv2.VideoWriter (’Path to save video’,
fourcc,
fps,
(width, height),
color_mode)

Figure[3]is an example of detected and re-sized face which is used for training.

Data was then split into train, validation and test set carefully so that
each set contains enough data for a reasonable result. Concretely, the ratio of
train/validation/test is 60%/20%/20% corresponding to 60/20/20 persons and
360/120/120 videos. Even though the dataset is quite small, the validation and
test set need to be big enough in comparison to the total data to present the
model quality at the end. The model will have to be trained to learn from a



Implementation of a DL pipeline for FER 5

Fig. 3: Detected and resized face

group of people and be able to give good prediction on completely new peo-
ple. This will be more useful in real life applications even though it might be
more challenging in comparison to a setup where it is allowed to learn and test
from/on the same group of people.

— train set: 23 male + 37 female (M21-M43, F22-F48)
— validation set: 10 male + 10 female (M01-M10, F01-F10)
— test set: 10 male + 10 female (M11-M20, F11-F21)

Unfortunately, data can not be written to hdf5 with h5py, which is an optimal
format for storing training data. To the best of author’s knowledge, h5py has
not supported storing multidimensional data with variable length (video with
different length) yet. Therefore, data will be stored in hard disk under original
folder structure /person-id/video-id. Be aware of the small training set, data
augmentation will be exploited at some points.

Data augmentation In short, data augmentation is a very useful technique to
help generate more data from available data. Multiple transformation methods
can be used to increase the size of train set as long as the essential information
needed for the task is kept. As a result, the following methods were considered
in order to remain all the movement of eyes and mouth.

— flipping horizontally

— using Guassian blur (different blur effects)

— adding salt and pepper noise (different percentage of noise)
— equalizing histogram

— changing contrast (higher and lower)

— changing brightness (higher and lower)

— using grayscale

Most methods are well implemented within opencv and can be used easily
within some lines of code.



6 Thi Huyen Cao

# example of transformation methods
flipped_horizontally = cv2.flip(image, 1)

guassian_blur = cv2.GaussianBlur (image, (3, 3), 0)
brightness_higher = cv2.convertScaleAbs (image,
alpha=1,
beta=50)
brightness_lower = cv2.convertScaleAbs (image,
alpha=1,
beta=20)
contrast_higher = cv2.convertScaleAbs (image,
alpha=2,
beta=0)
contrast_lower = cv2.convertScaleAbs(image,
alpha=1.7,
beta=50)
gray = cv2.cvtColor (image, cv2.COLOR_BGR2GRAY)
histogram_equalization = cv2.equalizeHist (image)

Keras officially support loading and augmenting data on-the-fly or in other
word online data augmentation for image data with class ImageDataGenerator.
For video data, it is required to implement an own custom loader or to use an
available implemented plugin. Due to the quite small size of the dataset and the
available memory of renderfarm from CSTI [4] where the model was trained,
the author decided to load and augment all data right before training manually.
Figure [] visualizes an example of some augmented frames.

a) original ) flip horizon- (c) guassian blur (d) salt and pep-
taHy per

(e) brightness (f) contrast  (g) equalize his- (h) grayscale
togram

Fig. 4: Augmented example



Implementation of a DL pipeline for FER 7

2.3 Hardware setup

The training was done in the renderfarm provided by CSTI [4]. Following infras-
tructure was determined in advance.

0OS: CentOS Linux release 7.7.1908 (Core)

GPU: 4 NVIDIA Quadro P6000 each with ~ 24 GiB

— CPU: Intel Core Processor (Broadwell, no TSX) 2.3 GHz 18 cores 18 threads
— RAM: =~ 163 GiB

2.4 Training

The training process was containerized in 2 docker containers: one for training
and one for tracking result. The result was forwarding to local machine for the
purpose of monitoring.

# start tracking container in background
docker run -d --runtime=nvidia -it --rm
-v /workspace/:/app/
-p 6006:6006
tensorflow/tensorflow:2.3.2-gpu
tensorboard --logdir /app/logs --bind_all
# start training container
docker run --runtime=nvidia -it --rm
-v /workspace/:/app
--env-file /workspace/env
--shm-size=512m
fer
# forwarding to local machine
ssh -L 6006:127.0.0.1:6006 username@host-ip-addrss
# monitoring processes (mem usage etc.)
watch nvidia-smi
docker stats

Choice of architecture The choice of neural network architecture is further
discussed in [I]. It strongly depends on the task itself. Basically,
[sion Recognition| requires a model which is able to understand both the visual
information in each frame as well as the temporal information across all frames.
Cascade Network is shown to be able to perform well in most research papers,
which is a combination of different types of neural networks in order to take
advantage of all their pros. Table [5| shows again most possible choices and their
characteristics in term of data size requirement, information learn ability, frame
length requirement, performance and computational efficiency.

[Cong-term Recurrent Convolutional Network] (LRCN]) was chosen as the
starting point under careful consideration. [LRCN|is a Cascade Network which
contains CNN layers as front-end and [Long Short Term Memory| (LSTM]) layers




8 Thi Huyen Cao

Network type data spatial temporal frame length accuracy efficiency
Frame aggregation low good no depends fair high
Expression intensity fair good low fixed fair varnes

RNN low low good variable low fair

Spatio- C3D high good fair fixed low fair
temporal FLT fair fair fair fixed low high
network CN high good good variable good fair
NE low good good fixed good low

Fig.5: Comparison of different types of methods for dynamic image sequences in
terms of data size requirement, representability of spatial and temporal informa-
tion, requirement on frame length, performance, and computational efficiency.
FLT = Facial Landmark Trajectory; CN = Cascaded Network; NE = Network
Ensemble. [5]

as backend. As that, it accumulates all the advantages of 1. convolutional net-
work at learning features in space and 2. recurrent network at learning features
in time. A further read about those networks and why are they able to learn
such features can be found in previous work [I]. Despite all the advantages of
LRCN or Cascade Network, a drawback which needs to be kept in mind is its re-
quirement of big dataset to perform well. Based on the author’s own experience,
the given dataset might be sufficient for training a reasonable deep network.

Training strategy All models were built with Keras Functional API to have
more control over the training process in comparison to Sequential API. Keras
is basically the high level interface on top of Tensorflow. A more read can be
found in the official page of the libraries as well as in the author’s previous work
.

After experimenting with some scenarios, the author came to the decision of
network architecture and some base parameters.

— Based on the frame statistic recorded from the dataset analysis in section
and the requirement of same input dimension of CNN, the length of all
videos is re-sized to 115 frames, meaning longer videos were truncated and
shorter videos were zero-padded. Because firstly most videos are within this
frame range and secondly a brutal truncation or a redundant padding both
result in a very bad network performance.

— Experiment with input data in color and gray scale pointed out that there
was no considerate difference. As the data with 3 color channels is three
times bigger and as a result takes longer to train and consumes additionally
more resources, the author decided to use gray scale for further process.

— As already discussed in section [2:2] the train, validation and test set should
be split reasonably to ensure the quality of trained models. Therefore, cross-
validation is purposely avoided because it might mix the dataset randomly
and cause less reliable results. In addition, cross-validation requires also a
lot more computing power which is a trade off to be considered.



Implementation of a DL pipeline for FER 9

— Experiment with different learning rates showed that an extremely small
learning rate is needed for the model to learn. Also an important notice is
that the learning rate should be changed proportionally with the batch size.

— The base parameters are listed as follows:

e Input dimension (frame length x height x width x number of color chan-
nel): 115x160x160x1

Learning rate: 0.00001

Optimizer: Adam

Batch size: 16

Epochs: 100

Shuffle data during training: True

Callbacks: EarlyStopping to stop the training process if validation ac-

curacy increases 30 epochs continuously; ModelCheckpoint to save best

model based on validation accuracy.

input_1: InputLayer

time_distributed(conv2d): TimeDistributed(Conv2D) |

}

time_distributed_1(max_pooling2d): TimeDistributed(MaxPooling2D) |
l Layer (type) Output Shape Param #

|timeidistributed72(conv2d71): TimeDistributed(Conv2D) ‘ input 1 (Inputlayer) [{None, 115, 160, 160, 1) 0

l time_distributed (TimeDistri (None., 115, 158, 158, 32) 320

time_distributed_3(max_pooling2d_1): TimeDistributed(MaxPoolingZD)| time_distributed 1 (TimeDist (None, 115, 79, 79, 32) 0

l time_distributed_2 (TimeDist (Nome, 115, 77, 77, 32) 9248

time_distributed_4(flatten): TimeDistributed(Flatten)

time_distributed 3 (TimeDist (None., 115, 38, 38, 32) 0

time_distributed_4 (TimeDist (None, 115, 46208) 0
masking: Masking masking (Masking) (None, 115, 46208) [¢]

Tstm (LSTM) (None, 115, 128) 23724544

Tstn_1 (LSTM) (None, 128) 131584

dense (Dense) (None, 6) 774

Istm_1: LSTM

Total params: 23,866,470
Trainsble params: 23,866,470
Non-trainable params: @

dense: Dense

(a) Network architecture (b) Parameters summary

Fig. 6: Network architecture and parameters summary

— The baseline network contains 2 CONV 2D layers, each with 32 filters, 3x3
filter kernel, relu as activation function and followed by a MAX POOLING
layer with 2x2 filter kernel. The extracted features from the CNN layers are
then fit to the backend. In order to pass the representation vector of each
frame as an input for a timestep in LSTM, those layers need to be wrapped in
TimeDistributed layers. The backend contains 2 LSTM layers, each with 128



10 Thi Huyen Cao

hidden units. As output layer, a Dense layer with activation function softmax
of 6 classes was used. Activation function softmax outputs the probability
of each class and is the best practice for a multi-class classification. Figure
[6] above summarizes the model architecture and number of parameters .

As further mentioned in the previous work [I], there is no silver bullet when
it comes to train a neural network. The key lies on the understanding of network
performance during the training process, the training techniques and their effects
as well as the personal experience of the trainer. To understand how the model
performs at the current point, one needs to get familiar with the concept of bias
and variance, underfitting and overfitting. Some common training techniques
nowadays are:

— Using more data with data augmentation or collecting more data
— L1, L2 and dropout

— Normalization and batchnormalization

— Transfer learning

The training strategy of this work is strongly based of the recommendation of
Prof. Andrew Ng from his courses at Coursera and Stanford University. In short,
if the network shows a very high bias, considering training longer, using bigger
network etc. On the other hand, if the bias seems to be fine, but the variance is
high, consider using more data and regularization techniques to improve network
generalization and avoid unwanted learn-by-heart effect.

Hyperparameters tuning The difficult part of training a neural network lies
on the process of tuning hyperparameters which are number of layers, number of
neurons in each layer, type of layer, initialization methods, dropout, 11, 12, size of
kernel, optimizer, learning rate and so on. The training process is without doubt
an empirical process and very resource-consuming in term of time, computing
power and human effort. In the following, the author would like to present some
of the steps which were executed and the lesson learnt.

Baseline loss Baseline accuracy

T — train
—— validation

1 — train
—— validation

0.8

0.2+

T T T T T T T T T T T T T T T T T T
0 10 20 30 40 50 60 70 80 [} 10 20 30 40 50 60 70 80
Epoch Epoch

Fig. 7: Baseline accuracy and loss



Implementation of a DL pipeline for FER 11

0. Baseline: As shown in figure [7] above, the baseline indicated a very big
gap of overfitting, almost 60% which was actually no surprise for such a small
amount of train data. The train loss decreased continuously that suggested the
sufficient capacity of learning of the chosen network. Train accuracy achieved
100% around 60 epochs. Validation accuracy increased slowly but then stayed
stable around 40% after 30 epochs. Despite that, validation loss tended to in-
crease which seemed questionable at first. One answer for this phenomena is
the characteristic of the softmax activation function at output layer. For exam-
ple sample s is predicted correctly in the early epochs with the probability of
0.9. Later on, the network is getting worse and predicts sample s with a lower
probability say 0.55. This happens to some of the samples and causes the loss to
increase even though the accuracy seems to be the same. Ultimately, the network
showed a good learning capacity but a bad ability of generalization. In the next
steps, some methods are tested to fight again overfitting.

1. Data augmentation: An increase of data using data augmentation is the
first try to reduce the overfitting gap. Data was augmented with the methods
mentioned in section A rise of 7 times the original train data improved the
performance clearly. Train accuracy run up faster than the baseline, see figure
(left). The validation accuracy was generally 10% better which is a proof of a
better generalization. Even though the validation accuracy reached and stayed
around 50%, there was still a very high overfitting gap which needed to be further
reduced. A more extreme increase of data to 11 times the original data showed no
further improvement except a slightly faster increase of train accuracy as shown
in figure 8] (right). It could be a sign that more real data need to be collected or
other augmentation methods need be considered which should be kept in mind.
However, sacrificing the train speed and memory for such a small effect was not
effective at this point. As that, the author decided to increase the data only 7
times in the further process.

Accuracy between baseline and x7 Accuracy between x7 and x11

0.94 0.9 + =
== x

0.8 0.8 4
0.7 4 0.7+
0.6 4

0.5

0.6 4
0.5+

Accuracy
Accuracy

0.4 0.4+

0.34 0.3+

0.24 0.2+

0.11 0.1+

0.0 T T T T U T 0.0

Epoch Epoch

Fig.8: Data augmentation effect



12 Thi Huyen Cao

2. L1, L2: L1, L2 regularization are classic techniques which assign a penalty
on weights to keep it smaller and smaller. By forcing some weights close to zero, it
deactivates certain neurons which results a smaller and more qualitative network
and correspondingly avoid overfitting. A higher A, also known as regularization
parameter, means more regularization. By observing with L2, a A > 0.01 will
prevent the network from learning at all. Some experiments were setup with a
smaller A\ also resulted no improvement (see figure E[) There could be multiple
reasons why such regularization did not work out. But before diving further into
the reasons, the author chose to experiment with another well-known technique
called dropout.

Model Accuracy

—— 7 train

—=- T validation

0.9 + — 12=0005train

—=- 12=0 005 validation
—— 12=0.007 train

0.8 —=- 12=0007 validation

0.7
0.6 1

0.5 4

Accuracy

0.4 4
0.3 4
0.2

0.1+

0.0

T
0 20 40 60 80 100
Epoch

Fig.9: L2 regularization effect

3. Dropout: Dropout is one of the most powerful regularization techniques
nowadays. Dropout was experimented with different amounts from [0.0, 1.0]. 0
means drop all, 1 means keep all neurons and a value in between is the best
fit to look for. Especially for LSTM layers, 2 types of dropout were tested: in-
put dropout and recurrent dropout. As the name suggests, input dropout is
applied on the input/output in each timestep while recurrent dropout on the
recurrent connections from timestep to timestep. Different scenarios were inves-
tigated: dropout on only CNN layers, on only LSTM layers and on all layers.
The network reacted very sensitive on dropout at CNN layers. No matter which
amount of dropout is applied on CNN layers, the model performed very poorly.
The train accuracy increased very slowly and the best accuracy reached only
30% (see figure [10). Dropout on LSTM layers gained generally good impact. A
naive dropout on recurrent layers helped increase the train accuracy much faster.
Nonetheless, the validation accuracy showed very small improvement of about



Implementation of a DL pipeline for FER 13

4% and some high peaks over 55%. The same effect was recorded on recurrent
dropout.

Model Accuracy

—— xT train

==+ xT validation
0.9 4 — dr=0.1train
==+ dr=0.1 validation

—— dr=0.2 train
0.8 ==+ dr=0.2 validation

0.7
0.6 1
0.5 4

Accuracy

0.4 4

0.3

0.2 1

0.1 A

0.0 T T T T T

Fig. 10: Dropout regularization effect

2.5 Evaluation

The classification among 6 classes has a random metric of 16.67%. Even the
baseline achieved better result (40%) than a random metric. Best validation ac-
curacy recorded was 59%. However, the training, especially with dropout resulted
in general quite unstable validation accuracy course. A clear improvement was
hard to determine. A clear boost was found while applying data augmentation to
increase the train set 7 times, the overfitting gap reduced 10% correspondingly.

Nevertheless, after applying different regularization methods, the network
still showed a very big overfitting which is a signal of poor generalization ability.
One reason, as discussed in the previous work, could be the small amount of
data. By splitting into 3 sets, the amount of data for training reduced even
more. Despite the fact that data augmentation did help against overfitting, the
model ultimately need to see enough good data to generalize. Some analysis also
showed that neutral faces were found at the beginning and at the end of many
videos which could also mess up the learning. Another reason could be the high
complexity of this task. The model had to learn data from some people and give
prediction on other people. Belows are some possible solutions to give a try in
future works:

— Collecting more qualitative data or using different augmentation methods
— Handling neutral faces at the beginning and at the end of video
— Using transfer learning such as VGGFACE [6]



14 Thi Huyen Cao

3 Conclusion

This paper summarizes the step-by-step implementation of the pipeline intro-
duced in [I] to classify 6 basic emotions from short laboratory recorded videos.
A small LRCN with 2 CNN layers as front-end and 2 LSTM layers as backend
was chosen, achieved at best an accuracy of 59% on validation set. Through the
training process, the author found it extensively difficult to avoid overfitting.
The author also acknowledged the effectiveness of data augmentation at fighting
against overfitting. Other methods such as dropout, 11, 12 etc. turned out to
have very little effect on this task. The author suggests a further training using
some solutions mentioned above such as handling neutral faces, using transfer
learning and so on which unfortunately exceeds the project timeline. As that,
there is no detailed error analysis on the mislabeled samples because of the little
value it brings at this point.

References

1. Author, Thi Huyen Cao : Article title. End-to-end Deep Learning pipeline for Fa-
cialExpression Recognition https://users.informatik.haw-hamburg.de/~ubico
mp/projekte/master2021-proj/cao.pdf. Last accessed 20 Jul 2021

2. Authors, Paul Viola and Michael Jones: Article title. Rapid Object Detection using
a Boosted Cascade of Simple Features (2001)

3. OpenCV Github Page, https://github.com/opencv/opencv/tree/master/data/
haarcascades. Last accessed 20 Jul 2021

4. Homepage Creative Space for Technical Innovation (CSTI), https://csti.haw-h
amburg.de/l Last accessed 20 Jul 2021

5. Authors, Shan Li and Weihong Deng : Article title. Deep Facial Expression Recog-
nition: A Survey (2018) http://arxiv.org/abs/1804.08348

6. Authors Omkar M. Parkhi and Andrea Vedaldi and Andrew Zisserman : Article
title. Deep Face Recognition


https://users.informatik.haw-hamburg.de/~ubicomp/projekte/master2021-proj/cao.pdf
https://users.informatik.haw-hamburg.de/~ubicomp/projekte/master2021-proj/cao.pdf
https://github.com/opencv/opencv/tree/master/data/haarcascades
https://github.com/opencv/opencv/tree/master/data/haarcascades
https://csti.haw-hamburg.de/
https://csti.haw-hamburg.de/
http://arxiv.org/abs/1804.08348

	Implementation of an end-to-end Deep Learning pipeline for Facial Expression Recognition

