
Reproduction of a Deep Learning
Recommendation Model for usage as News

Recommendation System
Hauptprojekt Master Informatik

Timo Lange

timo.lange@haw-hamburg.de

Hamburg University of Applied Sciences

Faculty of Computer Science and Engineering

Department of Computer Science

Berliner Tor 7, 20099 Hamburg, Germany

October 18, 2021

In this project report the paper MARS: Memory Attention-Aware Recommender
System by Zheng u. a. (2019) is reproduced to investigate its applicability to a news

recommendation dataset. Initially the used datasets of the paper are explored and

discrepancies are revealed. The analysis of the dataset is followed by the original

experiment description and subsequently the experimental design of this work and

implementation details are presented. In the course of the reproduction it turns out

that important information in the preprocessing step are missing and assumptions

must be made to perform the experiments. Additionally the high cardinality of the

data per sample caused by multiplicativity of the possible high user history and

document length turns out to be problematic. Finally the results suggest a possible

good adaption to the news recommendation dataset.

Keywords – Recommender System, Deep Learning, Natural Language Processing, News

1 Introduction

In this project report the reproduction of the work of Zheng u. a. (2019) and its adaption to a

news recommendation dataset is described. This work seeks to implement the papers model

1



and tooling for further experiments with the aforementioned dataset which is covered more

deeply in section 2.2. Additionally it is planned to deploy the recommender system, among

others, in a production system for A/B testing, which will be covered in further work. The

MARS: Memory Attention-Aware Recommender System from Zheng u. a. (2019) was chosen as it

distinguishes itself from the competition through the attention mechanism which models the

users diverse interest through deep adaptive user representations and is the �rst of its kind to the

best knowledge of the author. The model attends to a kind of context item, which can be for

example the current viewed content of a website, and derives a user pro�le dynamically adapted

to the item in question. Moreover, the representation of the items and the user pro�le is trained

and optimized jointly which is also not common. Furthermore, at a �rst impression, the neural

network topology seems to be easily implementable for it’s relative simplicity. Additionally,

through the use of standard CNNs and basic dense networks the speed to yield a recommendation

for a user should comply with the strict latency requirements in a real world recommendation

scenario. Finally the architecture is suitable to adapt the user pro�le to a live stream of user

interactions without the need to precompute user pro�les. Despite the lack of source code of the

implementation of the papers model, the reproduction of the model can be validated through

the use of public available datasets used in the paper.

This work is structured as follows: At �st the public datasets used in the original paper

and the news recommendation dataset are described. Thereafter the original paper with its

experimental design, model design and training is outlined. This is followed by the description

of the experimental design and implementation details of this work. Before the conclusion, the

experimental results are depicted and discussed.

2 Dataset Overview

The used datasets, especially the news recommendation dataset 2.2, got many �elds which

can be leveraged for recommendations. As not to go beyond the scope of this project, just the

used and derived data �elds are described. For all datasets the user �eld is derived from the

ratings/pageviews and constitutes of the rated/viewed items per user. The words per content

is computed by simply counting continuous word characters (re.finditer(r’\\w+’, s)).The

word count may vary depending on the used technique for tokenization. A more detailed

analyses of the news recommendation dataset 2.2 will be carried out in future work.

2.1 Dataset from original paper

The statistics about the dataset corresponds to the �ltered data according to Zheng u. a. (2019).

2.1.1 Yahoo! Movies

The movie metadata is �ltered for missing movie_id and synopsis, which are the only used �elds

from the content description data. The user ratings data is �ltered for ratings of 5 (scala is 1

2



to 5). This are actually the converted ratings as described by the dataset readme �le, which

are derived from a original rating from 1(F) to 13(A+) but the MARS paper don’t mention this.

Furthermore all ratings are dropped for which no movie description exists and just users with

at least 3 ratings are taken into account. In table 1 you can see statistics about the synopsis

and their lengths and number of ratings per user. Note that in contrast to the amazon datasets

there is no synopsis/content without words. The values for synopsis in parentheses are movies

left after all movies are dropped which don’t appear in any user ratings after �ltering the user

ratings.

No. Field name Type Unique Words/Entries

min avg max Std.

1 synopsis str 106 673 1 48.41 675 41.71
str (8686) (4) (86.89) (612) (63.95)

2 user List[int] 7271 3 15.26 715 23.37

Table 1: Yahoo! Movies dataset: Statistics about synopsis and number of ratings per user for the

Yahoo! Movies dataset.

2.1.2 Amazon Video Games

For the Amazon Video Games dataset all ratings below 5 (from 1 to 5), users with less then

10 ratings and items without description are dropped. In table 2 you can see the statistics for

word count in descriptions and user history entries. Values in parenthesis are where all items

�ltered out with descriptions which contain no words, but only special characters, HTML code

or punctuation.

No. Field name Type Unique Words/Entries

min avg max Std.

1 description str 47 063 0 116.54 4711 176.10
(42 710) (1) (128.42) (4711) (180.68)

2 user List[str] 2572 10 17.81 433 16.91
(1743) (10) (17.87) (406) (17.52)

Table 2: Amazon Video Games dataset: Statistics about game descriptions and number of ratings

per user for the Amazon Video Games dataset.

3



2.1.3 Amazon Movies and TV

Table 3 shows item and user statistics for the Amazon Movies and TV dataset. Similar to Amazon
Video Games, only ratings of 5 (from 1 to 5) and users with 10 or more ratings are preserved.

Also, items without description are �ltered out. Values in parenthesis are where all items �ltered

out with descriptions which contain no words, but only special characters, HTML code or

punctuation.

No. Field name Type Unique Words/Entries

min avg max Std.

1 description str 23 599 0 117.59 2590 111.86
(23 347) (1) (118.86) (2590) (111.79 )

2 user List[str] 5187 10 24.67 819 33.96
(5177) (10) (24.67) (818) (33.96)

Table 3: Amazon Movies and TV dataset: Statistics about game description and number of ratings

per user for Amazon Video Games dataset.

2.1.4 Divergent Data

Nearly all data after �ltering is di�erent from the paper. The number of users for the Yahoo!
Movies dataset diverges just slightly (7271 to 7642) but the di�erence in number of items is quite

large (106 673 to 11 915). For Amazon Video Games the number of items match exactly(47 063)

but the number of users di�er slightly (2572 to 2670). The numbers for Amazon Movies and
TV from this work and the original paper di�er to a far extend for users (5187 to 22 147) and

items (23 599 to 178 086). Also the �ltering for items not present in ratings after the ratings

are �ltered is not consistent, as for Yahoo! Movies the original papers authors seem to �lter for

them because without dropping them, the amount diverges by a factor of 8.95 instead 0.72
between this and the original work. In contrast to this, the items from Amazon Video Games are

not �ltered after the rating �lter in this work and the number match exactly with the original

paper.

Di�erent dataset versions are not the cause of the di�erent data. For Yahoo! Movies there

is just one version available from the yahoo dataset download portal. At the time of writing

there are three versions of the amazon dataset. The MARS authors referenced the papers of the

second dataset version, which is also used in this work. The use of the second dataset is also

supported by the fact, that the number of items for Amazon Video Games in the original and

this work matches exactly.

So the data processing of the original work is non-transparent which makes the reproduction

very di�cult.

4



2.2 News Recommendation Dataset

2.2.1 Schickler Dataset

The Dataset is kindly provided by SCHICKLER Unternehmensberatung GmbH 1
to support this

research, which work together with di�erent publishers and dpa Deutsche Presse-Agentur GmbH
2

to enhance the users news reading experience. The dataset is fully anonymized and does not

contain any personal data.

The dataset consists of 313 565 551 pageviews from 56 199 311 users and 823 947 (+1 with

no textual content) corresponding articles. There are 47 �elds for articles and 35 �elds for the

pageviews. The dataset constitutes of many �elds but for the implemented model only a small

subset will be used, which is described in the following table:

No. Field name Type Unique Words/Entries

min avg max Std.

1 article_full_text str 823 947 2 398.35 30 642 279.24
2 user List[str] 56 199 311 1 5.58 59 161 59.20

Table 4: Schickler News Recommendation dataset: Statistics about article texts and number of

ratings per user for News Recommendation dataset.

A more deeply and throughout analysis will be carried out in a follow up work.

2.2.2 Additional DPA Data

It is planned to enrich the dataset from Schickler described in the previous section with additional

data from dpa, with similar data �elds described in Lange (2020) and can be done with articles

for which a unique dpa article id is present. This will augment the article information with

valuable data like mediatopic, keywords, slugline, genre and subject. This may positively impact

the recommendation performance, which have to be proven in further work.

3 MARS: Memory A�ention-Aware Recommender System

In the following the work of Zheng u. a. (2019) and its reproduction is described.

3.1 Original Experiment Description

In the original paper a new kind of model is developed, which is tested on the before mentioned

datasets Yahoo! Movies, Amazon Video Games and Amazon Movies and TV. Each of the datasets

1https://www.schickler.de
2https://www.dpa.com

5

https://www.schickler.de
https://www.dpa.com


represent a tougher class for a recommendation system due to it’s descending density and thus

relative viewer samples to learn from. The model is tested against some notable recommendation

models to establish baselines and test it’s capabilities. The baseline models are:

1. Bayesian Personalized Ranking

2. Neural Collaborative Filtering

3. Collective Matrix Factorization

4. Collaborative Topic Regression

5. DeepFM

6. Collaborative Deep Learning

7. Wide & Deep

To compare the models, the metric recall@N and Mean Average Precision(MAP) are used,

shown in equation 1 and 2. Recall measures how good the model retrieves all relevant documents

and MAP measures how well the system ranks the retrieved documents.

recall@N =
# items the user likes among the top N

total number of items the user likes

(1)

MAP =
1

|U |
∑
i∈U

AveP (i)

AveP (i) =
1

|K|

K′∑
k=1

Pi(k)reli(k)

Pi =
|{relevant documents} ∩ {retrieved documents}|

|{retrieved documents}|

reli =

{
1, if k in {relevant documents}.
0, otherwise

(2)

Where AveP (i) is the average precision per query, respectively user. Pi denotes the precision

for document i and reli the relevance of document i, which leads to irrelevant documents being

ignored.

Additionally, a ablation study is carried out, in which the authors investigate to what extend

the di�erent components of the model contribute to the recommendation performance. They

conclude all examined parts, item embeddings, CNN and attention contribute to the models

performance.

Also a case study is carried out in which the interpretability of the model through the attention

mechanism is underlined.

6



3.1.1 Model Description

The overall model architecture is depicted in �gure 1. The structure of the model from the

bottom to the top is as follows:

Input Y ni
and Y j

are the documents associated with the liked item by the user, respectively

the item to attend to.

CNN for Item Representation fuser(:; Ψ) and fitem(:; Ω) are the CNN’s to learn the item

representations for the users memory component and the item representation of of item

j. Where Ψ and Ω are the learnable parameters.

Memory Component & Item Representation C represents the users memory component

which contains the item representations of all items the user likes and Vj is the item

representation of the item to attend to.

A�ention Vector The attention vector αij
assigns each item representation i inC a weighting,

build with softmax(CT vj)

Adaptive User Representation The adaptive user representation uij is build by applying αij

to C which builds a weighted sum of all items in C with uji = Cαij
.

Preference Score The preference score rij = uji
T
vj is build by the inner product of the user

representation uji and the item representation vj

The �nal item recommendation list is build by computing the preference score rij for all

candidate items, for which a recommendation should be generated and sort the items according

to their score in descending order.

7



Figure 1: Overall MARS architecture. Zheng u. a. (2019)

The item representation is computed with a CNN model according to the architecture outlined

in �gure 2. The neural network topology for the memory component representations and the

context item representation are the same and only di�er in the input, hence the depiction in

�gure 2 is valid for both CNN models. From bottom to top, the model starts with the input

layer with the words of one document. This is followed by a word embedding layer. The

word embeddings are further processed by one convolutional layer, which extracts contextual

features, where each kernel captures one feature. The most important feature value for each

feature is extracted by a Max-pooling layer. Finally the extracted features are projected through

a dense layer into the �nal item representation space.

8



Figure 2: MARS CNN architecture used for learning item representations. Zheng u. a. (2019)

3.1.2 Model Training

To train MARS optimized for ranking, the authors took inspiration from Rendle u. a. (2009).

The main components they adopted are the data generation method for training and the loss

function.

Training Data The training data is formalized as:

D = {(i, I+i \ j, j, j
′)|i ∈ U ∧ j ∈ I+i ∧ j

′ ∈ I−i } (3)

Where i, j, and j′ are uniformly sampled from U , I+i and I−i , which describes the set of users,

the liked/viewed items by a user and the not liked/viewed items by a user. This data generation

strategy, according to Rendle u. a. (2009), accounts for the skew in data where one item is overly

present in many users histories and there are typically much more not liked/viewed items in

contrast to liked/viewed ones. Additionally as stated by Rendle u. a. (2009), this strategy leads

to a much faster convergence then e.g. iterating the training data user wise.

9



Loss Function Instead of scoring single items, item pairs are used to represent the users u
preference of item j over item j′. The loss function is shown in equation 4.

L = − 1

|D|
∑

(i,I+i \j,j,j′)∈D

{ln(σ(uji
T
vj−uj

′

i

T
vj′))+λuu

j
i

T
uj +λuu

j′

i

T
uj′ +λvv

T
j vj +λvv

T
j′vj′}

(4)

Where σ is the sigmoid function which maps the user i’s preference of item j over item j′ into

probabilities. uji and vj are the user and item representation for item j, uj
′

i and vj′ for item j′.
λu and λv are regularization terms.

3.2 Experimental Design

Unfortunately, despite an attempt to get in contact with the original authors, no communication

has been established. Due to the lack of information in the paper, some assumptions have been

made to get an running PoC (Proof of Concept). The di�erences in the implementation in this

work and the original work may have lead to the di�erent results, but can’t be proven without

the original authors participation. Additionally, the di�erences in data after preprocessing,

outlined in 2.1.4, will inevitable lead to divergent results.

The goal of this work is to implement an running PoC of the original papers model, inclusive

all preprocessing steps and ultimately make this PoC applicable to the domain of news recom-

mendation. The model will be prepared for o�ine evaluation with the news recommendation

dataset of section 2.2 and online evaluation with A/B testing on a in-production news site of

one of the publishers which provided the dataset. In a future work the model will be compared

with other models in the aforementioned o�ine and online tests.

As a �rst step to approach the goal, is to implement the preprocessing pipeline for all three

datasets used in the original paper. Secondly, the model will be implemented with Keras and

Tensor�ow. Next, the correct implementation of the model will be validated against the three

datasets used in the original paper. In this process, the implementation will be continuously

further developed and improved to meet demands such as hardware resources, like memory

footprint and compute requirements and time requirements, like inference latency and training

time.

3.2.1 Missing Information / Assumptions

The following information was missing to reproduce the original work:

Stopwords There is no pointer to the stopword list or library used and hence the vocabulary

size will be a�ected by the concrete implementation.

Tokenization There is no hint how the tokenization is done. If the tokens are just split by

whitespace, the vocabulary size will probably be lower as if split smartly e.g. in case of

typos, in word separation (missing whitespace) or hyphen between words.

10



Epoch / number of steps until convergence The paper don’t state how much steps of train-

ing the model needs until convergence, respectively how much were applied for the

results.

train/validate/test split rounding The train split consists of a 0.3 fraction of the data and

the rest is evenly divided into validation and test set but the authors don’t state how the

fractions are split if it results in odd numbers. If the user history is very small this will

hugely a�ect training trough more or less training data per user available and the metrics

because the models predicted ranking will have to match more or less correct items per

user.

3.2.2 Preprocessing

Data �ltering for all three datasets is done mostly with pandas, which was possible trough

the small amount of data and the easy to read CSV, respectively JSON �le format. For the

tokenization process Spacy was used. The same tool was used for stopword and punctuation

removal. To translate the text strings into a vector representation with a word to integer mapping

the tf.keras.preprocessing.text library from Keras was utilized. The �nal data input for the model

is generated with the Tensor�ow Data API trough tf.data.Dataset.from_generator() and a python

generator which computes the uniform distributed samples and maps the users/items to their

corresponding vector representations.

3.2.3 Model Implementation Overview

Training Model Implementation The implementation of the model is done via Keras and

Tensor�ow, where the high-level Keras functional API is used when possible and lower level

Tensor�ow operations when necessary. Figure 3 shows the operational graph generated by

Tensorboard. The big outer box includes the whole MARS model, where the output to the loss

function is shown at the top and the input at the bottom, represented by an arrow. The right

light purple box named Model_context_items is the CNN which computes the representation

of the items liked and not liked from the input tuple. Both items are processed by two exact

same CNNs sharing their weights and are thus depicted by just one sub model. On the left

side in a light yellow box, called time_distributed, the item representations for the items in the

user history are computed, whose result is the memory component shown in �gure 1. The

time_distributed layer is a built-in Keras layer which applies an passed layer to the data stepwise.

In this case, the passed layer is the CNN to generate the users history items representation

called Model_user_items, which is applied to each item in a users history. To eliminate any

confusion, in Keras, models can also be treated as layers. Finally, with the memory component

and the liked/not liked item representations, the attention for the two items is computed from

which the user representations for the liked and not liked items are derived. Both, item and

user representations are concatenated and feed to the loss function.

11



Figure 3: Tensorboard graph of MARS implementation

Inference Model Implementation The model for inference is di�erent to the model for

training insofar, as they have di�erent requirements in terms of di�erent inputs and outputs

as well as there is no need for backpropagation. For inference the CNN to compute the item

representation is cut out of the whole model to separately compute the representation for all

items taken into consideration for the �nal ranking. This representations can be cached and

reused for all users for which a recommendation should be predicted. This drives down latency

and compute requirements for inference signi�cantly. To e�ciently predict scores for all item

candidates, the memory component, inclusive CNN for the viewed/liked items, is cut out and

wrapped in a new model which computes the scores for all candidate items in parallel. For this

12



endeavor the einsum operator in Tensor�ow is used as it allows for very compact and expressive

code, shown in listing 1

1 import tensorflow as tf
2 ...
3 # each batch entry corresponds to the items history of one user
4 user_history_batch, items_repr_batch = inputs
5 # compute the memory component
6 user_memory_batch = self.user_memory_model(user_history_batch)
7

8 # compute the scores for each item with the memory components of each user
9 scores = tf.einsum("ijk,ilk->ilj", user_memory_batch, items_repr_batch)

10 # compute the attention for each item to the user memory components for
11 # all users
12 attention = tf.nn.softmax(scores, axis=-1)
13 # multiply the the embedding vector of each user memory component with the
14 # corresponding item attention and sum the embedding vectors of all memory
15 # components together to get the deep adaptive user representation
16 user_repr = tf.einsum("ijk,ilj->ilk", user_memory_batch, attention)
17 # compute the scores for each item with the deep adaptive user representation
18 # generated individually for each item
19 all_scores = tf.einsum("ijk,ijk->ij", user_repr, items_repr_batch)
20 return all_scores

Listing 1: Inference model using tf.einsum() operator

To compute the scores even more e�ciently, the CNN to compute the item representations

for the memory component can also be cut out to compute the representations separately and

utilize caching. This is not done yet but will be considered for in-production deployment.

Hurdles

View History and Document Length Tensors impose the requirement, that data within

a dimension in the tensor have to be the same length, so all view histories in a batch have to be

zero padded to match the longest sequence as well as all documents have to be zero padded

to match the biggest document. The view/like history of some users is quite long and di�er

much from the mean as well as some documents have much more words as the average. So

the required memory of di�erent batch sizes don’t scale linearly and can di�er greatly. If it

happens, that a very long user history and a very big document appears in a batch, a batch

becomes very large and exceed quickly the amount of available video memory. To this end, two

di�erent techniques are utilized. One possibility is to limit the maximum history length and

document size. This is very e�ective and easy to accomplish but incur a loss of information.

The other possibility is to incorporate Tensor�ow Ragged Tensors which are essentially the

tensor equivalent of nested lists. Both techniques were implemented but for the experiments

only the �rst technique is employed as some tensor�ow operators and Keras layers su�er from

performance issues when used with Ragged Tensors, have severe bugs or aren’t implemented at

13



all. Explaining the Ragged Tensor implementation and it’s issues would go beyond the scope, so

it is covered in future work.

Unbalanced Replica Batches The model training is distributed via Tensor�ows Mirrored-
Strategy() which uses data parallelism. For each available GPU a copy of the model, named

replica, is executed on that speci�c GPU, where the global batch is evenly partitioned among

the replicas. So each replica has its own sub-batch. Although each batch consists of the same

amount of samples, the length of the users histories and the size of the documents per sub-batch

di�er. For this reason the di�erent length histories and documents makes the computational

and memory costs of batches among model replicas unbalanced. This introduce ine�cient

distributed training/computation because the replicas have to synchronize at the end of each

step. Thus the GPU utilization is not optimal, because replicas with less data idle, while waiting

for replicas with heavier load to �nish.

Padding & Masking Working with sequences of di�erent length (history and documents)

when using normal, non Ragged Tensors requires the use of padding to align the sequences

to the same length. This padding also rise the need to mask this padding for di�erent layers.

The di�culty arise when some layers like Conv2D are don’t meant for the use of masks or the

padding has to be masked for custom (Lambda) layers. Higher dimensional sizes at some stages in

the network, e.g. tensor_shape = [batch, documents, words, embeddings, channels], also

makes things more complicate .

3.3 Experiments

To verify the implementation, for each dataset of the paper, trainings with batch sizes of [16, 32,

64, 128, 256, 512] were performed. It is assumed that the optimal learning rate roughly scales

linearly with the batch size and is scaled down from the original papers 0.001 for batch size 512
with lr = 0.001 * (batch_size / 512). Training with di�erent batch sizes were performed to

investigate any regularizing e�ect of the batch size and its e�ect to the model performance. This

was necessary since even with a history length cut down to a maximum of 50 and a maximum

document length of 500, the original papers optimal batch size of 512 can’t be applied for all

datasets with the available hardware. It was possible to train the model on the Yahoo! Movies
dataset with a maximum batch size of 512 but on the Amazon Video Games dataset the maximum

achievable batch size was 256. Because of high computation time, the training on Amazon
Movies and TV was just performed with batch size 16 for 54 epochs. For the used data sampling

method, with practically unlimited samples, (Rendle u. a., 2009) suggests that running a training

over as many samples as positive feedbacks exists is su�cient for convergence when the dataset

is large (~300 million in their case). As the three datasets are not very large, it is choosen to run

20 times the number of positive feedbacks. To track the progress more �ne-grained a epoch

constitutes of a tenth of positive feedbacks, so the training runs for 200 epochs.

14



3.4 Results

Figure 4 shows the MAP (Mean Average Precision) score of all three datasets for all conducted

training runs. On the top you see all runs for the Yahoo! Movies dataset which reaches the peak

performance of 0.136 after 6 epochs with a batch size of 32 (green line). Notably all batch sizes

performed very well already after the �rst epoch and are relative close together and start to

decrease between the 5th and 10th epoch. On the bottom you see all runs on the Amazon Video
Games and Amazon Movies and TV datasets which are also close together and very di�cult to

distinguish. They show a gain in performance over the �rst epochs with a peak at the 26th run

of batch size 128 with 5.2655× 10−3 for Amazon Video Games and 2.8372× 10−3 at step 37
for Amazon Movies and TV.

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

-20 0 20 40 60 80 100 120 140 160 180 200 220

Figure 4: Tensorboard scalar graph of MARS MAP@500 metric

Figure 5 shows the Recall for all three datasets. The graph looks similar to the MAP graph

with all Yahoo! Movies runs on top and the runs of the Amazon datasets at the bottom. The

best performance on the Yahoo! Movies dataset is represented by the red line for the 128 batch

size run with a maximum recall of 0.4449 at step 177. The top performance on Amazon Video
Games is reached at step 145 with a recall of 0.038 44 by the run with batch size 16 shown as

the blue line. On the Amazon Movies and TV dataset, the peak score is reached at step 28 with

0.0227.

Figure 6 shows the loss of all training runs. You can see three clusters of lines, the upper

cluster of lines (brown (BS 16), pink(BS 32), gray(BS 64), dark(BS 128) and light blue(BS 256))

are the runs on the Amazon Video Games dataset. The lower cluster are the trainings on the

Yahoo! Movies dataset and the orange line between them is the single run on the Amazon Movies
and TV dataset. The lines overlap at some points but are clearly separated and dont’t cross

each other until they get very close. For the Yahoo! Movies trainings the di�erent batch sizes

are more close together then for Amazon Video Games but it applies to both datasets that the

smaller batch sizes have a higher loss and the bigger batch sizes have a lower loss ordered from

BS 16 to 512.

15



-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

-20 0 20 40 60 80 100 120 140 160 180 200 220

Figure 5: Tensorboard scalar graph of MARS Recall@50 metric

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-20 0 20 40 60 80 100 120 140 160 180 200 220

Figure 6: Tensorboard scalar graph of MARS epoch loss metric

3.5 Discussion

The results on the Yahoo! Movies dataset shows that the implementation basically works. The

result on the MAP metric are worse then the original papers results (0.136 to 0.1692) but the

recall metric shows better results then the original papers numbers (0.4449 to 0.3230). The score

for Amazon Video Games for MAP (5.2655× 10−3 to 0.0934) and recall (0.038 44 to 0.1337)

di�er greatly from the original papers numbers and are much worse. Similarly the scores for

Amazon Movies and TV are much worse then the original papers scores. The correspondence in

the drop of the loss value and the rise of the MAP and recall metric shows that the loss function

is suitable to train a model for the recommendation task. Also the closeness of the trainings of

di�erent batch sizes shows there is a minor a�ect of the batch size to the model performance.

Further, the graph of the metrics shows, the model reaches good results just after a few epochs,

which supports the assumption of the e�ectiveness of the data sampling method. So the training

on bigger datasets can be done safely with smaller batch sizes on less powerful hardware with

16



just a few epochs of training. This maybe lead to a more cost e�ective model in contrast to

more complex and deep models which will require more resources for training and may lead

to fewer model updates on new data due to training time. In addition the used data sampling

method may improve the training of other models.

It is presumed that mainly di�erences in the data preprocessing to the original paper are

responsible for the deviant results. Also the assumptions of section 3.2.1 made for missing

information and the technically necessary cut of the user history and document length will have

an impact on the results. As already discussed in section 2.1.4 the processed data partly di�er to

a great extend and changes in the training and test data have a very big in�uence on the models

performance. Especially the fact that the Amazon Video Games dataset consists of roughly 67 %
item descriptions which contain just special characters and no words, which are �nally replaced

with padding when you stick to the papers described preprocessing, underlines this assumption.

The di�erences in results between the Yahoo and Amazon datasets can probably be explained by

two factors. 1) The Yahoo dataset contains descriptions consisting only of �owing text without

special characters and the Amazon item descriptions contain many special characters and HTML
code. 2) The density (proportion of samples to possible item/user interactions) of the Yahoo
dataset with 0.24 % to 0.037 % for Amazon Video Games and 0.0128 % for Amazon Movies and
TV is much higher. The low density of the Amazon datasets makes the training for a model

much harder and more sensitive to variations in data.

3.5.1 Proposed Improvements

The following represents a list of proposed improvements, which may enhance the capabilities

of the model architecture:

Pretrained Embeddings Initialize the word embeddings with pretrained ones on large text

corpora.

Transfer learning for item representations Use models pretrained on large text corpora

for the item representation.

RNN/Transformer to Capture Temporal User Features Generate the user representation

from the memory component by �rst weighting the individual memory components with

the attention vector, like the original architecture and instead of summing them up, use

an RNN, like LSTM or GRU, to capture temporal features from the users history and use

it as the user representation. Alternatively use a Transformer based model instead of the

RNN. Here one have to try if the attention mechanism is still useful or can be completely

replaced with the RNN. It is to mention, that in this case, the liked item by the user have

to be sorted by time and the dataset must provide a sorted history or timestamps.

Replace representation CNN Replace the CNN for item representation generation with RNN

or transformer based models to better model the content.

17



Bigger NN’s The authors just do a grid search for the embedding layer size and the �nal

dense output layer which also makes for the item/user vector representation size. As the

CNN and dense output network have just one hidden layer, the authors didn’t leverage

the power of deeper networks. Thus deeper networks may extract richer features and

perform better. As the model capacity rises, additional regularization techniques like

dropout can compensate this to prevent over�tting. Alternatively a bigger kernel size

may capture more dependencies in the content or kernels of di�erent sizes capture more

diverse features.

4 Conclusion & Outlook

4.1 Conclusion

In section 2 the used datasets are described, with deviations to the original paper after prepro-

cessing stressed in 2.1.4. The original paper were sketched in section 3.1. The experimental

design of this work including model implementation details, preprocessing steps and assump-

tions made, because of missing information, are presented in section 3.2. To this point it can

already be seen how di�cult it is to reproduce a paper for which the author don’t have made

their source code publicly available. When it comes to that the authors are not available to

discuss their work or answer questions about omitted information it gets even more di�cult.

The results of section 3.4 shows that the implementation works on one of the three datasets

but fail on the other two, probably by deviating preprocessing to the original paper. The results

also shows that the model needs just a few epochs of training to reach usable performance

and small batch sizes perform equally to bigger ones. This indicates, that the model can be

trained comparatively cheap in terms of hardware and training time requirements. The fast

convergence also suggests that the data sampling method is e�ectively to speed up training

and may bene�t the training of other models. This also indicates that training on the much

bigger news recommendation dataset should work without implementing advanced techniques

like Ragged Tensors when utilizing small batch sizes. Also to train the model on the news

recommendation dataset don’t need much adaptations as long as just the text content is used

for item representation.

4.2 Outlook

In the follow up master thesis, the implemented model will be tested with the news recommen-

dation dataset and also online A/B tests will be carried out. Additionally some of the proposed

improvements of section 3.5.1 will be evaluated. Along with the model of this work, other neural

network architectures and techniques will be looked at. Also the rich metadata of the news

recommendation dataset will be incorporated to investigate their e�ect on model performance.

Finally, promising components of the evaluated methods will be picked out to derive a new

architecture to possible surpass the examined methods on their own.

18



One key takeaway is, in further work to focus on papers which deliver source code of their

experiments or get in touch with the authors before starting to reproduce their work. Otherwise

one can’t rely upon others work and have to question their results or methodology or get

distracted by implementation details at the expense of own developments.

Acknowledgment

I would like to thank Dr. Christoph Mayer from SCHICKLER Unternehmensberatung GmbH for

providing the great dataset and Prof. Dr. Kai von Luck for supervising and supporting this

project and providing valuable suggestions.

References

[Lange 2020] Lange, Timo: Building a data pipeline for News Recommendation with Deep

Learning. URLhttps://users.informatik.haw-hamburg.de/~ubicomp/
projekte/master2020-proj/lange.pdf, Juni 2020. – Forschungsbericht. – 27 S

[Rendle u. a. 2009] Rendle, Ste�en ; Freudenthaler, Christoph ; Gantner, Zeno ; Schmidt-

Thieme, Lars: BPR: Bayesian Personalized Ranking from Implicit Feedback. (2009), S. 10

[Zheng u. a. 2019] Zheng, Lei ; Lu, Chun-Ta ; He, Lifang ; Xie, Sihong ; He, Huang ; Li,

Chaozhuo ; Noroozi, Vahid ; Dong, Bowen ; Yu, Philip S.: MARS: Memory Attention-Aware

Recommender System. In: 2019 IEEE International Conference on Data Science and Advanced
Analytics (DSAA), Oktober 2019, S. 11–20

19

https://users.informatik.haw-hamburg.de/~ubicomp/projekte/master2020-proj/lange.pdf
https://users.informatik.haw-hamburg.de/~ubicomp/projekte/master2020-proj/lange.pdf

	1 Introduction
	2 Dataset Overview
	2.1 Dataset from original paper
	2.1.1 Yahoo! Movies
	2.1.2 Amazon Video Games
	2.1.3 Amazon Movies and TV
	2.1.4 Divergent Data

	2.2 News Recommendation Dataset
	2.2.1 Schickler Dataset
	2.2.2 Additional DPA Data


	3 MARS: Memory Attention-Aware Recommender System
	3.1 Original Experiment Description
	3.1.1 Model Description
	3.1.2 Model Training

	3.2 Experimental Design
	3.2.1 Missing Information / Assumptions
	3.2.2 Preprocessing
	3.2.3 Model Implementation Overview

	3.3 Experiments
	3.4 Results
	3.5 Discussion
	3.5.1 Proposed Improvements


	4 Conclusion & Outlook
	4.1 Conclusion
	4.2 Outlook


